

Open-Source Software Projects Curating Model for
Empirical Software Engineering Studies

Juan Andrés Carruthers

Departament of Informatics – National University of the Northeast (UNNE)
Corrientes – Argentina

jacarruthers@exa.unne.edu.ar

Abstract. Software projects are common inputs in Empirical Software
Engineering (ESE), and they are often selected without following a specific
strategy, leading to biased samples. To avoid this problem, researchers choose
to use publicly available datasets instead of picking the projects themselves.
However, some datasets are not maintained, containing old versions of
projects, or even deprecated ones. This may raise some representativeness
issues due to major changes in development practices and technologies over
time. The main goal of this research is to develop a procedures model to
construct and maintain a software project dataset with their product quality
metrics, to support the development of ESE studies.

1. Introduction
Software Engineering works mainly with the "construction of multi-version software
applications" [Parnas 2001]. Thus, many of the activities associated with software
application require revisions to improve the functionality or correct errors, especially in
agile methodologies [Irrazábal et al. 2001]. Quality in software development can be
studied from two angles: the software development process and the source code
[Lehman 1996]. In the latter case, empirical methods are necessary to demonstrate the
quality of the software [Kitchenham and Pfleeger 1996], using evidence related to the
software product in form of metrics and indicators directly linked to quality [Garvin
1984].

 The massive use of open source repositories (e.g. Github, SourceForge and
Maven) made publicly available vast amounts of software projects data for researchers
and software engineers to conduct Empirical Software Engineering (ESE) studies [Vidal
et al. 2016], [Vázquez et al. 2019]. However, ESE studies performed with arbitrarily
picked samples could lead to unrealistic and potentially inaccurate conclusions due to
the proportion of noise in these repositories [Munaiah et al. 2017], contrasting with the
ESE notions of replicable and generalizable results. In particular, replicability is
essential not only for publications in prestigious journals or conferences of the
discipline; but also for software development companies that often want to analyze the
evolution of their own projects or use them as a benchmark in software audit reviews.

 A common practice to demonstrate the effectiveness of metrics as predictors of
software quality characteristics is the construction of datasets [Tempero et al. 2010].
Datasets of software projects work as inputs for researchers and as comparison
mechanisms for different types of ESE studies. Examples of popular datasets are:

Qualitas corpus [Tempero et al. 2010], NASA dataset [Shepperd et al. 2013] or
Jureczko and Madeyski dataset [Jureczko and Madeyski 2010], which their latest
available version has more than seven years. Thus, it is necessary to review the versions
of each project and recalculate their metrics.

 With that being said, our hypothesis is "have a procedure model to construct,
maintain and curate a dataset of software projects with their product quality metrics can
provide a sound strategy to conduct ESE studies; improving replicability, experimental
consistency, and flexibility for a controlled evolution of a software project dataset over
time".

2. Research Goals
The main goal of our research is "develop a procedures model to construct, maintain and
curate a dataset of software projects with their product quality metrics, to support the
development of ESE studies". This objective is divided into two parts:

• Methodological support. Analyze and design rules to construct and curate a
representative sample of open source software projects, and the metadata necessary
to motivate ESE studies.

• Technological support. Develop tools to allow automated generation of metadata, to
control rules for the curation of software projects, and to help researchers and
engineers manage their use for the design and execution of experiments.

3. Related works
In ESE studies the results obtained must be, at some degree, replicable and
generalizable. Replicability is important to validate the results of a scientific study and
can be tackled by providing the datasets and scripts of the conducted research [Baltes
and Ralph 2020].

 There were attempts to provide a software project dataset for ESE studies over
the years. These datasets include source code repositories [Tempero et al. 2010],
information in issue trackers [Rahman and Roy 2018], product quality metrics [Jureczko
and Madeyski 2010], [Shepperd et al. 2013], and even evolutionary data such as source
code change logs [Palomba et al. 2018]. However, they are often unsuitable for the task
due to methodological issues when sampling the software projects, reducing the
generalization of their conclusions. The lack of representativeness in a sample can bias
the generalization of the findings.

 For example, Mockus et al. (2002) stated that free/open-source software
contained fewer defects than proprietary systems, basing their conclusions on two open-
source projects (Apache and Mozilla). Samples with two subjects cannot provide
enough evidence to generalize to the entire population of open-source software.

 Jureczko and Madeyski (2010) collected object-oriented product quality metrics
and defect information from 48 releases of 15 open source projects and 27 releases of 6
proprietary projects. Shepperd et al. (2013) gathered size and complexity metrics from C
and C++ Nasa software. In both cases, the authors provide access to the datasets and
they are frequently used in current ESE studies. But, neither of them reported the
sampling strategy.

 Another popular dataset Qualitas Corpus [Tempero et al. 2010], contains the
source code of 100 open-source Java projects and includes the guidelines followed to
select the projects, keeping even deprecated ones. Using deprecated projects might
guarantee the replicability of experiments but also raises issues about the applicability of
the results obtained in current projects.

 Few studies take into consideration building samples using a probability
sampling technique, and they recur to convenience or purposive sampling techniques.
The ideal case would be to randomly select a statistically significant sample of software
projects, or maybe apply approaches such as Nagappan et al. (2013), to construct diverse
and representative samples.

 Finally, we identified scarce efforts to provide a framework or procedure model
to maintain the temporal validity of the projects in the datasets. Since constant changes
in development practices and technologies over time can produce different outcomes in
ESE studies, a dataset of software projects constructed several years ago can rarely be
representative of recently developed projects. Lewowski and Madeyski (2020) partially
tackled this with their tool to create evolving datasets, but did not precise how to deal
with deprecated projects.

4. Methodology
We organized the research strategy following the Design Science Research framework
(Johannesson and Perjons, 2014), an approach to create and validate novel artifacts,
providing solutions in the form of models, methods, and systems that support people in
developing, using, and maintaining IT solutions. Also, it aims at producing and
communicating new knowledge relevant for a global practice, thus the results produced
are twofold, the artifact created, and the knowledge generated.

The purpose of creating new and generalisable knowledge requires that design science
projects make use of rigorous research strategies and methods. Such methods are
essential for creating results that can be critically discussed, evaluated, and validated.
Finally, the new knowledge should be communicated to both practitioners and
researchers.

With that being said, to achieve the main goal we propose the following tasks framed by
the mentioned framework:

4.1 Explicate the problem

The goal of the first activity is to formulate the initial problem precisely, justify its
importance, and investigate its underlying causes.

A1. Define the knowledge base and establish the state of the art on the datasets of
software projects used in ESE studies.

The research methods used will be Systematic Literature Review [Kitchenham 2004]
and Systematic Mapping Study [Petersen et al. 2008]. These methods identify, evaluate,
and interpret all the information related to the particular research topic, in a systematic
and replicable way. The application of systematic reviews in the field of Software
Engineering allows giving a scientific value to the review of the literature that is done,

defining a search strategy for the articles to be evaluated and finally obtaining a
hypothesis for or against the revised literature.

4.2 Define Requirements

This activity goal is to identify and outline the artefact that can address the explicated
problem, and elicit requirements on that artefact.

A2. Carry out a literature reviews on the datasets of software projects developed to date,
in order to compare them and evaluate the necessary characteristics towards ESE
studies.

A3. Perform a survey among research and innovation groups to identify the
construction, curation and communication necessities for a dataset of software
projects.

Two research methods will be used. First, systematic literature reviews [Kitchenham
2004] and Systematic Mapping Study [Petersen et al. 2008]. Second, surveys
[Kitchenham and Pfleeger 2002] will be used to collect information from research
groups and innovation teams.

4.3 Design and Develop Artefact

The third activity creates an artefact fulfilling the requirements from the previous
activity, including the design of the functionality and structure of the artefact.

A4. Build the methodological support based on the analysis and design of the rules for
the construction and curation of a representative sample of open source software
projects, as well as the necessary metadata oriented to the ESE studies.

A5. Build the technological support with a source code analysis ecosystem and an
extraction tool to obtain reports of software quality metrics from the dataset.

To receive feedback about the developed artifact and refine it we will conduct a focus
group. This can be seen as an interview in which a group of respondents participate and
discuss a specific topic. The aim is to enable the participants to be more creative and
pursue the topic addressed in greater depth than in one-to-one interviews.

4.4 Demonstrate Artefact

The fourth activity of the method framework is to demonstrate the use of the artefact in
one case, thereby proving its feasibility.

A6. Create datasets with the technological support and conduct controlled experiments
with them in order to evaluate sample representativeness.

We will use Wohlin et al. (2012) guidelines to perform experiments. An experiment is a
formal, rigorous and controlled investigation, that its key factors are identified and
manipulated, while other factors in the context are kept unchanged.

4.5 Evaluate Artefact

Finally, the fifth activity determines how well the artefact is able to solve the explicated
problem and to what extent it fulfils the requirements.

A7. Validate the methodological and technological support through the replication of
case studies and action-research experiments.

For resolution and validation, the Research-Action method will be used. Originally, this
method [Lewin 1947] sought to link the experimental approach of the social sciences
with programs of social action that responded to certain main social problems. This
method (with a necessary adaptation) has been widely accepted by the Information
Systems community [Avison et al. 1999], [Seaman 1999].

5. Results
As part of this research, we carried out a systematic mapping study following the
guidelines proposed by Petersen et al. (2008) to obtain an overview of the current
technical development or level of practice of a research area. This study aimed to show
research groups followed practices for experimentation with software projects, exposing
the problems found that compromise sample representativeness and experiment
replication.

 For this study, we carried out a manual search in the journal Empirical Software
Engineering; and the conferences Empirical Software Engineering and Measurement,
and International Conference on Evaluation and Assessment in Software Engineering
from 2013 to 2020. The systematic search resulted in 122 empirical studies with
software projects. The study was presented at The Journal "Computación y Sistemas".

 The results showed that, researchers most common practices are: making their
own guidelines to select projects and using existing software project datasets. We did
not evidence a unified or automated framework to select software projects, due to the
large diversity of aspects considered by the researchers. Also, the main programming
language of selected software projects was Java.

 On the other hand, we are performing another systematic mapping study, in
which we aim to determine and assess the general state of the software projects datasets
in ESE studies in terms of their validity, purpose, sampling strategy, information
extracted from the projects and the tools employed to extract that information. To that
end, we formulated the following research questions:

RQ1: What are the characteristics of the software projects in the dataset for ESE
studies?

RQ1.1: What criteria was considered to select the software projects in the dataset
for ESE studies?

RQ1.2: What were the main programming languages of the projects selected for
the dataset for ESE studies?

RQ2: What data was extracted from the software projects that compose the dataset?

RQ3: What tools were used to obtain the data extracted from the software projects that
compose the dataset?

RQ4: Why was the dataset created?

RQ5: Is the dataset updated?

6. Expected Contributions
The expected contribution of this research is two fold. First, provide a procedures model
to construct and maintain a dataset of software projects, allowing better replicability and
representativeness in ESE studies. The key aspect is that the model can be fed with
evolutionary information from projects, and at the same time, is extensible to add
quality metrics and other useful artifacts. The model will be implemented as a software
solution in order to validate and automatize our approach.

 Second, share an open source software project dataset with their quality metrics.
The dataset will be created and maintained with the implementation of the
aforementioned model.

7. Future Steps
Once the second systematic mapping study is finished, we have two planned studies
ahead. In first place, we will perform a replication study of a quasi-experiment originally
made with the 20130901 release of the Qualitas Corpus; but instead of that version, we
will use the 2021 version of the Qualitas Corpus, updating every non-deprecated project
inside the 20130901 release. Our goal is to evaluate the degree of replicability between
versions and review if temporal validity plays a role in the representativeness of the
sample.

 Secondly, we will conduct an academic questionnaire to Software Quality
research groups in order to assess the results obtained in the studies mentioned in
Section 4.2.

Acknowledgments
This research is supported by CONICET through the Internal Doctoral Grant, with a
duration of 60 months.

References
Avison, D., Lau, F., Myers, M. and Nielsen, P. A. (1999). Action Research.

Communications of the ACM, 42(1), 94–97.

Baltes, S. and Ralph, P. (2020). Sampling in Software Engineering Research: A Critical
Review and Guidelines. https://arxiv.org/abs/2002.07764v5

Garvin, D. A. (1984). What Does "Product Quality" Really Mean? MIT Sloan
Management Review, 25–43. https://sloanreview.mit.edu/article/what-does-product-
quality-really-mean/

Irrazábal, E., Vásquez, F., Díaz, R. and Garzás, J. (2011). Applying ISO/IEC
12207:2008 with SCRUM and Agile Methods. Communications in Computer and
Information Science, 155 CCIS, 169–180. https://doi.org/10.1007/978-3-642-21233-
8_15.

Johannesson, P. and Perjons, E. (2014). An introduction to design science (Vol. 10, pp.
978-3). Cham: Springer.

Jureczko, M. and Madeyski, L. (2010). Towards identifying software project clusters
with regard to defect prediction. ACM International Conference Proceeding Series, 1.
https://doi.org/10.1145/1868328.1868342

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Keele
University, 33, 1–26. https://www.researchgate.net/publication/228756057

Kitchenham, B. and Pfleeger, S. L. (1996). Software quality: the elusive target. IEEE
Software, 13(1), 12–21. https://doi.org/10.1109/52.476281

Lehman, M. M. (1996). Laws of software evolution revisited. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 1149, 108–124.
https://doi.org/10.1007/BFb0017737

Lewin, K. (1947). Frontiers in Group Dynamics: Concept, Method and Reality in Social
Science; Social Equilibria and Social Change. Human Relations, 1(1), 5–41.
https://doi.org/10.1177/001872674700100103

Lewowski, T. and Madeyski, L. (2020). Creating Evolving Project Data Sets in
Software Engineering. Studies in Computational Intelligence, 851, 1–14.
https://doi.org/10.1007/978-3-030-26574-8_1

Mockus, A., Fielding, R. T. and Herbsleb, J. D. (2002). Two case studies of open source
software development. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3), 309–346. https://doi.org/10.1145/567793.567795

Munaiah, N., Kroh, S., Cabrey, C. and Nagappan, M. (2017). Curating GitHub for
engineered software projects. Empirical Software Engineering, 22(6), 3219–3253.
https://doi.org/10.1007/s10664-017-9512-6

Nagappan, M., Zimmermann, T. and Bird, C. (2013). Diversity in Software Engineering
Research. Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE 2013. https://doi.org/10.1145/2491411

Palomba, F., Bavota, G., Penta, M. Di, Fasano, F., Oliveto, R., & Lucia, A. De. (2018).
On the diffuseness and the impact on maintainability of code smells: a large scale
empirical investigation. Empirical Software Engineering, 23(3), 1188–1221.
https://doi.org/10.1007/S10664-017-9535-Z/TABLES/11

Parnas, D. L. (2001). Some software engineering principles. In Software fundamentals:
collected papers by David L. Parnas (pp. 257–266).
https://dl.acm.org/doi/10.5555/376584.376632

Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M. (2008). Systematic Mapping
Studies in Software Engineering. Proceedings of the 12th International Conference
on Evaluation and Assessment in Software Engineering, 68–77. www.splc.net

Rahman, M. M. and Roy, C. K. (2018). Improving IR-based bug localization with
context-aware query reformulation. ESEC/FSE 2018 - Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 621–632.
https://doi.org/10.1145/3236024.3236065.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering.
IEEE Transactions on Software Engineering, 25(4), 557–572.
https://doi.org/10.1109/32.799955

Shepperd, M., Song, Q., Sun, Z. and Mair, C. (2013). Data quality: Some comments on
the NASA software defect datasets. IEEE Transactions on Software Engineering,
39(9), 1208–1215. https://doi.org/10.1109/TSE.2013.11

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H. and Noble,
J. (2010). The Qualitas Corpus: A curated collection of Java code for empirical
studies. Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 336–
345. https://doi.org/10.1109/APSEC.2010.46

Vázquez, H. C., Bergel, A., Vidal, S., Díaz Pace, J. A. and Marcos, C. (2019). Slimming
javascript applications: An approach for removing unused functions from javascript
libraries. Information and Software Technology, 107, 18–29.
https://doi.org/10.1016/J.INFSOF.2018.10.009

Vidal, S. A., Bergel, A., Marcos, C. and Díaz-Pace, J. A. (2016). Understanding and
addressing exhibitionism in Java empirical research about method accessibility.
Empirical Software Engineering, 21(2), 483–516. https://doi.org/10.1007/s10664-
015-9365-9

Vidal, S., Bergel, A., Díaz-Pace, J. A. and Marcos, C. (2016). Over-exposed classes in
Java: An empirical study. Computer Languages, Systems & Structures, 46, 1–19.
https://doi.org/10.1016/J.CL.2016.04.001

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.
(2012). Experimentation in software engineering. Springer Science & Business
Media.

	1. Introduction
	2. Research Goals
	3. Related works
	4. Methodology
	4.1 Explicate the problem
	4.2 Define Requirements
	4.3 Design and Develop Artefact
	4.4 Demonstrate Artefact
	4.5 Evaluate Artefact

	5. Results
	6. Expected Contributions
	7. Future Steps
	Acknowledgments
	References

