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Abstract. When designing a software architecture to fulfill quality-attribute re-
quirements, architects normally explore and assess alternative solutions lead-
ing to different quality-attribute tradeoffs. In this context, we developed the
SQUAT framework to support automated multi-objective optimization in large
design spaces. SQUAT provides a modular, multi-agent architecture in which
each agent represents and optimizes a particular quality attribute. However,
this search strategy has problems identifying tradeoffs that satisfy all the par-
ties (or architects’ concerns), particularly when searching for many candidate
solutions and evaluating them becomes computationally costly. This is actually
a general challenge for architecture optimization tools. To deal with it, SQUAT
features an agent negotiation protocol that seeks consensus based on the utility
of solutions as judged by each agent. In this paper, we present a parameter-
ized heuristic that enhances the integration between search and negotiation in
SQuAT, and also report on an empirical evaluation with two case studies. The
results show initial evidence that using negotiation is more effective than doing
a pure search to identify solutions having a balanced utility across agents, and
thus, offer alternative quality-attribute tradeoffs to the architect.

1. Introduction

The software architecture of a system is a blueprint that captures the main design decisions
for satisfying the functional requirements and quality attributes (e.g., performance, mod-
ifiability, reliability, among others) posed by the system stakeholders [Bass et al. 2021].
Designing a software architecture in such a way it meets its quality-attribute requirements
can be a complex process, as architects often need to consider alternative solutions satisfy-
ing the same requirements, and furthermore, these solutions lead to tradeoffs. A tradeoff
means that a given architecture (or any of its design decisions) has a positive impact on
a given quality attribute at the cost of negatively affecting another one —e.g., separating
functions into modules favors modifiability but might have a performance impact.

Given an initial architecture, the number of possible solutions for improving it
(with respect to predefined quality-attribute requirements) can be too big to be assessed
by a human, even for medium-sized problems. For this reason, automated optimization



approaches for the architecture domain have been developed [Aleti et al. 2013]. The op-
timization process is normally cast to a heuristic search driven by multiple objectives and
constraints, in which an initial architecture undergoes different transformations (or refac-
torings). As output, this search is expected to produce a number of architecture candidates
with different tradeoffs, according to the architect’s criteria as the decision maker. An
instance of such optimization approaches is the SQUAT framework [Rago et al. 2017],
which relies on a multi-agent architecture organized into separate modules (agents)
called dbots. SQuUAT takes a model-based approach and uses the Palladio Component
Model (PCM) [Becker et al. 2009] for representing software architectures. Departing
from an initial PCM architecture, each dbot performs a local search, evaluating and opti-
mizing candidates with respect to a single quality attribute. Afterward, the dbots rely on
a negotiation protocol to identify candidates that globally satisfy all the qualities. To do
s0, the dbots try to reach “agreements” (or consensus) [Rekha and Muccini 2018] based
on the utility of the solutions explored by each agent.

The SQUAT framework has evolved over the years, and encouraging experi-
ments with case studies involving modifiability and performance have been reported.
However, applying the approach in larger, more real architectural settings brings sev-
eral challenges. A first problem refers to the computational cost of the optimiza-
tion. For example, analyzing a PCM architecture with a performance analytical
solver [Koziolek and Reussner 2008] to determine whether an objective is met can take
a considerable amount of time (from seconds to minutes), and this effort increases as
more objectives and architectural candidates are evaluated during the search. This is the
case when multiple architectural transformations are explored, increasing the depth of
the search. Therefore, pruning must be considered to avoid a combinatorial explosion
of candidates while still being able to return a set of “interesting” solutions to the archi-
tect. A second problem is about the utility of solutions regarding their quality-attribute
tradeoffs. In practice, architects might not be interested in optimal solutions (in the sense
of maximizing or minimizing objectives or reaching the Pareto front) but in satisfying
solutions, i.e., solutions being good enough for the objectives (or other architects’ prefer-
ences) tackled by the dbots. Within SQUAT, this means searching for candidates having
balanced tradeoffs, that is, architectures providing more or less the same utility to all the
agents. We should note that these challenges are not unique to SQUAT and apply to any
architecture optimization tool [Di Pompeo and Tucci 2023].

A (pure) search strategy cannot always produce balanced solutions unless a sig-
nificant portion of the design space is explored. However, as mentioned above, increas-
ing the computational resources (for the search) is not always feasible. This is where
the negotiation strategy comes into play. We argue that a judicious combination of
search and negotiation can help steer the search toward solutions with balanced trade-
offs without a large exploration of the design space. This idea was proposed in previous
work [Monteserin et al. 2017], but the combined strategy has neither been fully devel-
oped nor empirically evaluated yet. Here, we formalize and enhance the strategy as a
heuristic that depends on several parameters. We also analyze its behavior by simulating
search traces in two PCM design spaces: ST+ and CoCoME. Although preliminary, the
results show that the dbots using negotiation are able to find many solutions with bal-
anced tradeoffs while keeping the number of examined solutions bounded, which is an
advantage over pure search. An adequate strategy parameterization and the complexity of



the optimization space are also drivers to consider. Beyond SQuAT, we believe that the
techniques and insights from this work contribute to improving the usage and adaptation
of optimization techniques in the software architecture domain.

The rest of the paper is organized as follows. Section 2 provides the basic concepts
of architecture optimization using ST+ as a motivating example and briefly introduces
SQuAT. It also covers related work. Section 3 presents the search heuristic integrated
with negotiation and its main parameters, which is the central part of this work. Section 4
reports on the evaluation of the combined strategy for the ST+ and CoCoME case studies.
Finally, Section 5 gives the conclusions and outlines future work.

2. Background

To contextualize the SQUAT concepts, we describe a quality-driven optimization prob-
lem for software architectures and how it can be tackled using search techniques and
architectural transformations. We also introduce a simplified version of the ST+ sys-
tem [Koziolek 2013, Rago et al. 2017] to illustrate the concepts.

2.1. Motivating Example

Extended Simple Tactics (ST+) [Rago et al. 2017] is a trip management system, adapted
from [Koziolek 2013], in which users can search and book trips with different payment
options and request reimbursements for cancellations. The system architecture is specified
in PCM, as shown in Figure 1. In PCM, the architecture consists of several models, each
representing an architectural view: i) the component types and interfaces (repository),
ii) the system assembly, and iii) the deployment of this assembly to the infrastructure (e.g.,
servers interconnected via network links). ST+ also includes a behavioral specification
for the component implementations in the repository and a usage model with an open
workload for the system-provided services. For brevity, these two models are not shown.

In the repository (top level), ST+ has several components and interfaces available.
BUSINESSTRIPMGMT is the system entry point for the users. BOOKINGSYSTEM is in-
voked for handling a booking. PAYMENTSYSTEM is called to process payments or reim-
bursements. QUICKBOOKING is an alternative to BOOKINGSYSTEM. ST+ saves trip (and
reimbursement) information to TRIPDB, which can be replaced by the alternative compo-
nents FASTREADTRIPDB or FASTWRITETRIPDB, for instance, based on performance
considerations. The database can export information about trips and payments as a PDF
file using EXPORTER. In addition, since logos must be added to a PDF file, ALTERNA-
TIVEEXPORTER stores them in a compressed version. For the initial architecture (middle
level), a subset of the above components is instantiated and assembled: BUSINESSTRIP-
MGMT, BOOKINGSYSTEM, PAYMENT SYSTEM, EXPORTER, and TRIPDB. The deploy-
ment infrastructure (bottom level) comprises three servers (SERVER1, SERVER2, and
SERVER3) and a DB CLUSTER with two nodes connected via a LAN. The allocation
of components to servers is depicted with black arrows.

In the example, we assume that ST+ must fulfill stakeholders’ perfor-
mance and modifiability requirements. These requirements are captured by scenar-
ios [Bass et al. 2021], which specify objectives in quantitative measures (e.g., change
effort for modifiability or response time for performance) that architectures must meet.
Let us consider two scenarios (i.e., optimization objectives) for ST+ as follows:
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Figure 1. PCM models for the ST+ system (initial architecture) [Rago et al. 2017].

» M1 (modifiability) refers to adding a new payment option and specifies that the number
of affected components should be less than 5, with a total complexity of 120.

* P1 (performance) is about the system workload and requires the response time to stay
below 30 ms.

In the scenarios, their quality-attribute measures are treated as satisfaction thresh-
olds; that is, any architecture whose performance and modifiability scores are below 120
and 30, respectively, are considered satisfying solutions for the problem. We refer to
the space of quality-attribute measures as the quality-attribute space. To determine the
quality-attribute scores of PCM architectures, we rely on existing analysis models, such as
(layered) queueing networks for performance [Koziolek and Reussner 2008] and change
impact analysis for modifiability [Stammel and Reussner 2009]. In this way, we can
assess how far the ST+ initial architecture (Ag) is from satisfying the thresholds in the
quality space. Let us assume that quantitative analyses are run on Ay, and it turns out that
Ay satisfies M1 but does not satisfy P1, as shown in Figure 3. Thus, the architect would
like to explore candidate solutions for improving both scenarios, as denoted by the blue
area in the figure, which we refer to as the satisfaction area.

2.2. Architectural Transformations and Search Tree

One way of generating candidate architectures is through design transformations, also
known as factics [Bass et al. 2021]. In this paper, we are interested in transformations
targeting modifiability and performance objectives. To improve modifiability, architects
have several options at their disposal. For instance, the transformations can: i) divide
a component dealing with multiple responsibilities into two or more sub-components,
i1) reduce the coupling between two components by placing an intermediary or wrapper
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Figure 2. Modifiability and performance tactics applied to ST+ [Rago et al. 2017].
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Figure 3. Relation between search tree (left-side), quality-attribute space (center)
and the utility space (right side). The green circles refer to architectures
that satisfy all the quality-attribute scenarios, while the red circles corre-
spond to architectures that do not satisfy any of the scenarios. The yellow
circles indicate that the architectures satisfy some of the scenarios.

component, or iii) remove responsibilities from non-cohesive components, among other
tactics. An example of the wrapper tactic applied on ST+ is shown in Figure 2 (top). A
wrapper component and an interface (I TRIPDBWRAPPER and TRIPDBWRAPPER) are
created to avoid rippling effects after changing ITRIPDB operations. This tactic might
cause a performance drop since another component is deployed to the servers, and the
component communications with the DB are indirect through the wrapper. The candidate
architecture resulting from the wrapper tactic is denoted as A; in Figure 3.

From a performance perspective, possible tactics for the architect are: i) select a
particular component alternative, ii) allocate components to different servers, or iii) intro-
duce performance-specific components such as a cache or a load balancer, among other
transformations. Figure 2 (bottom) shows the replacement of the EXPORTER component
by the more efficient ALTERNATIVEEXPORTER component, which ensures that the addi-
tional load (as required by P/) can be handled. Applying this performance tactic impacts
modifiability, e.g., due to additional maintenance efforts. The candidate architecture re-
sulting from the replacement tactic is denoted by A, in Figure 3.

The successive application of tactics (from the initial architecture) gives place to



a search tree, as sketched on the left of Figure 3. This tree is constructed by an optimiza-
tion engine (actually, by the collaborative work of the dbots) in order to explore candidate
solutions. The nodes correspond to candidates, while the directed edges capture the trans-
formations from a candidate to its children in the search. A tactic normally comes with
preconditions that the architecture on which it is applied must fulfill. Thus, not all tactics
can be applied to all architectural candidates. Those candidates that satisfy any or all the
objectives (scenarios) are architectural solutions to be presented to the architect. These so-
lutions will have different tradeoffs with respect to the objectives. In principle, the tree can
grow in breadth or depth, and become quite large, even for small design spaces. Control-
ling how the search tree gets expanded is one of the challenges when designing heuristics
for architecture optimization [Quesada et al. 2018, Di Pompeo and Tucci 2023].

Although getting candidate solutions that fall in the satisfaction area (center of
Figure 3) is one of the optimization drivers, not all solutions might be useful to the archi-
tect. To this end, we introduce the notion of utility to capture architects’ preferences and
also avoid situations of “over-optimization”, given the computational costs of the search.
Thus, a utility function converts the quality-attribute space into a utility space, in which 1
indicates maximal utility and O indicates no utility. Figure 3 illustrates how Ay, A;, and
A, get mapped to different utility values. For instance, we can have a utility function (for
both M1 and P1) that tends to 1 as the quality-attribute values are within a short distance
of the scenario thresholds and decreases towards 0 otherwise. Along this line, the can-
didate solutions are quantified in both the quality-attribute and utility spaces. Assuming
that all scenarios must be (mostly) satisfied, an ideal solution should get a utility in the
right-upper quadrant of the utility space. Furthermore, such a solution should have a bal-
anced utility across all scenarios, meaning that it is useful to all parties. This utility space
region is regarded as the balanced utility area, as marked in Figure 3. Because of the
discrete nature of the (feasible) architectural transformations, finding these candidates is
not straightforward. Not all satisfying candidates will necessarily have a balanced utility.
In practice, the search process might eventually find candidates with a balanced utility,
but a challenge is how to increase the chances of finding them.

2.3. Quality-driven Architecture Optimization

We consider a multi-objective architecture optimization along the lines of the PAD
(Predictable Architecture Design) model [Bachmann et al. 2005, Pace and Campo 2008].
We assume an architectural space for a family of systems that encompasses all possi-
ble solutions in terms of a (finite) set of design decisions. More formally, let AS =
{Ap, A1, Ay, ..., A, } be a space in which each A; corresponds to a (valid) architecture re-
sulting from predefined design decisions A; = {dy;, da;, ..., dn; }- In this work, we restrict
the possible decisions to architectural tactics [Bass et al. 2021]. A tactic is a transforma-
tion that affects parts of an architectural structure (e.g., PCM components and interfaces)
to improve a particular quality attribute. Thus, the architectures in AS are linked to one
another through the application of tactics. AS can be visualized as a directed graph in
which each node represents an architecture, while an edge between two nodes A; and
A; captures a tactic from the former to the latter. A tactic 7;j changes the architectural
structure of A; to become that of the target A;.

An architecture A; can be assessed with respect to multiple quality attributes (ob-
jectives) through quantitative measures (or scores). Let QAS =< 01,0, ...,0,, > be



a quality-attribute space in which each objective Oy represents a quality-attribute metric
(e.g., response time, change complexity, etc.) associated with some candidate in AS.
Hence, the evaluation function f : AS — @QAS maps architectures to multi-valued
vectors in R™. Furthermore, let [.S =< I, I, ..., I, > be a utility space in which I},
represents a utility metric in the range [0..1] for some multi-valued vector in QAS. Con-
sequently, we have a utility function u : QAS — IS that maps quality-attribute values to
utilities. Note that u = f(AS). In Figure 3, the quality-attribute values and utilities for
the architecture examples are 2-dimensional vectors in (QAS and 1.9, respectively. In the
general case, all these spaces can be n-dimensional.

2.4. Related Work

Two approaches related to our work are EASIER [Arcellietal. 2018] and
GATSE [Procter and Wrage 2019], which implement a multi-objective search strat-
egy using evolutionary algorithms. The rationale of this technique differs from that of
the dbots, in the sense that a collection of multiple candidates (population) is evolved
through several iterations (generations). Furthermore, the architecture solutions are
encoded as chromosomes and transformed by means of genetic operators. On the one
hand, EASIER relies on architectural specifications written in AEmilia, which enables
performance and reliability analyses. They also consider the number of architectural
changes from one candidate to another as an additional objective to be minimized. On
the other hand, GATSE provides a visual explorer for AADL (Architecture Analysis
and Design Language) specifications that displays quality-attribute analyses of selected
architectural configurations, enabling the architect to focus on regions of the quality space
and progressively narrow down the search, also referred to as “design by shopping”. Like
in PCM, the usage of model-based analysis techniques for quality attributes is a shared
characteristic of the specifications used by GATSE and EASIER, respectively.

Unlike the previous approaches, our work focuses on quality-attribute tradeoffs
and tries to manage them (in the sense of reaching a consensus among parties), instead of
seeing tradeoffs from the traditional view of a Pareto frontier. The usage of negotiation is a
novel aspect, which has the potential of exploring different tradeoffs than an evolutionary
search. Furthermore, the improvements for SQUAT discussed in this paper can reduce
the computational costs of the optimization of architectural models, which is currently a
challenge for GATSE and EASIER, among other optimization approaches.

3. Integrating Search and Negotiation

In general, an automated heuristic is needed to drive the exploration of the design space
and generate alternative solutions according to the architecture optimization formula-
tion. SQuAT provides a multi-agent modeling approach and a modular architecture
for PAD, which supports various search strategies. The main aspects of the frame-
work for achieving this goal are explained next— the reader is referred to our previous
work [Rago et al. 2017] for more details. This work focuses on mechanisms to address
the two challenges discussed in previous sections. Specifically, we expect to obtain ar-
chitecture candidates at the intersection between the satisfying and balanced utility areas
while reducing the computational overhead of the (pure) search.
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3.1. SQuAT Overview

The SQuAT! framework is structured around the notion of dbots— agents encap-
sulating the required knowledge to analyze and improve a particular quality at-
tribute [Rago et al. 2017]. This knowledge involves: i) an automated analyzer (or solver)
that takes an architectural description (e.g., PCM) and computes a quality metric, and ii) a
set of tactics implemented as architectural transformations. Unlike other architecture op-
timization tools, the rationale behind SQuAT is that each dbot performs a single-objective
optimization with little knowledge about the objectives being pursued by other dbots.
From a modeling perspective, a dbot is intended to capture the interests of a particular
stakeholder regarding the architecture. These interests are expressed by means of quality-
attribute scenarios [Bass et al. 2021] and utility functions.

The search strategy followed by the dbots is summarized in Figure 4. For simplic-
ity, we assume two agents optimizing scenarios M1 and P2, respectively, although it can
be generalized to n agents. Each agent accesses a storage, called Seeds, with the candi-
dates to be explored and potentially improved in its next round of search (or tree level).
There is another storage, called Out put, in which all agents persist their best candidates
so far. These are the candidates presented to the architect once the process ends. A round
of search consists of seven steps, namely:

An initial architecture specified in PCM (and provided by the architect) is configured as
the first seed (candidate) to trigger the dbots activity. In intermediate rounds of search, the Seeds
storage is updated with candidates from the dbots, as denoted by the feedback loops in the figure.

Each dbot takes the first architecture from the Seeds storage (using some priority criterion)
and generates several children candidates by applying predefined tactics to different parts of the
architecture. The dbot M1 will only use modifiability tactics, while the dbot P1 will only use
performance ones. Within a dbot, this step entails a local, single-objective search. The dbots also
check that the resulting configuration of the candidates is valid; otherwise, the child is discarded.

'SQUAT is an acronym for Search Techniques for Managing Quality-Attribute Tradeoffs in Software
Design Optimizations. It started in 2016 as part of an international collaboration project.



The dbot runs a quality-attribute analyzer to get quantitative values for both the seed archi-
tecture and its children. Analogously to the previous step, the dbot M1 will rely on a modifiability
analyzer (e.g., [Stammel and Reussner 2009]) and the dbot P1 will rely on a performance analyzer
(e.g., [Koziolek and Reussner 2008]). Executing these analyzers usually involves a computational
overhead. After the analysis, each dbor ranks its candidates according to quality-attribute (or
utility) criteria.

The dbots engage in a negotiation protocol based on the available candidates, their scenario
thresholds, and utility function. This step simulates a human negotiation about (the utility of) the
candidates, in which some agents might be willing to accept inferior candidates (in their rankings)
to reach an agreement with the other agents.

Each dbot gets a new ranking for its candidates, which might include candidates agreed
during the negotiation. At this point, a set of candidates must be selected as seeds for the next
round of search. These candidates are chosen using the same criteria from step 3. The process is
repeated from step 2.

@ In parallel, each dbot gets a new ranking for its candidates. At this point, a set of “interesting”
candidates must be sent to the Output storage as intermediate solutions of the current round.
These candidates are expected to have quality-attribute tradeoffs and (ideally) balanced utility.

Once the maximum number of tree levels is reached, the process is finished, and all the stored
solutions are presented to the architect.

3.2. The Negotiation Protocol

In step 4, the dbots use the Monotonic Concession Protocol (MCP) for negotiation [Endriss 2006].
We give here an intuition of how MCP works since full coverage is out of scope—the MCP
instantiation for SQUAT can be found at [Monteserin et al. 2017]. Essentially, MCP supports agent
coordination allowing the dbots to exchange and retain candidates (either as seeds or outputs) that
could be otherwise disregarded. The goal is to keep solutions with better (or more useful) tradeoffs
than those obtained through the agents’ local search.

In MCP, the dbots are assumed to be cooperative and abide by rules about: i) the agreement
criterion; ii) if no agreement is achieved, which dbot makes the next concession; and iii) how much
a dbot should concede. Initially, each dbot makes an initial proposal with its first (best) candidate
for the current search level. All proposals are interchanged to check if an agreement on any of
them can be reached. The agreement is defined in terms of the proposal utility for the dbots. As
mentioned previously, a utility function u;(A;) that assigns non-negative values to the proposals
is assumed. There is an agreement if one dbot proposes a candidate A, that is at least as good
(regarding utility) for any other dbot as their own current proposals [Endriss 2006]. If so, A, is
chosen, and the negotiation ends successfully. If not, a conflict exists, and some dbot should make
a concession. A concession means that a dbot seeks an alternative proposal in its list of candidates.
If no dbot can concede, the process finishes with conflict, which means that nothing is obtained
from the negotiation. The selection of the dbot that must concede is determined by the Zeuthen
rule [Endriss 2006], which evaluates each dbot’s willingness to risk conflict and prefers a conflict-
free proposal being close to Nash equilibrium. As for the concession itself, a dbot makes a new
proposal that is worse for itself (usually, the next candidate in its ranking).

For example, coming back to Figure 3, let us assume that in level 2 the dbots M1 and P1
enter a negotiation with A; and Az as proposals from M1 and A4 from P1. A; seems like a good
candidate in terms of quality, but let us suppose that its utility is not good for P1, and the dbot
proposes A4 instead. Although this proposal is closer to the quality thresholds, let us suppose it
conflicts with the expected utility by M 1. At this point, M1 makes a concession and picks As
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from its ranking. Upon this candidate, which has a higher complexity but a slightly lower utility
for M1, P1 and M1 reach a utility consensus, and the negotiation succeeds.

For the negotiation strategy to work, utility functions need to be configured in the dbots.
We defined a utility function (for all dbots) that takes into account the desired scenario threshold
and the actual scenario value for the candidate under analysis. This is a variant of the Boulware
function [Fatima et al. 2004], which gives the maximum value to candidates whose quality value
is equal to the threshold, as exemplified in Figure 5, and penalizes values otherwise (with different
slopes). Other parameterizations of the function or alternative utility functions are possible.

3.3. Proposed Strategy

To deal with projects of different complexity, we designed the search process of Figure 4 as a
parameterized heuristic. The parameters can be seen as knobs to control the expansion of the
search tree, the tactics being considered at each level, and the criteria to rank certain candidates
while discarding others. The heuristic is shown by Algorithm 1 and the parameters are below.

* Branching factor (B): It gives the maximum number of children a dbot is allowed to create for a
given seed, with a predetermined set of available tactics (step 3). Candidate generation via tactics
is performed randomly until the B limit is reached (line 8 in the algorithm). Large B values can
promote candidate diversity at the cost of increasing the number of candidates being evaluated.

* Ranking criteria: It is the dbot’s rule to sort candidates (at a given level). The default criterion,
which takes a quality-attribute perspective, is to rank first those candidates with the smallest quality
value (assuming objective minimization). An alternative criterion is to look at the utility of the
quality values, ranking candidates with the highest utility first.

* Seeding factor (S): It determines how many children candidates, once generated and assessed, a
dbot can pass on as seeds for the next level (step 5). Some of these candidates might come from the
negotiation phase. S controls the tree growth in subsequent levels of search (line 12 in algorithm).
Each dbot retains the top-S' candidates and deletes the rest, using the filteringCriterion.
It can be configured either as quality- based or utility-based criterion.

* Retaining factor (R): It limits the number of candidates a dbot can return at a given level of
search. The union of all the candidates (by all the dbots) is presented to the architect at the end of
the process (step 6). This parameter might be useful to filter the dbots’ output and reduce informa-
tion overload on the architect. The outputCriterion is employed to filter the solutions (line
13 in algorithm), which can also be quality-based or utility-based.

» Tree depth (maxLevel): It bounds the search tree to a maximum number of levels.

Determining the right parameters for the heuristic is not straightforward, because it de-
pends on project-specific characteristics (e.g., a family of architectures and scenarios).



Algorithm 1 Heuristic search for architecture candidates.

Inputs: Ay : initial architecture
dbots: available dbots (one per scenario)
B : branching factor
S : seeding factor
max Level : maximum depth to be explored in the tree
R : retaining factor
Outputs: outputs : list of architectures to be shown to the architect
1: level < 0
currentSeeds < {Ap}
outputs < ()
while level < maxLevel do
candidates <+ ()
foreach dbot € dbots do
foreach s € currentSeeds do
candidates < generateCandidates(B, S, dbot) {Expand each seed via valid tactics}
end for
end for
{Add additional architectures coming from negotiation }
candidates < candidates U doN egotiation(dbots, candidates)
{Rank and filter architectures}
12: currentSeeds < filterCandidates(S, candidates, filteringCriterion)
{Filter resulting architectures to present as output}
13: outputs < outputs U selectOutputs(R, candidates, outputCriterion)
14: end while
15: return outputs
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4. Evaluation

To empirically assess the behavior of the combined strategy (and its parameters), we performed
a series of experiments with two case studies [Frank 2019]: ST+ and CoCoME, which involve
small-to-medium size design spaces. The research questions were the following:

* RQ1. How does the dbots negotiation affect the number of solutions with satisfying and
balanced utility characteristics?

* RQ2. What is the role of the branching and seeding factors in reducing the search space?

For each case study, we sampled a large number of candidates (without considering
branching or seeding restrictions) up to a fixed search level. For this sampling process, we con-
figured SQUAT with dbots assigned to performance and modifiability scenarios with their quality
thresholds. We set a threshold of ~ 0.8 for balanced utility. As a result, each dataset comprises
a predetermined set of solutions with different characteristics (e.g., satisfying, balanced utility,
negotiated, and non-satisfying ones). The two datasets?, structured as search trees, are shown in
Figure 6. The ST+ tree is balanced, while the CoCoME tree has a more irregular structure.

On the (full) tree computed from each dataset, we ran a grid search with alternative config-
urations and classified the solutions explored by the heuristic according to their characteristics. We
were mainly interested in parameters B and S, but also considered the quality-based and utility-
based filteringCriterion. For every parameter configuration, we simulated 30 search
traces over the tree in order to account for the randomness of the process. An average pruning rate
was computed based on the candidates being visited (by the search) in the traces. The pruning

ZFor the sake of reproducibility, the datasets with all the information used in the study are accessible at
http://bit.ly/3RfpOY>5.
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(a) ST+ (3 levels) (b) CoCoME (5 levels)
Figure 6. Graphical representations of the search trees for the two case studies.

(P) is the ratio of nodes assessed by the dbots with respect to the total nodes in the tree (i.e., the
dataset). P is an indicator of the computational effort required by the search, recalling that the
highest costs come from executing the quality-attribute analyzers on each architecture candidate.

Case study 1 (ST+). The Extended Simple Tactics system® was partially introduced in Sec-
tion 2 [Koziolek 2013, Rago et al. 2017]. The PCM specification comprises 9 component types.
For optimizing the initial architecture, we set two scenarios for performance and two for modifi-
ability. The search tree contained 554 candidates, including: 154 satisfying solutions (28%), 75
negotiated ones (13.5%) , and 76 solutions with balanced utility (14%). The number of candi-
dates in the sampled space increased significantly with each level, exhibiting a fair distribution of
architectures with different characteristics.

We ran search simulations with B and S in the range [2— 50], based on the maximum num-
ber of children per node. The P values obtained for these configurations are shown in Figure 7a.
The darker parts of the heatmap correspond to a more aggressive tree pruning (i.e., high P values),
which means a faster execution time for the search. As expected, increasing B or S makes the
heuristic explore more candidates, and P decreases accordingly. Both B and S have approximately
the same influence on P, which can be attributed to the balanced tree structure of S7+.

The violin plots in Figure 8a show the kinds of solutions generated by the heuristic when
considering pure search or adding negotiation (for all the P x B configurations). When the dbots
engaged in negotiation, we observed a higher number of satisfying (Satisfying-QA) solutions (=~
10%) as well as a higher number of solutions (=~ 20%) with a balanced utility (Balanced-QA). The
improvements were smaller (=~ 3% and =~ 10%) when using the utility-based criterion (Satisfying-
U and Balanced-U, respectively). We performed a paired samples test (with @ = 0.05) that
confirmed the statistical significance of these differences. We argue that the negotiation is able
to find candidates that are not necessarily satisfying but close enough to the thresholds, which
cannot be easily detected when the dbots try to minimize their quality values. Alternatively, when
using the utility-based criterion, the dbots seek to maximize utility values; thus, increasing the
chances of getting candidates with balanced utility along the way. When checking for differences
between pure search and negotiation for low pruning rates, the positive effects of negotiation were
attenuated, and both strategies retrieved the same number of solutions.

3The ST+ system specification is publicly available at: http://bit.1ly/3JGFWIV
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Figure 8. Distribution of the number of solutions with and without negotiation.

Case study 2 (CoCoME). The Common Community Modeling Example [Herold et al. 2007] is
a benchmark for model-based approaches. It specifies the trading system of a supermarket with
many requirements and components. CoCoME is a much larger and more realistic model than
ST+, with a PCM specification* having 55 component types. For optimizing the initial architec-
ture, we set twice as many dbots as for ST+, with four performance scenarios and four modifia-
bility scenarios. The search tree contained 1238 candidates, including: 282 satisfying solutions
(23%) , 175 negotiated ones (14%), and 241 solutions with balanced utility (19%) . Unlike the
ST+ design space, the CoCoME space had a “wicked” structure with an uneven distribution of the
different kinds of solutions. This happened because not all the transformations tried by the dbots
led to valid architectures, which is a common situation in complex models.

For CoCoME, we ran search simulations with B and S in the range [2 — 100]. The P values
obtained for these configurations are shown in Figure 7b. The heatmap reveals a similar pattern
as for ST+, although with higher pruning rates due to the size and shape of the CoCoME tree.
Figure 8a shows the kinds of solutions obtained with pure search or adding negotiation. There
is a small difference in favor of the negotiation for the number of satisfying solutions (=~ 8%)
and almost no difference with respect to the balanced solutions, either using a quality-based or a

4The CoCoME system specification is publicly available at http: //bit.1ly/3JGFWIV



utility-based criterion. The paired samples tests (with « = 0.05) only revealed statistical differ-
ences for combinations of P and S in specific ranges, although no clear patterns were identified.
For instance, negotiation showed higher numbers for satisfying solutions with S in [65 — 100] (ir-
respective of B) and for balanced solutions with B in [2 — 10] (irrespective of S). When comparing
this trend to the more uniform trend in S7+, we think the design space complexity is a causal
factor since many satisfying candidates were located in the leaves (level 5) of particular sub-trees.
Thus, the dbots had trouble finding the right paths to those candidates, even if a few intermediate
nodes (for those paths) were obtained via negotiation. Certainly, more experiments and other case
studies should be analyzed in order to make stronger claims.

Overall, we observed that the proposed heuristic can reduce the computational overhead
due to exploring a large number of candidates during the search, making some compromises in the
quality of the output. The usage of negotiation seems to improve the tradeoffs of the solutions in
terms of meeting the scenario thresholds or having a balanced utility. However, this potential ben-
efit depends on the structure of the search tree, as evidenced by the case studies. An insight from
the experiments is that the desired values of branching and seeding should be properly chosen,
ideally in a mid-range with respect to the (estimated) number of children per node in the tree.

5. Conclusions and Future Work

In this work, we have presented and assessed a parameterized search heuristic for architecture
optimization in SQuUAT, which combines negotiation and pruning mechanisms in order to strike a
balance between improving the quality tradeoffs of the solutions and reducing the computational
costs of the search. The core assumption of our work is that stakeholders aim for balanced solu-
tions, which translates to candidates on which the dbots can reach a utility consensus. An initial
assessment with two case studies has shown that negotiation can be effective, particularly when
limiting the exploration parameters. Beyond SQuAT, we believe that the mechanisms and insights
discussed in the paper can be helpful to other architecture optimization approaches, as they often
face similar challenges with respect to the effectiveness of the search process.

As discussed in the evaluation, the characteristics of the design space being explored
(including the target scenarios) can affect the effectiveness of the proposed heuristic. Unfortu-
nately, such characteristics are difficult to estimate in advance, that is, when configuring the dbots.
Nonetheless, it should be possible to adapt the search parameters of SQuUAT dynamically, as new
information (about the space) becomes available [Hoos 2012]. To overcome performance and
scalability issues, we plan to investigate the usage of surrogates [Jiang et al. 2020] and parallel-
distributed mechanisms, given the multi-agent foundations of SQuUAT. This would allow us to ap-
ply the approach to larger, more complex architectural models. Along this line, we expect to run
SQUAT on some case studies used by related approaches, like GATSE and EASIER, and compare
the performance of our heuristic with that of evolutionary algorithms.

Another interesting mechanism to direct the search or improve its effectiveness is to in-
clude human feedback (e.g., regarding architectural preferences) as part of the optimization pro-
cess. Some studies with evolutionary algorithms have been reported [Quesada et al. 2018]. In
SQuAT, currently the architect’s preferences (e.g., the utility function, the negotiation policies)
have to be entered before the optimization takes place. In future work, we will explore mech-
anisms to make the dbots search process more interactive with the architect, and provide some
explanations of the decisions being made in the search, so that the architect can understand and
have more confidence in the results of the optimization process.
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