
Using Software Architecture Descriptions to Detect
Architectural Smells at Design Time

Everton Cavalcante, Thais Batista

Federal University of Rio Grande do Norte
Natal, Brazil

everton.cavalcante@ufrn.br, thaisbatista@gmail.com

Abstract. Architectural smells are decisions made at the software architecture
level, whether intentional or not, that may negatively impact the quality of a
software system. In the literature, architectural smells are identified mainly by
relying on the source code or other implementation artifacts. However, architec-
tural smells could be detected at design time, even before employing implemen-
tation efforts and preventing them from being reflected at the system implementa-
tion. This research investigates how software architecture descriptions realized
through architecture description languages (ADLs) can be used to identify ar-
chitectural smells at design time. This work focuses on how architectural smells
manifest and can be detected in SysADL, an ADL that allows describing both
structure and behavior of software architectures using standardized diagrams
from the OMG’s SysML language.

1. Introduction
Software architectures are acknowledged as essential assets for the success of software
systems, contributing to satisfying both functionalities and quality requirements and in-
corporating principles and decisions guiding their design and evolution [Bass et al. 2022].
Such architectures can be visualized at a high level in the form of components representing
the functional elements of the system, connectors that promote communication between
those components, and their behavior.

Even though a software system can work with a poor architecture resulting from
inadequate or incorrect decisions, future problems will arise in its operation, maintenance,
and evolution. One of these problems, which has been of growing interest in the Software
Architecture field, refers to the so-called architectural smells. An architectural smell is
an architectural-level decision, whether intentional or not, that may negatively impact a
software system’s quality, despite not representing an error that prevents the system from
working [Garcia et al. 2009a]. A typical example of architectural smell is cyclic depen-
dencies among software architecture components, which strongly impact the system’s
maintainability and harm its quality.

Architectural smells are identified mainly in the advanced stages of the soft-
ware development life cycle. A recent literature review aimed to identify the existing
techniques and tools for detecting architectural smells and their limitations concluded
that most of these techniques and tools primarily analyze artifacts such as the source
code [Mumtaz et al. 2021]. However, detecting architectural smells from a recovered ar-
chitecture is undoubtedly problematic because the system is already implemented. This
means that some effort has already been employed to implement the system, and addi-
tional effort will be required to fix existing architectural smells.



Although many works in the literature use the source code to identify the occur-
rence of architectural smells, there is evidence that not every architectural smell can be
detected from it, and the existence of a problem in the code does not necessarily imply an
architectural smell [Macia et al. 2012, Arcelli Fontana et al. 2019]. The available tools to
detect architectural smells cannot be used at design time when the system implementation
does not exist yet [Azadi et al. 2019, Mumtaz et al. 2021]. Moreover, almost all existing
techniques and tools focus only on detecting architectural smells related to dependencies,
and many others still need to be covered.

Detecting architectural smells at design time can prevent this problem
from being reflected at the system implementation, hampering later development
stages and negatively affecting software quality attributes [Stafford and Wolf 2001,
Chondamrongkul et al. 2020]. Architecture descriptions can play a crucial role at this
point as they constitute a first representation of the software system under development.
However, the literature on using architectural descriptions to detect architectural smells is
relatively scarce. The existing works (see Section 3) have limitations concerning the set
of identified architectural smells and the considered architectural viewpoints.

This ongoing research investigates how software architecture descriptions realized
through architecture description languages (ADLs) can be used to identify architectural
smells at design time when these architectures are being conceived. This work focuses on
how architectural smells manifest and can be detected in SysADL [Oquendo et al. 2016].
SysADL is an ADL complying with the ISO/IEC/IEEE 42010 International Standard for
architectural descriptions and allows describing both structure and behavior of software
architectures using standardized diagrams and elements from the OMG’s SysML lan-
guage. The ultimate result will be implementing a mechanism into the SysADL tool to
automatically detect architectural smells from architecture descriptions and assist soft-
ware architects in mitigating them at design time.

The remainder of this paper is organized as follows. Section 2 briefly introduces
some architectural smells. Section 3 discusses related work. Section 4 describes the iden-
tification of architectural smells from the perspective of software architecture descriptions
in the SysADL architectural language. Section 5 brings final remarks and directions for
ongoing and future work.

2. Architectural Smells: A Bird’s Eye View

Architectural smells mainly stem from the poor use of software architecture elements
such as components, connectors, interfaces, etc., including how they handle the different
system concerns and interact with each other. Despite the relevance of addressing archi-
tectural smells and the negative consequences on the quality of software systems, the
literature still needs a uniform understanding of their characteristics and root causes. Gar-
cia et al. [Garcia et al. 2009a, Garcia et al. 2009b] were the pioneers in defining the first
catalog of architectural smells. This collection was revisited and expanded throughout the
years [Azadi et al. 2019, Mumtaz et al. 2021].

[Le et al. 2017] present a framework to understand and classify architectural
smells. They proposed five different classes of architectural smells and described only
the ones that could be detected through architectural recovery. Table 1 lists those cate-
gories along with well-known architectural smell instances. It is worth mentioning that



Table 1. Architectural smell categories and some instances.

Categories Causes Architectural smell instances
Concern-based
smells

Inappropriate or inadequate
separation of concerns

Concern Overload, Scattered
Parasitic Functionality,
Functionality Overload

Dependency-
based smells

Inappropriate interconnections and
interactions among system
elements

Dependency Cycle, Link Overload

Interface-based
smells

Deficiency in defining component’s
interfaces

Ambiguous Interface, Unused
Interface, Ununsed Component,
Sloppy Delegation, Lego Syndrome

Coupling-based
smells

Couplings among components Duplicate Function, Co-change
Coupling

Connector-based
smells

Inappropriate definition or use of
connectors

Extraneous Adjacent Connector,
Connector Envy

the literature presents a high diversity of names and definitions, even though referring to
the same architectural smell [Azadi et al. 2019, Mumtaz et al. 2021].

3. Related Work

The Stafford and Wolf’s work is one of the first studies related to the soft-
ware architecture analysis from architecture descriptions to specifically detect de-
pendencies among architectural elements, which is the most common architectural
smell [Stafford and Wolf 2001]. These authors argue that ADLs allow reflecting on soft-
ware system properties at a high abstraction level, e.g., identifying if a given component
affects or is affected by another, thus meaning that there is some dependency between
these components.

[Sanchez et al. 2015] proposed an approach to verify the nonexistence of architec-
tural smells from architecture descriptions in Archery, a formal ADL proposed by them.
In their approach, the structure of software architectures is represented in Archery. An
extension called Archery-Constraints allows formally specifying the nonexistence of ar-
chitectural smells as constraints to be formally verified.

[Chondamrongkul et al. 2020] proposed and implemented an approach to detect
architectural smells at design time from formalized software architecture descriptions.
The structural viewpoint is represented through ontologies in the OWL language, and
the behavioral viewpoint is represented through specifications in Wright#, a formal ADL.
Relationships and rules in the ontology codify possible occurrences of architectural smells
in the architecture’s structure. Next, formal verification is used to detect architectural
smells related to behavioral concerns.

In general, the works related to detecting architectural smells through architec-
ture descriptions are limited to analyzing a small set of smells. They do not also consider
standardized notations such as UML, SysML, and its derivations, which are preferred for
use by practitioners in industry [Malavolta et al. 2013, Ozkaya 2018]. In the Sanchez et
al.’s work, the used ADL does not offer an appropriate distinction between architectural



elements (components and connectors) as typically expected for an ADL, besides focus-
ing only on the structural viewpoint and not providing mechanisms for the automatic
detection of architectural smells. The Chondamrongkul et al.’s approach considers both
structural and behavioral viewpoints in the identification of the occurrence of architec-
tural smells. However, it uses different notations to describe architecture’s structure and
behavior, and the verification relies on computationally-limited model-checking.

4. Identifying Architectural Smells in SysADL Architecture Descriptions

SysADL [Oquendo et al. 2016] is an architectural language designed to support multiple-
view modeling, cross-view checking, and execution of software architectures. It relies on
the diagrammatic notation from the SysML Systems Modeling standard and is aligned
with the ISO/IEC/IEEE 42010 International Standard. SysADL encompasses three view-
points for software architectures, namely structural, behavioral, and executable. The
structural viewpoint concerns the structure of the software architecture, specifying its el-
ements (components, ports, connectors) and how they are interconnected. The behavioral
viewpoint is related to the behavior of the architecture and its elements through activities,
actions, constraints, and protocols. The executable viewpoint copes with implementing
the behavioral viewpoint and allows for simulating the architecture behavior at runtime.

The structural viewpoint of SysADL primarily relies on two diagrams, namely (i)
the structural Block Definition Diagram (BDD) for defining components, connectors, con-
figurations, ports, and types, and (ii) the Internal Block Definition Diagram (IBD) to detail
a configuration by instantiating the elements defined in the BDD. In the behavioral view-
point, SysADL uses a behavioral BDD for defining actions, activities, and constraints.
An Activity Diagram (AD) defines an activity in terms of actions. A Parametric Diagram
allows relating constraints to activities and actions. At last, the executable viewpoint of
SysADL allows for the early detection of architectural problems, thus saving valuable
time and human resources for the final deliverable implementation.

Almost all categories of architectural smells (see Section 2) can be identified
in SysADL architecture descriptions as SysADL comes with typical ADL structural
constructs and allows describing the behavior of architectural elements. Architectural
recovery techniques used to identify architectural smells fail to address connector-
based smells, i.e., those caused by inappropriate definition or use of connectors. Con-
sequently, these techniques cannot differentiate between components and connectors re-
liably [Le et al. 2017]. However, connector-based smells can be identified in SysADL
architecture descriptions since connectors are first-class architectural elements in the lan-
guage, explicitly distinct from components.

In general, the identification of architectural smells using architecture descrip-
tions consists in first characterizing how a given architectural smell manifests through the
constructs of the ADL used to describe the software architecture. This characterization
leads to the specification of rules stating the occurrence of an architectural smell in an
architecture description. If some automation is envisioned, then a mechanism can be im-
plemented to concretize the previously specified rules and point out if the architecture
description matches any of these rules, thereby indicating the occurrence of architectural
smells. Once an architectural smell is detected in the architecture description, software
architects can be assisted on how to mitigate the smell.



This section describes how architectural smells can show up in software archi-
tecture descriptions in SysADL by using an adapted version of the Automated Guided
Vehicle (AGV) system [Araújo et al. 2021, Gomaa 2011] as an illustrative example. In
the AGV system, a real-time system controls a vehicle to start/stop moving along a track
and relies on an arrival sensor to detect when it has arrived at a station. The AGV system
interacts with two other existing systems by (i) receiving commands from a Supervisory
System and sending vehicle acknowledgments and (ii) sending the vehicle status to an
external Display System.

For the sake of space, this section presents only some instances of the architec-
tural smells listed in Table 11. This paper focuses on the steps related to characterizing
architectural smells in software architecture descriptions using SysADL as architectural
language. The detection tool support and mitigation is an ongoing work.

Dependency Cycle (DC). DC is a dependency-based smell that occurs when two
or more components depend on each other in a circular chain [Azadi et al. 2019], causing
high coupling among components. A DC can be identified in the structural viewpoint
of SysADL through the IBD. In an IBD, a DC appears when two connectors link the
components in opposite directions, from an output port to an input port and vice-versa.
Figure 1 depicts part of an IBD describing the AGV system as a composite component.
There is a DC between instances of the RobotArm and VehicleControl components as
they are linked through instances of the CommandArm and NotificationArm connectors in
a bidirectional flow between their input/output ports.

Figure 1. Part of a SysADL Internal Block Diagram with occurrences of Depen-
dency Cycle and Extraneous Adjacent Connector in the AGV system.

Extraneous Adjacent Connector (EAC). EAC is a connector-based architectural
smell that occurs when two or more different connector types are used to link the same pair
of components, even though it may be acceptable in certain cases [Garcia et al. 2009b].
An EAC can be identified in the structural viewpoint of SysADL through the IBD when
instances of different connector types link the involved components. Figure 1 also presents
a manifestation of EAC as the instances of the RobotArm and VehicleControl components
are linked through instances of two different connectors, namely NotificationArm and
CommandArm.

1The figures presented in this paper are excerpts of a complete architecture description of the AGV system
in SysADL available at https://doi.org/10.5281/zenodo.6546959.



Ambiguous Interface (AI). AI is an interface architectural smell that refers to
a single general interface provided by a component that accepts requests and dispatches
them internally. An AI can be identified in the structural viewpoint of SysADL through the
IBD when a composite component has a proxy input port linked via a binding connector
to multiple input ports of different internal components. In SysADL, ports of composite
components are always proxy ports, so they need to be delegated to the ports of internal
components [Oquendo et al. 2016]. Figure 2 depicts another part of an IBD describing
the AGV system as a composite component. The AGV system interacts with the Super-
visory System by receiving start/stop moving and loading/unloading commands. These
commands are received via commands, a single input proxy port of the AGV system
linked to two input ports of the VehicleControl component through binding connectors.
The commands received via the proxy input port are dispatched to those internal input
ports according to their nature. If the command is about start/stop moving the AGV, then
the delegation is to the move input port. If the command is about loading/unloading onto
and off the AGV, then the delegation is to the load input port.

Figure 2. Part of a SysADL Internal Block Diagram with an occurrence of Ambigu-
ous Interface in the AGV system.

Functionality Overload (FO). FO is a concern-based smell that indicates that
a component accumulates excessive functionalities and control, being an inappropriate
form of modularity and violating the principle of separation of concerns. An FO can be
identified in the behavioral viewpoint of SysADL through the behavioral BDD. A highly
complex BDD with many actions composing an activity may indicate FO. Nevertheless,
defining a certain threshold is required to judge a fair number of actions for describing the
behavior of an architectural element. It is worth highlighting that existing tools that detect
FO relying on architectural recovery adopt thresholds for this purpose [Azadi et al. 2019].
Figure 3 depicts a BDD specifying of the MoveAC activity performed by the VehicleCon-
trol component of the AGV System. This activity is defined as a composition of four
actions, namely ProcessCommandAN, SendDestinationAN, SendCommandAN, and Send-
StartMotorAN. Suppose that a customizable threshold establishing the maximum number
of actions to compose an activity is set to acmax = 3. In this case, the MoveAC activity
would be considered as possibly suffering from FO as its number of composing actions
exceeds the established threshold acmax.

5. Final Remarks
This paper aimed to present ongoing work on investigating how software architecture
descriptions realized through ADLs can be used to identify architectural smells at design
time before the system implementation. The main thrust behind these ideas is to avoid
employing efforts to implement an architecture that may already manifest an architectural
smell. This represents a different research direction from what has been done in the state



Figure 3. Part of a SysADL Block Definition Diagram with an occurrence of Func-
tionality Overload in the AGV system.

of the art since almost all techniques currently used to detect architectural smells rely on
architectural recovery or metrics from the source code of the system’s implementation.
The literature reports that the existing tools to detect architectural smells cannot be used
at design time when the system implementation does not even exist. Architectural smells
should be detected and eradicated before implementing the system since doing this at later
stages through refactoring is costly.

This paper also showed how some architectural smells could be identified in
SysADL architectural language. Ongoing work focuses on continuing the specification
of rules that state the occurrence of architectural smells in SysADL diagrams. The fol-
lowing stages will be devoted to implementing a mechanism to automatically identify
architectural smells in SysADL architecture descriptions. This mechanism will ultimately
be integrated into the SysADL Studio tool [Leite et al. 2018], enabling software architects
to analyze the occurrence of architectural smells when designing their software architec-
tures. As SysADL complies with the ISO/IEC/IEEE 42010 International Standard and
offers well-known, consolidated abstractions to describe software architectures, the same
principles presented in this work for identifying architectural smells can be applied with
other ADLs relying on the typical architectural abstractions.

References

Araújo, C., Batista, T., Cavalcante, E., and Oquendo, F. (2021). Generating formal
software architecture descriptions from semi-formal SysML-based models: A model-
driven approach. In Gervasi, O. et al., editors, Computational Science and Its Applica-
tions – ICCSA 2021, Lecture Notes in Computer Science, vol. 12951, pages 394–410.
Springer Nature Switzerland AG, Switzerland.

Arcelli Fontana, F., Lenarduzzi, V., Roveda, R., and Taibi, D. (2019). Are architectural
smells independent from code smells? An empirical study. Journal of Systems and
Software, 154:139–156.

Azadi, U., Arcelli Fontana, F., and Taibi, D. (2019). Architectural smells detected by
tools: A catalogue proposal. In Proceedings of the 2019 IEEE/ACM International
Conference on Technical Debt, pages 88–97, USA. IEEE.



Bass, L., Clements, P., and Kazman, R. (2022). Software Architecture in practice.
Addison-Wesley/Pearson Education, Inc., USA, 4th edition.

Chondamrongkul, N., Sun, J., Warren, I., and Lee, S. U.-J. (2020). Semantic-based archi-
tecture smell analysis. In Proceedings of the 8th International Conference on Formal
Methods in Software Engineering, pages 109–118, USA. ACM.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. (2009a). Identifying archi-
tectural bad smells. In Proceedings of the 13th European Conference on Software
Maintenance and Reengineering, pages 255–258, USA. IEEE.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. (2009b). Toward a catalogue
of architectural bad smells. In Mirandola, R., Gorton, I., and Hofmeister, C., editors,
Architectures for Adaptive Software Systems, Lecture Notes in Computer Science, vol.
5581, pages 146–162. Springer-Verlag Berlin Heidelberg, Germany.

Gomaa, H. (2011). Software modeling and design: UML, use cases, patterns, and soft-
ware architectures. Cambridge University Press, USA.

Le, D., Link, D., Shahbazian, A., Zhao, Y., Mattmann, C., and Medvidovic, N. (2017).
Toward a classification framework for software architectural smells. Technical re-
port, Center for Systems and Software Engineering, University of Southern California,
USA.

Leite, J., Batista, T., Oquendo, F., Silva, E., Santos, L., and Cortez, V. (2018). Design-
ing and executing software architecture models using SysADL Studio. In 2018 IEEE
International Conference on Software Architecture Companion, pages 81–84, USA.
IEEE.

Macia, I., Arcoverde, R., Garcia, A., Chavez, C., and von Staa, A. (2012). On the rele-
vance of code anomalies for identifying architecture degradation symptoms. In Pro-
ceedings of the 16th European Conference on Software Maintenance and Reengineer-
ing, pages 277–286, USA. IEEE.

Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., and Tang, A. (2013). What industry
needs from architectural languages: A survey. IEEE Transactions on Software Engi-
neering, 39(6):869–891.

Mumtaz, H., Singh, P., and Blincoe, K. (2021). A systematic mapping study on architec-
tural smells detection. Journal of Systems and Software, 173.

Oquendo, F., Leite, J., and Batista, T. (2016). Software Architecture in Action: Design-
ing and executing architectural models with SysADL grounded on the OMG SysML
Standard. Springer International Publishing, Swizerland.

Ozkaya, M. (2018). The analysis of architectural languages for the needs of practitioners.
Software: Practice and Experience, 48(5):985–1018.

Sanchez, A., Barbosa, L. S., and Madeira, A. (2015). Modelling and verifying smell-
free architectures with the Archery language. In Canal, C. and Idani, A., editors, Soft-
ware Engineering and Formal Methods, Lecture Notes in Computer Science, vol. 8938,
pages 147–163. Springer International Publishing, Switzerland.

Stafford, J. A. and Wolf, A. L. (2001). Architecture-level dependence analysis for soft-
ware systems. International Journal of Software Engineering and Knowledge Engi-
neering, 11(4):431–451.


