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Abstract. Both open-source and proprietary software systems have become in-
creasingly complex. Despite their growing complexity and increasing size, soft-
ware systems must satisfy strict release requirements that impose quality, putting
significant pressure on developers. Therefore, the success of software projects
is dependent on the identification and hiring of qualified developers to build
a solid and cohesive team with different programming skills. Our main goal
is to develop and evaluate a method able to compute programming skills from
source code analysis. Our method uses software metrics such as Changed Files
and Changed Lines of Code, to compute the skills. Our results showed that
our method is able of identifying programming skills of the developers about
mainly libraries used, programming languages, and profile concerning back-
end & front-end and unit test.
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1. Introduction
Both open-source and proprietary software systems have become increasingly complex.
Despite their growing complexity and increasing size, software systems must satisfy
strict release requirements that impose quality, putting significant pressure on develop-
ers. Therefore, software projects’ success depends on identifying and hiring qualified
developers to build a solid and cohesive team with different programming skills. The cur-
rent practice in industry and research for assessing programming skills is mainly based
on proxy variables of skills, such as education, years of experience, and multiple-choice
knowledge tests [Baltes and Diehl 2018]. However, poor hiring decisions may hurt the
success of a software system [Marlow and Dabbish 2013]. In particular, software projects
have many open positions and not as many qualified candidates [Baltes and Diehl 2018].
In this context, identifying qualified candidates with the right combination of skills is cru-
cial to the success of a software project because these candidates may not actively apply
themselves for open job positions.

Several approaches aim at addressing this problem by proposing mod-
els [Montandon et al. 2019, Bizer et al. 2011, Constantinou and Kapitsaki 2016,
da Silva et al. 2015] and tools [Greene and Fischer 2016, Marlow and Dabbish 2013] to
automatically identify the programming skills of developers via source code analysis.
These models and tools rely, for instance, on information about who has changed each
file to identify developers who might know technology and business logic in these
particular parts of a system. With the emergence of social coding platforms, such as



GitHub, a lot of information about developers and projects is available. Such social
and programming data about developers have a vast potential to support the effective
identification of programming skills and expertise. Greene and Fischer (2016) proposed a
tool named CVExplorer to identify developers with programming skills, such as expertise
in programming languages.

Although these approaches may potentially identify the programming skills, we
still lack approaches able to compute programming skills in 5 perspectives: i) which
programming languages each developer knows, ii) main libraries, iii) back-end & front-
end profile, iv) if the developer creates unit tests, and v) the developer’s experience in
mobile devices. Therefore, this project presents a proposal for a Ph.D. thesis in Com-
puter Science to fill this gap. Our contribution targets both researchers and practition-
ers. Researchers can use our results to design studies related to skills and reflect on
the complicated relationship between source code activities and skills. Practitioners can
use it to refine the practical evaluation of professional skills for several purposes, from
hiring procedures to the evaluation of team formation. Understanding the effective-
ness of the different approaches is the first and necessary step for building tools that
will genuinely indicate programming skills by analyzing activities in the software reposi-
tory [Baltes and Diehl 2018].

2. Work Plan
To develop the proposed method, we established a set of tasks to be performed during
the Ph.D. course. Figure 1 shows the steps. The tasks may have three possible status:
Done, In Progress, and To-Do. Our study is divided in ten steps, as follows: i) As we
can observe, the first step of the research was the literature review, from which we could
understand the state-of-art of metrics, tools, and models to compute programming skills
from the source code (done). We noticed that a few works investigated programming
skills from source code in perspectives analyzed in this study. ii) From the previous step,
we developed the metrics to compute programming skills (done).

We focus mainly on static metrics, for example, changed files and changed lines
of code. iii) From the metrics, we develop a method able to compute programming skills
(done). iv) In order to analyze our method, we conducted a clone of repositories from
GitHub (done). In steps v and vi, our method made an analysis of changed files and
changed lines of code in desktop and mobile app (in progress). We need to improve this
method to achieve more accuracy (in progress). vii) From the method developed, we need
to conduct an empirical study to evaluate them. For this, we select developers, repos-
itories, programming languages, libraries, and target developers to survey (in progress).
viii) From the previous step, we conducted a survey with developers from GitHub in order
to identify opportunities to improve the method (in progress). ix) After all previous steps,
our aim is to evaluate a tool that supports the method developed (to-do). x) In this last
step, we compile all findings to contribute to science and conclude the Ph.D. (to-do).

3. Method Overview
This section presents our method developed to compute programming skills in six per-
spectives: i) which programming languages are used by developer, ii) main libraries are
known by them, iii) profile as develop back-end & front-end, iv) unit test, v) frequency of
commits, and vi) experience of the developer in mobile devices (Android).



Figure 1. Work plan for quantitative and qualitative studies

3.1. Programming Skills of Library Experts

A library is a collection of objects, functions, and methods [Reif et al. 2016]. Its main
benefits are supporting the work performed by developers in such a way that they can im-
plement new features or maintain software systems with more quality [Reif et al. 2016].
Consequently, developers with more knowledge in a library, in particular, can work
more actively in open source and proprietary projects [Bailey and Stefaniak 2001,
Bailey and Mitchell 2006]. We rely on 3 metrics to identify the library experts. Table 1
shows these metrics and explains them in more details. Each metric is computed in rela-
tion to the amount of commits to a specific library. That is, when a commit to a library is
identified, the metrics were calculated.

Table 1. Proposed Metrics
Metric Description

Number of Commits

This metric calculates the activity of each developer through the number of com-
mits using a particular library. Through this metric, it is possible to measure the
amount of use of the library in a project that a specific developer works.

Number of Imports
This metric presents the intensity of use of a particular library. For this metric,
we count all imports to the library written by a developer. Repeated imports are
included.

Lines of Code

To compute this metric, we developed a heuristic to count the amount of LOC
related to a specific library, as follows. First, we obtain the ratio of changed
LOC by the number of all imports in the file. Then, we multiply the ratio by the
number of imports related to the library.

We present the skills of each developer in 5 dimensions: Knowledge Amplitude,
Knowledge Intensity, Code Proficiency, Collaboration, and Experience. To rank develop-
ers on each of the 5 skills, we created indexes. The indexes range from 1 (beginner) to 5
(senior). Table 2 describes the thresholds used to calculate scores for each skill. This table
was designed by empirically analyzing the distribution of data in our study. Thresholds
in this table can be adapted to specific contexts.

Knowledge Amplitude– This skill indicates the spread of a developer’s knowl-
edge of different libraries. To rank developers in this attribute, we count the number of
unique imports written by the developer and related to a specific library.

Knowledge Intensity– This skill shows the intensity of use of a library. We count



Table 2. Thresholds for skill scores
Rank Knowledge

Amplitude
Knowledge
Intensity

Code
Proficiency Collaboration Experience

1
#unique imports

between
(1 and <=10)

#tota limports
between

(1 and <=10)

#total LOC
between

(1 and <=500)

#different file
between

(0 and <= 5)

#different
projects= 0 or 1

2
#unique imports

between
(11 and <=50)

#tota limports
between

(11 and <=100)

#total LOC
between

(501 and <=5,000)

#different files
between

(6 and <= 10)

#different
projects = 2

3
#unique imports

between
(51 and <=100)

#tota limports
between

(101 and <=1,000)

#total LOC
between

(5,001 and <=50,000)

#different files
between

(11 and <= 20)

#different
projects = 3

4
#unique imports

between
(101 and <=500)

#tota limports
between

(1,001 and <=10,000)

#total LOC
between

(50,001 and <=500,000)

#different files
between

(21 and <= 30)

#different
projects = 4

5
#unique imports

between
(>=501)

#tota limports
between

(>=10,001)

#total LOC
(>=500,001)

#different files
>= 31

#different
projects >= 5

all imports to the library written by a developer. Repeated imports are included.

Code Proficiency– With this skill, we want to measure how much the developer
is productive in a given library. Therefore, we count the total lines of code (LOC) added
when this code is related to a library. That is, if the developer adds an import for the
library, we assume that this developer is writing code related to the library. We count only
non-commented LOC; blank lines and comments are not accounted for this criterion.
Table 2 describes the thresholds considered for calculating code proficiency. To compute
this metric, we developed a heuristic to count the amount of LOC related to a specific
library, as follows. First, it obtains the ratio of changed LOC by the number of all imports
in the file. Then, it multiplies the ratio by the number of imports related to the library. The
heuristic takes into consideration 3 attributes, the number of library imports, the number
of imports in general, and the number of LOC altered by a commit related to the library.
The heuristic is then computed as follows:

LOC =
# of LOC Altered by Commit

# of All Imports
X # of Library Imports

Collaboration– This skill measures the developer’s ability to collaborate with
other peers in the same file. Therefore, we count the number of different source code files
that the developer has modified in partnership with other developers.

Experience– This skill denotes the number of additional projects where the de-
veloper uses a specific library. Multitasking can produce the developer good dividends if
done the right way.

3.2. Programming Skills Profile

Besides compute library experts, we developed 2 other metrics to compute programming
skills in 3 dimensions: programming language, back-end & front-end profiles, and unit
test. These 2 metrics are, (i) Changed Files and (ii) Changed Lines of Code. Changed
Files compute the number of files change made by a specific developer, for example, Mary
modified 3 Python, 2 Java, 2 CSS, and 1 HTML files. Therefore, according to the Changed
Files, her skill in programming languages is distributed as follows: 37.5% Python, 25%
Java, 25% CSS, and 12.5% HTML. In a similar fashion, the metric Changed Lines of Code



considers the number of LOC added or removed by a specific developer. For example, to
compute the programming skills to Johns in programming languages, we need to count
the total number of changed LOC for all files that share the same file extension. John,
for instance, has a skill distribution in programming languages as follows: 7 Python, 2
CSS and 1 HTML. Therefore, in percentage we obtain, 70% Python, 20% CSS, and 10%
HTML. This data are about programming languages.

Besides compute programming languages, we also analyzed the programmer (a)
alignment between back-end front-end profiles and (b) skills in test development. For the
former, we classified a set of programming languages as front-end (e.g., CSS), and another
set as back-end technologies (e.g., Java). Therefore, we also used the models previously
described to calculate back-end front-end profiles. For the latter, to calculate the test
skills, we need to identify if a particular folder contains test files. That is, the source code
is parsed and we search for directory structures mentioning tests. We manually validated
a sample of our script output and verified a precision above 80%. We then consider it
good enough for our purpose.

4. Preliminary Results
In this section, we present the dataset used to evaluate our method (section 4.1). Besides,
we show the preliminary results in two perspectives: i) library experts (section 4.2) and
ii) programming skills profiles (section 4.3 ).

4.1. Dataset
Our method computed 1,137 curricula from our dataset. To create our dataset, we con-
duct a process of filtering to select the developers. First, we select 2,000 developers
randomly. Second, we made a filter by developers with the top-10 programming lan-
guages1: JavaScript, Python, Java, Go, C++, Ruby, PHP, TypeScript, C#, and C. Besides,
we selected the style sheet language CSS and HTML. Third, from the last filter, we delete
developers whose repositories have less than ten projects. Fourth, we select from the
previous step developers with at least 100 commits in projects. In the fifth and last step,
we select developers with at least a thousand LOC committed and obtained the 1,137
developers able to participate in our analysis.

4.2. Library Experts
In this section, we present a overview of some relevant findings achieved in perspective
library experts. Our study shows that a significant amount of expert candidates makes
commits, when writing code related to a specific library, performs many imports of par-
ticular libraries, and writes LOC in sequence when making an import of the library. The
developers were invited (survey) to rank their knowledge using a scale from 1 (one) to 5
(five), where (1) means no knowledge about the library; and (5) means extensive knowl-
edge about the library. If we analyze the data about the precision of the strategy from the
sum of levels 3, 4 and 5 of Likert-type scale, we obtain on average 88.49% of accuracy
in relation the knowledge of the developers, i.e., identification is correct in more than
88% of the cases. On the other hand, although a score 3 may represent an acceptable
knowledge, if we followed a more conservative criterion, only classifying as library ex-
perts the developers that informed a higher (≥ 4) knowledge on the libraries, we obtain,

1https://madnight.github.io/githut/#/pull requests/2020/2



on average, 63.31% of precision. This way, we conclude that most of the identified expert
candidates identified by the strategy contain high knowledge about the evaluated libraries.
In contrast, to a level of knowledge < 3, we achieved only 11.51% of the developers, i.e.,
possibly the strategy fails by selecting these developers.

4.3. Programming Skills Profiles

This section describes the survey results applied with developers from GitHub. Our
dataset had the same setup used in the section 4.1. Figure 2 shows the opinion of the
developers about our method. In this figure, we have 3 blocks, one for each evaluated
programming skill. The first block of charts represents programming language skills.
The second block depicts the back-end & front-end profiles. Finally, the last block shows
the test skills. Concerning the Changed Files agreement, we observe in the programming
language perspective that 27% of the participants answered “strongly agree” and “agree”.
On the other hand, we observe that to the Changed LOC, 14% and 22% of the partici-
pants answered respectively “strongly agree and “agree”. Concerning disagreements, we
have 12% and 18% to “strongly disagree” and “disagree” to the Changed Files. While for
Changed LOC, we observe 18% and 19%, respectively, to “strongly disagree” and “dis-
agree”. This way, we note that the Changed Files models, in general, are better evaluated
by developers to capture their programming language skills.

Figure 2. Overview

5. Related Work
The use of data present in GitHub to understand how software developers work and col-
laborate has become recurrent in software engineering studies [Destefanis et al. 2016].
Some studies seek to understand the behavior of developers concerning interaction with
their peers [Ortu et al. 2015]. For example, studies that try to understand who are the
developers with peaceful behavior and those with aggressive behavior and if these devel-
opers coexist productively in software development projects [Ortu et al. 2016]. Similar
studies also try to understand if there is a relationship between bug resolution time and
behavior of developers [Ortu et al. 2015]. Also, some studies investigate developers man-
ners [Destefanis et al. 2016] and seek to understand the emotional behavior of software
developers [Ortu et al. 2016].

Greene and Fischer (2016) have developed an approach to extracting technical in-
formation from GitHub developers. The work of researchers also does not differentiate



developers from their level of knowledge of technical skills, since a recruiter has several
candidates for the same job position [Greene and Fischer 2016]. In addition, the work
only shows the profile of the users in GitHub, and it does not extract other characteristics
of their knowledge and skills. Besides, they do not provide actual data about the devel-
oper’s knowledge production. Singer et al. (2013) investigate the use of profile aggregates
in the evaluation of developer skills by developers and recruiters [Singer et al. 2013].
However, these aggregates only gather skills for individual developers, and it is not clear
how they support the identification of relevant developers from a large dataset of candi-
dates.

We believe that our method is complementary to the described related work, pro-
viding a different approach focusing on the identification of possible experts in specific
technologies. To the best of our effort, we did not find a similar strategy. Hence, we
cannot compare our proposal to other studies.

6. Conclusion and Future Work

This project presents a proposal for a Ph.D. thesis in Computer Science that focuses on
the method to compute programming skills from source code. We believe that mining
software repositories to understand how developers use specific technologies provide ob-
jective insight into their real expertise. Therefore, our method may be useful to support
the assessment of developers’ skills, which are often analyzed using curriculum infor-
mation, interviews, and admission tests. Our method uses data from GitHub to compute
programming skills from source code. We rely on a set of metrics and thresholds. Our
preliminary results showed that our method is able compute programming skills.

As future work, we intend to conclude the last study steps, publish the study re-
sults as papers for the community, complete the study (to-do) and finish this Ph.D.’s is
December 2022 or January 2023 with the thesis defense.
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