Cross-language Clone Detection for Mobile Apps
Stephannie Jimenez', Gordana Rakic?, Silvia Takahashi', Nicolas Cardozo!

1Systems and Computing Engineering Department - Universidad de los Andes, Colombia
2Faculty of Sciences - University of Novi Sad, Serbia

{s.jimenez16, stakahas,n.cardozo}@uniandes.edu.co, gordana.rakic@dmi.uns.ac.rs

Abstract. Clone detection provides insight about replicated fragments in a code
base. With the rise of multi-language code bases, new techniques addressing
cross-language code clone detection enable the analysis of polyglot systems.
Such techniques have not yet been applied to the mobile apps’ domain, which
are naturally polyglot. Native mobile app developers must synchronize their
code base in at least two different programming languages. App synchroniza-
tion is a difficult and time-consuming maintenance task, as features can rapidly
diverge between platforms, and feature identification must be performed man-
ually. Our goal is to provide an analysis framework to reduce the impact of
app synchronization. A first step in this direction consists on a structural al-
gorithm for cross-language clone detection exploiting the idea behind enriched
concrete syntax trees. Such trees are used as a common intermediate repre-
sentation built from programming languages’ grammars, to detect similarities
between app code bases. Our technique finds code similarities with 79% pre-
cision for controlled tests where Type 1-3 clones are manually injected for the
analysis of both single- and cross-language cases for Kotlin and Dart. We eval-
uate our tool on a corpus of 52 mobile apps identifying code similarities with a
precision of 65% to 84% for the full application logic.

1. Introduction

In software systems it is usual to find repeated code fragments, also known as code clones.
Large modern software systems’ code base has 20% to 50% clones [Ain et al. 2019].
Normally, clones are innocuous, but add complexity to a code base and induce higher
maintenance costs. For instance, the time to add a feature or fix a bug increases as the code
requiring changes may be replicated across multiple modules, requiring the propagation
of the changes to all clone locations. Moreover, assuring that the applied changes are
consistent across clones remains a challenge [Mondal et al. 2020]].

Clones refer to similar but not necessarily identical code fragments. Clones are
classified into four hierarchical types: Type I or exact clones, refer to identical code frag-
ments not including code comments, layout, or whitespaces. Type 2 or renamed clones,
refer to code fragments that have a similar structure or equivalent syntax without including
identifiers, types, or literals. Type 3 or near miss clones, refer to fragments that have been
altered further, such as adding or removing statements and changes in whitespaces, identi-
fiers, layout, comments, and types. Type 4 or semantic clones, refer to code fragments that
are functionally similar, but implemented as syntactic variants [Ain et al. 2019]. Figure/[]|
exemplifies the differences among clone types in a multi-language setting for Kotlirﬂ and

'https://kotlinlang.org

https://kotlinlang.org

DartE] Line 1 shows a Type 1 clone for an assignment of variable i. Line 3 shows a Type
2 clone for an assignment where the variable names differ. Line 5 shows a Type 3 clone
as the increment operation changes its form. Lines 7-9 show a Type 4 clone where the
syntax changes completely but both code fragments increase the value of a variable by 9.

Kotlin snippet Dart snippet
Typelclone |1 wvar i = 1 1 dint i = 1
2 2
Type2clone |3 var j = 2 -=[3 int 1 = 2|
4 4
Type3clone |5 i =i + 1 5 i +4=1
6 6
Typedclone [7 for(i im 1..10) {f==97__i =1 + 9]
8 i+=1

9 }
Figure 1. Clone type examples between Kotlin and Dart code bases.

In addition to the four clone types, clones may also be grouped in two families,
structural clones and function clones. Structural clones refer to code fragments that follow
the syntactic structure of a given language with a syntactic boundary. Function clones are
limited to the procedure or function granularity level [Ain et al. 2019].

Clone detection techniques can be advantageous in code plagiarism, intellectual
property protection, or code quality analysis [Ain et al. 2019]. Another example of the
usefulness of clone detection tools is that of bug fixing. As mentioned previously, fixing a
bug on a cloned functionality is costly. Identifying all similar code snippets to a bug will
reduce the technical debt for the development team, as they can incorporate the fix in all
existing clones, or refactor the code to reuse a single instance of the clone.

In mobile app development, it is common to find separate code bases using differ-
ent programming languages to target mobile platforms natively (i.e., 10S and Android),
while keeping the functionality between platforms as close as possible. However, app fea-
tures across platforms often differ due to the separate development teams targeting each
platform, and the available platform APIs. We highlight three challenges with maintaining
separate code bases for different platforms. First, developers need to ensure that the fea-
tures across the platforms are equivalent. Second, bug fixes knowledge needs to be trans-
ferred across platforms. Third, the maintenance costs of two development teams for each
platform is high. To address these challenges, cross-platform code generation frameworks
are becoming increasingly popular. However, such approaches may result in a limited use
of specific native APIs that may not translate easily across platforms [Patkar et al. 2020].

As a counterpart to multi-platform code generation, the use of a tool to help de-
velopment teams synchronize feature evolution across mobile platforms is desired. Fur-
thermore, we argue that a cross-language analysis tool that keeps track of equivalent code
fragments constitutes a first step to achieve this goal. However, currently no such tool
exists. This paper presents the first algorithm and tool for cross-language clone detection
for mobile apps, called OUT OF STEP. The main contributions of OUT OF STEP are:

* A generalized model for Enriched Concrete Syntax Trees (eCSTs) (Section [2.1)).

* A new clone detection algorithm and metric based on structural clone detection using
eCSTs to abstract commonalities across languages (Sections [2.2{2.4).

* A corpus for the evaluation of cross-language clone detection including basic examples,
30 sorting algorithms exemplars, and 52 medium and large mobile apps (Section [3).

https://dart.dev

https://dart.dev

2. OUT OF STEP

This section describes our proposed approach for cross-language clone detection. OUT
OF STEP follows a structured approach for clone detection based on the comparison of
eCSTs generated from the grammars of modern mobile programming languages as Kotlin
and Dart First, we present the generalized definition of eCSTs. Second, we describe the
underlying algorithm and metric to compare eCST structures used to determine clones.

2.1. Enriched Concrete Syntax Trees

To compare of code bases written in different languages we first build an intermediate rep-
resentation based on the languages’ grammars. For our representation, we extend eCSTs
by introducing new node types, which allow us to capture the general abstractions of the
languages used for mobile app development. Concretely, we use the ANTLR4 [Parr 2013]]
parse generator to generate the eCSTs focusing on the standard grammar definitions of
Kotlin, and Dart. This is applicable to other languages, as Swift, Java, or C++.

2.1.1. eCST Definition

Given that the generated syntax trees may result in highly divergent tree structures, we
define a tree structure that is able to capture more information of the input source code.
Our solution extends the original proposal of eCST [Raki¢ and Budimac 2013]], with uni-
versal, advance, and stop nodes, to uniformly shape trees, structure grammar elements as
a group, and ease sub-tree structure comparisons.

Originally, eCSTs are extracted from the generated Abstract Syntax Tree (AST)
by the parser. eCSTs introduce universal nodes to shape trees for a Concrete Syntax Tree
(CST) or Parse Tree (PT) [[Budimac et al. 2012, |Vislavski et al. 2018]]. In our case, eCSTs
are generated directly from PTs and contain a subset of the original universal nodes,
as well as a set of mobile app specific nodes (introduced as domain specific universal
nodes [Raki¢ and Budimac 2013]).

Every syntactic rule defined in the languages’ grammar is translated to one node.
Each node type of the eCST is designed to be as generic as possible, with the objective
that rules from different languages generate the same universal node types. Yet, we are
required to faithfully represent all expressions defined in a program.

The eCST structure extends the original AST structure by holding more infor-
mation at nodes, in pursuit of standardizing programming languages to a critical set of
features (e.g., grammar concepts). In order to achieve the required behavior, we extend
the standard ANTLR4 parsers and lexers for each of the languages. Using this approach,
we are no longer required to build programs’ ASTs to then translate them to the eCST.
Rather, we build the eCSTs directly from the PT generated for each language.

Additionally, eCST nodes keep a keyword token stored as plain text, and a map-
ping to the line and column of the original source code file in which the keyword appears.
With this information, we are able to map the final clones to the original source code file
from the tree representation. Moreover, having the actual keyword text helps us recognize

3available at: https://github.com/FLAGlab/CloneDetection/

https://github.com/FLAGlab/CloneDetection/

the appropriate category of the clones (i.e., Type 1, 2 or 3). As an example, if a node is of
type comparison_operator, the keyword text information in the node token should be
one of the <, <=, >, or >= operators.

Figure 2] shows the tree structure including the new node information. Node types
are shown to their right, and the token is shown inside each node. Tokens’ line and
column are omitted from the figure for clarity. Universal nodes ease tree comparison and
analysis by making their structures more similar. Flat structures, as Dart’s, now contain

information on eCST nodes that will help us map clones (e.g., assignment_operator).
Kotlin Dart

1 wval ten = 10 1 int ten = 10

0 attribute_decl attribute _decl
‘ assignment_operator assignment_operator

‘ variable_decl literal literal literal literal
e identifier

Figure 2. eCST examples for a Kotlin (left) and Dart (right)

In our extension of the eCST, we introduce advance nodes. The purpose of these
nodes is to group structures of the grammar that should be together. For example, to group
the body of the for loop, increasing the trees’s hierarchy, as in Figure 3] Advance node
body, in the loop Dart example, helps us create a parent structure, making the grammar
more hierarchical than it originally is. The grammar elements represented with advance
nodes include type, body, and expression. Advance nodes are used as information
sources, but they are not taken into account in the actual clone detection. A full list of the
nodes introduced for eCSTs is available in the project’s documentation.

Given that clone types exclude comments, layout, and white spaces, these ele-
ments are excluded in the generation of eCSTs. The parser focuses on grammar rules to
generate the eCST from the associated code, as in Figure 3]

assignment

main (int num) {
int sum = 0;
for (i in i..num) {
// Count numbers
// sum = sum + 1;
sum += 1;

}
Figure 3. Increased hierarchy using advance nodes for the Dart code for a 1oop

2.1.2. eCST Comparison

Multiple tree comparison algorithms exist in the literature (cf. Section [)), the approach
taken in OUT OF STEP is to find similar subtree structures between eCST pairs. Under this
approach, a pair of similar trees may not be completely identical in their node types, but
the types may be closely related. This resemblance is defined via a new mapping, where
one type of node can map to multiple other nodes. For example, the similar nodes for the
type parameter_list will include value_parameter_1list and itself. All relationships
between nodes are established in pursuit of finding Type 3 clones. The complete list of
nodes’ similarity mapping is also available in the repository’s documentation.

Additionally, we define stop nodes. These nodes are of special importance in the
tree comparison process, as they break down the complete eCST into smaller subtrees
to ease comparison. The universal node types that are represented as stop nodes are:
function declaration, function body, class declaration, and class body. As these structures
are normally present in scripts, the detector can use them to identify clones, independent
and unbiased of their position in the eCST’s hierarchy.

The motivation of stop nodes’ fragmentation is centered in the idea that clones can
be disperse throughout the files. This means that is not necessary for the first function of
the first file to map to a clone in the first function on the second file. In this way, having
separated substructures of the eCST enables us to compare them among each other and
find clones that could map to different locations across source code files.

2.2. Code Clones Detection

The generality of the eCST intermediate representation enables us to map code written in
any programming language to this structure. That is, any two eCST trees use the same
set of universal nodes making them comparable and agnostic to the specific programming
language they abstract.

Using the fragmentation technique introduced with stop nodes, multiple subtrees
become comparable. For every pair of trees their nodes are visited to see if they are
clones of each other, based on the similarity mapping. Once two nodes’ types are deemed
equivalent, we compare their tokens for (simple) equality. In the case where the type of
the nodes is equivalent and the token is exactly the same, we mark them as Type 1 clones.
If the type of the nodes is equivalent but the tokens are not equal, we mark them as Type
2 clones. If the nodes are only similar, then they are Type 3 clones.

2.3. Filter Final Code Clones

As we are able to differentiate among clone types, we posit a similarity metric for code
fragments based on the number of clones detected. This metric is the weighted sum of the
total number of clones found for each type, where their importance follows the restriction
that clone types are weighted as Type 1 > Type 2 > Type 3, as shown in Equation (1J).

This metric is defined for filtering the possible clones detected in the comparison
of all the possible pair-wise combinations of the subtrees. In this way, we are able to
define the closest pair among all the possibilities. Our metric shows the most identical
clones, and gives precedence to exact clones over others clone types.

For complex and hierarchical structures, a merging mechanism is used where we
define if the root node of a tree is similar to some other node by counting the number of
clones that are within its children nodes. In this way, we are able to recognize not only
the clones that are in the tree leafs, but also clones in intermediate nodes.

Figure | exemplifies how clone type weight broadcasting helps us determine when
a subtree is more similar to another. In this example, the leaf nodes broadcast their type
weights up to the func_decl nodes. This way, the corresponding function clone pairs are
based on leaf nodes’ precedence by their broadcasting rather than by their parent nodes.

Kotlin Dart
1 fun get_a() { String b = "b" } 1 get_a() { int a = 1 }
2 fun get_b() { int a =1 } 2 get_b() { String b = "b" }

ﬁle ﬁle

lel'lC decl ﬁlnc—deCI get_a func decl get b func decl
func_body func_body func_body func_body

| : attribute_decl a attribute_decl

N J - a attribute_decl ' , attribute_decl
|1 fun get_a() { String b = "b" } 1 get_a() {{int a =1)
2 fun get b() { int a =1 } 2 _get b() { String b = "b" }

Figure 4. Broadcast method determining the similarity of sub-tree structures

The algorithm returns a list of all detected clones. Each clone is defined as a pair
of tokens with a mapping to the original files, the actual string, line and column number,
eCST node type, and clone type. All analysis information is reported back to users.

2.4. OuTt OF STEP Implementation

The implementation of our proposed approach (i.e., tool and algorithm) exhibits different
improvements when compared to other clone detection tools. In this section we describe
the details of OUT OF STEP in comparison with other tools.

A key feature of OUT OF STEP, not present in any other tool, is the support for
complete programming projects. Normally, existing tools receive as input two specific
source files to compare, which might be limiting for large code bases, where users may
want to detect clones across full programming projects (e.g., to check feature compati-
bility, or plagiarism verification). OUT OF STEP can take multiple files as input, as well
as whole projects. This enhancement is presented considering the exploration of mobile
apps, where developers may need to compare the complete application source code. To
attain this need, given a complete project as input, OUT OF STEP performs an exhaustive
pair-wise comparison of all the possible source code files, finding all possible clones in the
application, which comes with a high complexity (O(n?)) of the comparison algorithm.

Additionally, the OUT OF STEP analysis parametrizes the amount of clones to
analyze in the algorithm —that is, to view all detected clones, or to use clone filtering.

W

This can be useful when the motivation of using OUT OF STEP is to detect repeated code
fragments rather than just the most identical fragments in the code base.

Finally, we isolate grammars, with their parsers and lexers, so that adding a new
programming languages is completely modular, requiring new folder with the grammar
definition to include it in the tool The grammar definition must follow the ANTLR4 spec-
ification, as it is the dependency we use to automatically generate langauges’ lexer and
parser, otherwise a custom lexer and parser must be provided. To complete the integration
of new languages, we require a manual mapping between the language’s grammar rules
and the universal nodes. Not all the grammar rules need to generate a node in the eCST;
this depends on the desired granularity of generated trees.

3. Ourt OF STEP Evaluation

We evaluate OUT OF STEP in two phases. First we validate clone detection correctness
by means of the basic language features for Kotlin, and Dart. Second, we validate the
effectiveness of OUT OF STEP to analyze complete mobile app projects. We close this
section with a discussion about our results[]

3.1. Clone Detection in Structural Elements

To evaluate our clone detection algorithm we first focus in analyzing the basic abstrac-
tions across Kotlin and Dart. The goal of this evaluation is to correctly identify clones
using general universal nodes in the base case examples of the languages. Due to space
constraints, here we show only the case for loops and classes in Kotlin, and Dart. We
introduce Type 1 and Type 2 clones to our examples, to verify their correct detection.

3.1.1. Loop nodes

Managing loops is an interesting case for universal nodes. Loop abstractions are defined
using different keywords in Kotlin, Dart, and Swift (e.g., for, while). In OUT OF STEP
we process loop abstractions as semantically equivalent, and define them as Type 3 clones.
To evaluate this, we manually inject Type 1 and Type 3 clones in our tests.

Snippet 2. Kotlin while loop - version B

. . 1 var sum = 0O
Snippet 1. I?otlm for loop var i = 1
- version A . while (i <= 100) {
var sum = 0; 4 sum = sum + 1
for (i in 1..100) 5 i =1+ 1
sum = sum + 1 6 }

Snippet 4. Dart while loop - version B

. I int sum = 0;
Snippet 3..Dart for loop -) int i = 1;
version A s while (i <= 100) {
int sum = 0; 4 sum = sum + 1i;
for (int i = 1; i <= 100; i++) s i=41 4+ 1;
sum = sum + 1i; 6 }

“The full evaluation is available as an online appendix https://flaglab.github.io/CloneDetection/, All evalua-
tion data is available at: https://doi.org/10.5281/zenodo.5228822

https://flaglab.github.io/CloneDetection/
https://doi.org/10.5281/zenodo.5228822

The analysis for Kotlin (Snippets [I] and [2)), and Dart (Snippets [3| and [) in the
same language results in two Type 3 clones. These match the for and while statements
and the i variable declaration. The clone for the postfix statement i++ and the vari-
able assignment i = i + 1 is not correctly detected as a Type 3 clone due to their node
representations in the eCST, an assignment_operator unary node, and a binary node
respectively. Nonetheless, we identify the complete for and while blocks as clones of
each other, as the algorithm broadcasts clones inside the body of blocks. Additionally,
OUT OF STEP identifies the declarations and assignment of variables as Type 1 clones in
Line 1 of both snippets, and Line 3 of version A with Line 4 of version B.

The cross-language comparison between code versions A and B is also success-
ful in detecting the corresponding clones. This is because the node information and the
eCST structure are the same for the two code snippets. Every node is matched to its corre-
sponding node on the other eCST, even though the programming languages differ. When
comparing any A vs any B versions, we find that there are Type 3 clones for the for and
while statements, and the definition of variable i. Additionally, we can find the Type 1
clones for the declaration and assignment of the sum variable, as before.

In the loop analysis, OUT OF STEP finds a couple of Type 2 false positives, due to
the two assignments that are present in versions B of the code. In this case, the detection
algorithm points to the body of the for and while statements to be clones. This happens
because the intermediate type node for both of them is the same. The exact same behavior
takes place with the assignment before the 100p statement in both cases.

3.2. Clone Detection in Classes and Functions

Given that our proposed algorithm detects Type 1, 2, and 3 clones in simple code snippets,
we turn our attention to evaluate its performance with more complex code structures that
involve nested eCSTs with a large variety of universal nodes.

3.2.1. Classes

To identify clones in classes and objects, we implement a program that creates and instan-
tiates a class in the main function. Type 1 clones are inserted in this example for versions
A (Snippets[S]and[7)), and B (Snippets [6|and [8)) for the two languages.

Snippet 5. Kotlin class def- Snippet 6. Kotlin class definition -
inition - version A version B
1fun main (args: < >) { | class Person(val name:) {
> Person A = Person("A") > fun present () {
Person B = Person("B") 3 return "Yes"
'} }
sclass Person(val name :) { 5 fun greet (other:) {
¢ fun present () = "Yes" 6 return other
7 fun greet (other:) = other 7 }

8} s}
v fun main (args: < >) {
10 Person A = Person("A")

1 Person B = Person ("B

2}

Snippet 7. Dart class defi-
nition - version A

Snippet 8. Dart class definition - ver-
sion B

I main () {

)

Person A = Person("A");
Person B = Person("B");

class Person({

Person (String name) {
this.name = name;

}

String present () {
return "Yes";

}

void greet (String other) {
return other;

}

class NestingPerson { class Person{
Person (String name) {
this.name = name;
}
String present () {
return "Yes";
}
void greet (String other) {
return other;
}
b}
main () {
Person A =
Person B

Person ("A");
Person ("B");

}

The version of the class definitions are similar to their counterparts in the other
language. We use two different syntax forms for Kotlin to show that we support the latest
major version of the language. Additionally, we swap the order of the class and main
declarations in the file and scope the person class differently in Dart. This, to test our
algorithm is agnostic to the elements’ definition order and scope. OUT OF STEP is able to
find exact clones in different file locations, scopes, or eCST hierachy.

The analysis of the two versions for a single language yields a complete match
of Type 1 clones throughout the document. This is true even for Kotlin, where we use
different syntactic elements to define the same class. When comparing Kotlin versions A
and B, we also identify a clone in the definition of the function greet and main. This is
because of the similarity in their definition and structure making them a false positive.

In the cross language analysis, when versions B are compared OUT OF STEP per-
forms better than with versions A. This is due to the compressed syntax of Kotlin, which
changes slightly the structure of the eCST. Notwithstanding, in general, our algorithm
can detect the exact same classes and the main function.

This experiment reinforces the case where the code is exactly the same but it
differs in definition order and scope. This means our algorithm detects clones using the
eCST structure even if the root nodes of the clones are at different tree levels.

3.3. Clone Detection in Mobile Apps

We further evaluate the clone detection for complete mobile apps. To do this, we built
a corpus of 52 functionally equivalent apps implemented in Kotlin (26) and Dart (26),
spanning different application domains. The apps are extracted from two sources: 40
apps come from of a mobile app development course taught at Unandes between 2018
and 2021. For the course each app must be developed for Android and 10S, normally
using two development teams of 2-3 students per language/platform. The remaining 12
apps are extracted from GitHub. We make sure these repositories are maintained by the
same development team or are under the same organization, to assure feature equivalence.

We verify that all apps compile and run using the standard IDEs for each language,
i.e., Android Studio for Kotlin, and the Flutter framework for Dart. The selected apps for

‘Y @133
CounterApp Home Page
Increase

= RES ET 'l' Reset

Figure 5. Counter application screenshots

our evaluation vary in application domain (covering 9 domains), and size of the code
bases. Since the previous evaluation scenarios used small codebases, we are interested in
medium to large apps for this evaluation (with an average of 3100 LOC per application)
spanning over several files (an average of 41 files per app). We only take into account the
main logic of the project, not including any presentation, configuration, or GUI files.

The analysis between mobile apps is exemplified by a counter application devel-
oped by the authors (bold in Table[I)). The app counts the number of times a button on the
screen is pressed. A screenshot for the Kotlin and Dart versions is shown in Figure 3]

The differences between the apps are immediate. First, the Kotlin version has
one extra feature than its Dart counterpart, as users can reduce the counter. However,
we expect for the clone detector to be able to find similar features that exist between
the two code bases. This follows from the algorithm’s clone detection through a pairwise
comparison of all files and the functions therein. The result of such exhaustive comparison
results in the detection of a large amount of clones.

Snippet 9. Counter app main function in Kotlin

class MainActivity:AppCompatActivity () {
var count = 0
override fun onCreate (savedInstanceState:Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity_main)
textView.text = count.toString/()

Snippet 10. Counter app main function in Dart

class MyApp extends StatelessWidget {
@override Widget build(BuildContext context) {
return MaterialApp (title: ’'Flutter Demo’,
theme: ThemeData (primarySwatch: Colors.blue),
home: MyHomePage (title: ’'Home Page’),
)il

Our algorithm is capable to find one correct Type 3 clone across the whole code

base (that in Snippets [0 and [I0). However the algorithms finds common nodes across the
two implementations resulting in many small clones identified for variables and single
lines of code. This causes over 60 false positives upon the manual inspection of the code.
The high rate of false positives is due, in part, to the frameworks used to implement each
of the mobile apps. The implementation frameworks have their own independent APIs,
which change the functions used to achieve a particular task in the different programming
languages. This has an important impact in the way in which we build the eCST. For
example, Snippet [1| shows the signature for the functions used to retrieve an app’s splash
screen. These functions are semantically equivalent. However, their syntactic difference
implies a difference in the the eCST’s location and shape. A similar analysis from the
manual inspection of OUT OF STEP’s results on the other evaluated apps confirms the
behavior of our tool, obtaining a precision of 0.65 to 0.84 for mobile app clone detection.

Snippet 11. Kotlin’s and Dart’s APl usage

public final SplashScreen getSplashScreen() //Kotlin code

public SplashScreen provideSplashScreen() //Dart code

Table[I]shows the clones found by OUT OF STEP in the evaluation of mobile apps.
Given the size of the apps, we do not disaggregate Type 2 and Type 3 clones or identify
false positives, as these tasks are manual.

Table 1. Cross-language clone detection results for the mobile apps corpus

Avg. LOC # of Files Type Type
APPTYPE Dbt Kotlin Dart Kotin °® 7 283
Shopping 1220 3180 6 51 192395 66566 125829
Health 5463 4776 46 48 733716 167673 566043
Health 2956 2236 29 21 110573 27768 82805
Games 2499 3408 20 40 260244 65166 195121
Productivity 4220 3321 85 47 584825 161981 422844
Shopping 3449 1913 74 29 240201 57909 182386
Library 3909 2432 30 32 219373 51978 167395
Shopping 3468 2951 39 84 327299 90354 236945
Shopping 8139 3771 72 84 803354 210749 592605
Health 3660 1836 28 40 106931 27068 79863
Health 4215 1087 39 23 136150 34199 101951
Bookings 4953 3433 44 50 463125 112528 350597
Services 3927 2700 27 31 178192 38384 139808
Lifestyle 3123 1547 21 26 92305 27354 64951
Productivity 2429 1652 21 26 140574 31716 108858
Bookings 1045 1982 25 67 83825 26741 57084
Discounts 2380 1781 37 27 120956 30090 90866
Pets 5754 2615 41 51 250769 70000 180769
Pets 3039 1724 23 26 96517 24828 71689
Bookings 5490 2538 58 81 564947 150226 415011
Productivity 136 104 1 1 149 23 126
Productivity 144 104 1 1 149 23 126
Productivity 57 23 1 1 90 25 65
Information 367 2383 6 47 60215 25139 35076
Lifestyle 510 1831 14 59 55591 18471 37120
SmartHome 759 3248 9 33 111810 28052 83758

3.4. Discussion

Running OUT OF STEP on different types of projects across languages for mobile plat-
forms shows the effective clone identification even when dealing with complex project
structures and large code bases. Section [3.1] verifies that the basic structures of the two
languages are correctly identified as clones. Moreover, from the results in Section[3.2] our
algorithm obtains a precision between [0.65, 0.84] for large code bases, demonstrating the
correct identification of code clones across languages uniformly in the two data sets.

In the case of mobile apps, we observe that OUT OF STEP finds clones covering
complete code bases, as direct consequence of the exhaustive behavior of our algorithm.
However, we identify two limitations in the clone detection for mobile apps. First, eCST
nodes sometimes lack information to be able to determine whether a code structure can be
marked as Type 2 or Type 3 clone. This can reduce the precision of our algorithm, as well
as increase required manual verifications. Second, for mobile apps, OUT OF STEP works
strictly with the standard definition of the programming languages. As a consequence
we do not take into account additional Ul or configuration files (e.g., .xm1 files) that
developers may use to define the apps’ layout. Therefore, we do not detect clones of
GUI elements because they are not programmatically defined in the code base. GUI clone
identification can give way to further feature divergence analysis across applications.

To enhance the clone detection for mobile platforms, we can extend the languages’
grammars to incorporate specific aspects of the UI and native frameworks used in the de-
velopment. For instance, in the case of Dart, the programming language grammar can be
extended to have new eCST nodes defined by the Flutter framework. Taking into account
all the new syntax, we can have nodes for threads, GUI elements, and mobile events. This
means that our comparison algorithm for the eCST will have more information available,
and therefore raise the precision of our algorithm.

4. Related Work

This section discusses existing strategies for clone detection in both the single-language
and multi-language settings. We compare these strategies with our work.

Existing clone detection tools focus on a single programming language, and are
not directly applicable to our case. There is a vast diversity in the target language to ana-
lyze; with prominence in C/C++, Java, JavaScript, and Python tools [Roy et al. 2009].
Existing tools aim for language independence so that clone detection is indepen-
dent from tools’ language, still, detection is possible for fragments of a single lan-
guage [Cheng et al. 2017]]. We note the approaches for single language clone detection
are not easily transferable to the multi-language case, and therefore the algorithms and
metrics are not comparable with OUT OF STEP.

C2D2 is one of the first approaches to detect clones across the .NET language
family [Kraft et al. 2008]]. Very similarly to our approach, C2D2 applies a hybrid method
on tokens and ASTs for clone detection. However, contrary to our approach where
any language may be supported, C2D2 may support only .Net languages which is a
restriction caused by the intermediate representation chosen. A similar analysis of
NET languages uses a representation based on the Common Intermediate Language
(CIL) [Al-Omari et al. 2012]]. CIL is a stack-based machine-independent object-oriented

assembly language focused on .Net languages. Again, this tool differs from OUT OF
STEP as it applies the Longest Common Sub-sequence (LCS) algorithm for detection,
which can be restrictive in the detection of Type 2 and 3 clones.

LICCA [Vislavski et al. 2018] uses the original version of eCSTs to detect clones
across different language types (e.g., Java, Scheme). The eCST structure used in LICCA
is the base for OUT OF STEP. As a consequence, this is the approach closest to our
proposal. However, in OUT OF STEP we extend the generation of eCSTs to start directly
from the PT and not use the AST. Moreover, we extend the definition of nodes in eCSTs
(universal, advance, and stop nodes) to enable finer-grained analysis of tree sub-structures.
Finally, while LICCA applies the LCS algorithm, our detection algorithm relies on tree
mappings and broadcasting to map different node types, giving us more flexibility and
possibilities to compare trees from across languages.

CLCSD [Zhang et al. 2020] is a hybrid framework for cross-language clone de-
tection based on flowcharts as a means to abstract language constructs. Flowcharts in
CLCSD have a tree-like structure similar to our eCSTs, standardizing different program
structures. However, the standardization of flowcharts restricts the analysis for the base
language grammar (Java and Python), not extensible to multiple different languages as
OuT OF STEP. The closest approach to OUT OF STEP uses unified PTs generated from
a language grammar linearized and pre-processed at the function level, comparing the
linearized sequences [Nichols et al. 2019]]. However, this approach differs from OUT OF
STEP in the detection algorithm.

In addition, one of the main problems with existing clone detection tools is their
lack of support [Walker et al. 2020]. We identified 20 clone detection tools from the
literature, summarized in Table [2| with their maintainability state. Out of all the tools,
9 where downloadable, and only 3 of them could be installed and gave an output to a test
file. Furthermore, most of the tools are available do not support the latest versions of the
target programming languages. This means that to analyze code exploiting new features,
the tools will return unexpected results.

Table 2. Existing clone detection tools

Name Multi- Type Runs
language
1 NICAD [Cordy and Roy 2011] No Textual No
2 CCFinderX [Kamiya et al. 2002] No Lexical No
3 Simian [Harris 2018 No Textual No
4 Duploc [Gordon and Bannier 2021] No Textual Yes
5 SourcererCC [Sajnani et al. 2016] No Lexical No
6 iClones [Gode and Koschke 2009] No Lexical No
7 PMD/CPD [pmd 2021] No Lexical Yes
8 Deckard [[Lingxiao et al. 2018] No Tree-based No
9 Licca [Vislavski et al. 2018] Yes Hybrid Yes

5. Conclusion and Future Work

Cross-language clone detection can enhance coed quality analysis, bug detection and fea-
ture divergence for polyglot software systems. Currently there are a small set of working
tools for cross-language clone detection, mainly focused on classic languages (e.g., Java,
C++, Python). We identify a need for new algorithms and tools capable of performing

such task on modern languages. In this work, we propose an approach, with its accompa-
nying functional tool, for the detection of Type 1, 2, and 3 clones across mobile program-
ming languages. Our approach to cross-language clone detection, OUT OF STEP, uses a
mixture of the abstract representation of programs based on their programming language
grammars, and the textual code. For this purpose, we posit an extension to eCSTs that
uses universal node types, where tree nodes carry token information. This helps us to
explore the code and find the best corresponding clone matches.

The evaluation results confirm the main contribution of OUT OF STEP as an ef-
fective tool to detect clones across languages: (1) detecting clones for programming lan-
guages’ main features with precision of over 79%, and (2) detecting clones with a preci-
sion of 65% to 84% for large mobile app code bases. Additionally, we posit a new corpus
for cross-language clone detection, as no comprehensive data set exist to date, which
is unfavorable for algorithm comparison. The corpus is used to contrast the divergence
in application examples and target programming languages and application domains not
covered by existing tools. Our corpus, evaluates basic language features, known domain
algorithms, and equivalent mobile apps to maintain a common standard across languages.

OUT OF STEP is a first effective approach and tool for cross-language clone detec-
tion for mobile apps. While our results are promising, we identify further improvements
for our approach. In the analysis of mobile apps, it is necessary to extend the eCST to in-
clude characteristics specific to mobile GUIs and frameworks. This will enable us to iden-
tify clones for GUI elements, threads, and mobile events. Another approach to consider
is to investigate the comparison of the code not from the source, but once it is compiled
to an intermediate or native representation, removing the layer of mobile frameworks.
The main idea behind these improvements is to standardize eCSTs so that analyses do not
diverge across languages, and therefore increase the precision of our algorithm. Addition-
ally, we can introduce new tree transformations for fragments in which we can manipulate
and reorder statements as to reduce the number of comparisons improving the complexity
of the algorithm. Finally, we will extend the coverage of OUT OF STEP to include Swift
(currently under development) to cover all languages for mobile platforms.

References
(2021). PMD: An extensible cross-language static code analyzer.

Ain, Q. U., Butt, W. H., Anwar, M. W., Azam, F., and Magbool, B. (2019). A Systematic
Review on Code Clone Detection. IEEE Access, 7:86121-86144.

Al-Omari, F.,, Keivanloo, I., Roy, C. K., and Rilling, J. (2012). Detecting clones across
microsoft. net programming languages. In 2012 19th Working Conference on Reverse
Engineering, pages 405-414. IEEE.

Budimac, Z., Rakié, G., and Savi¢, M. (2012). Ssqgsa architecture. In Balkan Conference
in Informatics, BCI’12, page 287-290, New York, NY, USA. ACM.

Cheng, X., Peng, Z., Jiang, L., Zhong, H., Yu, H., and Zhao, J. (2017). Clcminer: de-
tecting cross-language clones without intermediates. IEICE TRANSACTIONS on In-
formation and Systems, 100(2):273-284.

Cordy, J. R. and Roy, C. K. (2011). The NiCad Clone Detector. In IEEE International
Conference on Program Comprehension, pages 219-220.

Gode, N. and Koschke, R. (2009). Incremental Clone Detection. In European Conference
on Software Maintenance and Reengineering, SMR’09, pages 219-228.

Gordon, S. and Bannier, B. (2021). xsgordon/duplo-fork: C/C++/Java Duplicate Source
Code Block Finder.

Harris, S. (2018). Simian - Similarity Analyser — Duplicate Code Detection for the
Enterprise — Overview.

Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: A multilinguistic token-
based code clone detection system for large scale source code. IEEE Transactions on
Software Engineering, 28(7):654-670.

Kraft, N. A., Bonds, B. W., and Smith, R. K. (2008). Cross-language clone detection. In
SEKE, pages 54-59.

Lingxiao, J., Ghassan, M., Zhendong, S., and Stephane, G. (2018). skyhover/Deckard:
Code clone detection; clone-related bug detection; sematic clone analysis.

Mondal, M., Roy, C. K., and Schneider, K. A. (2020). A survey on clone refactoring and
tracking. Journal of Systems and Software, 159(110429):27.

Nichols, L., Emre, M., and Hardekopf, B. (2019). Structural and nominal cross-language
clone detection. In Hihnle, R. and van der Aalst, W., editors, Fundamental Approaches
to Software Engineering, FASE’ 19, pages 247-263. Springer International Publishing.

Parr, T. (2013). The Definitive ANTLR 4 Reference, volume 1. 1 edition.

Patkar, N., Ghafari, M., Nierstrasz, O., and Hotomski, S. (2020). Caveats in eliciting
mobile app requirements. In Proceedings of the Evaluation and Assessment in Software
Engineering, EASE’20, pages 180—-189, New York, NY, USA. ACM.

Raki¢, G. and Budimac, Z. (2013). Introducing enriched concrete syntax trees. In Pro-
ceedings of the International Multiconference on Information Society, pages 211-214.

Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach. Science of Computer
Programming, 74(7):470—495.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K., and Lopes, C. V. (2016). SourcererCC:
Scaling code clone detection to big-code. In International Conference on Software
Engineering, pages 1157-1168. IEEE Computer Society.

Vislavski, T., Rakié¢, G., Cardozo, N., and Budimac, Z. (2018). Licca: A tool for cross-
language clone detection. In International Conference on Software Analysis, Evolution
and Reengineering, SANER’18, pages 512-516. IEEE.

Walker, A., Cerny, T., and Song, E. (2020). Open-source tools and benchmarks for code-
clone detection. ACM SIGAPP Applied Computing Review, 19(4):28-39.

Zhang, F., Li, L., Liu, C., and Zeng, Q. (2020). Flow Chart Generation-Based Source
Code Similarity Detection Using Process Mining. Scientific Programming, 2020.

	Introduction
	Out of Step
	Enriched Concrete Syntax Trees
	ECST Definition
	ECST Comparison

	Code Clones Detection
	Filter Final Code Clones
	Out of Step Implementation

	Out of Step Evaluation
	Clone Detection in Structural Elements
	Loop nodes

	Clone Detection in Classes and Functions
	Classes

	Clone Detection in Mobile Apps
	Discussion

	Related Work
	Conclusion and Future Work

