Migration of Monolithic Systems to Microservices using AI: A
Systematic Mapping Study

1,2,3

Ana Martinez Saucedo’?? and Guillermo Rodriguez??

'Universidad Argentina de la Empresa (UADE), Instituto de Tecnologia (INTEC)
Buenos Aires, Argentina

2CONICET
Buenos Aires, Argentina

3ISISTAN Research Institute (CONICET - UNICEN)
Tandil, Buenos Aires, Argentina

anmartinez@uade.edu.ar, guillermo.rodriguez@isistan.unicen.edu.ar

Abstract. The popularity of microservices architecture has been increasing con-
siderably because of its capacity to alleviate monolithic architecture issues.
Nonetheless, the migration of monolith systems to microservices is a complex
task. This work aims to analyze and characterize the state of the art on migrat-
ing monolithic applications towards microservices (semi-) automatically using
Artificial Intelligence (Al) techniques by applying a systematic mapping method-
ology. Results showed that clustering is the preferred IA technique to decompose
a monolith, cited by 63% out of the 22 reviewed studies. Moreover, the most pre-
vailing input type used in migration techniques was source code (36.4%).

1. Introduction

The monolithic architecture is based on the integral encapsulation of the functionalities
of a single application executed by a single process [Koschel et al. 2017]. This has been
the most predominant architecture in the scope of software development due to the fact a
monolithic application is easy to implement and deploy [Koschel et al. 2017]. Nonethe-
less, the problems of monolithic architecture appear as the application increases its size
[Fritzsch et al. 2019b, Koschel et al. 2017], causing high code coupling, difficulties
in comprehending code, arduous maintenance, slow compilation process, and increased
communication effort among project’s stakeholders [Li et al. 2019]. Therefore, the mi-
croservice architecture was designed to provide solutions for the drawbacks of monolithic
architecture. The main components of such an architecture are the microservices, which
are defined by several authors as small, independent, and autonomous services that are
capable of efficiently performing a clearly defined task [Fowler and Lewis 2014, New-
man 2015]. In this context, applications built according to microservice architecture have
several advantageous aspects, mainly module-level scalability, faster delivery, and main-
tenance [Jamshidi et al. 2018]. This is why several companies, such as Netflix, Sound-
Cloud, and Amazon, have chosen to migrate from monolithic architecture to microservice
architecture [Li et al. 2019]. However, migration from monolithic to microservices ar-
chitectures fails to be classified as a simple process, since it involves complex issues that
require strategies to be solved [Balalaie et al. 2015, Christoforou et al. 2017].

This work aims to characterize the migration of monolithic systems to microser-
vices using Artificial Intelligence (Al) techniques based on the state of the art. The infor-
mation for carrying out this work was acquired through a systematic mapping study: we
selected 22 studies from an initial set of 855 papers to answer questions that analyze the
identification of microservices techniques. The main results of this work are:

» Migration of monolithic systems to microservices is complex and techniques to
achieve migration are varied in terms of supported programming languages, types
of input, and granularity;

* Clustering is the most addressed Al technique in the literature to migrate mono-
lithic applications towards microservices.

The remainder of the article is organized as follows. Section 2 describes related
work. In Section 3, the research method is presented. In Section 4, the results are pre-
sented based on the research questions. Section 5 discusses the findings of this study.
Threats to Validity are described in Section 6. Finally, Section 7 concludes the article
with remarks and future work.

2. Related Work

The migration of monolith applications to microservices has been reviewed from different
perspectives. Most of the studies have focused on migration techniques or activities and
factors that motivate migrating toward a microservice architecture. From the perspective
of the migration process, Fritzsch et al. [Fritzsch et al. 2019b] address monolith’s dis-
sociation, which consists of fragmenting the monolithic application into small services.
This is a substantial and high-level task in terms of complexity, which is the reason why
it can be considered the most important task for migration. Thus, the authors perform
a systematic literature review in order to collect techniques available in the literature to
identify microservices, in which ten main techniques were found. Similarly, Ponce et
al. [Ponce et al. 2019] reached a classification of migration approaches through a rapid
review: model-driven, static and dynamic analysis of code.

In the same direction, Fritzsch et al. [Fritzsch et al. 2019a] investigate the mi-
gration process adopted in the industry, outlining the lack of a semi-automated process to
support migration. Therefore, companies rely on non-systematic approaches or manual
functional decomposition approaches to perform migration. For this reason, Lapuz et al.
[Lapuz et al. 2021] gather from the literature dynamic data collection tools that were (or
could be) employed to assist in the migration of monolithic applications to microservices
through dynamic analysis. Finally, Di Francesco et al. [Di Francesco et al. 2018] focus
on the industry as well by conducting an industrial survey that aims to characterize the
activities and challenges faced by practitioners when migrating towards microservices.

However, to our knowledge, no work has focused on analyzing and characterizing
migration techniques that have used Al techniques to support monolith decomposition.
Considering the complexity involved in migrating towards a microservice architecture,
the automation of (most of) the migration process would alleviate practitioners in the task
of identifying loosely coupled and highly cohesive microservices.

3. Research Method

The purpose of this work is to analyze and characterize the state of the art on migrating
monolithic applications towards microservices (semi-) automatically using Al techniques.

To do so, we performed a systematic mapping study. To assist in the execution of the
research protocol, the tool StArt' was used, which tracks and documents each decision
made throughout each phase of the protocol.

The research objective was defined using part of the model GQM (Goal-Question-
Metric) [Basili and Weiss 1984]: the objective is to analyze migration from monolithic
applications to microservices cases, with the purpose of characterizing, with respect to
microservice identification techniques, from the researchers’ point of view, in the context
of theoretical and applied research.

With the purpose of complying with the protocol, criteria detailed by PICO (Pop-
ulation, Intervention, Comparison, and Outcome) were determined [Schugerl et al. 2009].
Since this work aims for characterization, only the attributes Population, Intervention, and
Outcome were used, thus a PICO extract is shown in Table 1. Therefore, two research
questions (Q) were designed as follows:

RQ1 — Which AI techniques are used to migrate monolithic applications to mi-
croservices?

RQ2 — Which aspects of a monolithic application are processed as inputs by Al
models?

| PICO criteria Description

Population Microservices, Monolith

Intervention Decomposition, Migration, Transformation, Move, Modernization,
Refactoring

Comparison Not applicable

Outcome Process / Technique / Model / Method / Approach / Features / Char-
acteristics

Table 1. PICO criteria.

3.1. Sources Selection

The selection of the sources used for the execution of this work was made through a
series of criteria and guided by the works of Petersen et al. [Petersen et al. 2015] and
Kitchenham et al. [Kitchenham and Brereton 2013]. The criteria set out to select database
and index systems were a) being a relevant scientific database in software engineering,
and b) content access availability. A total of 855 studies were retrieved between 2015
and 2023 and composed the initial pool. The selected sources were: ACM (23.3%), IEEE
Xplore (4.9%), Scopus (11.2%), SpringerLink (55%), and Science Direct (5.6%).

3.2. Search Strategy

The search strategy aims to find clauses that meet the main questions suggested in the
research. First, the search was automated on the sources already established. For the
development of this work, there was no restriction on the publication date of the biblio-
graphic materials analyzed.

The search strategy is divided into the following steps:
(1) Criteria declaration, search clause extraction, and search execution. A total of 855
studies were included;

"https://www.lapes.ufscar.br/resources/tools—1/start-1

(i1) Removal of duplicates, in which 764 studies were kept;

(ii1)) Execution of the first qualitative analysis of the results based on the inclusion and
exclusion criteria. As a result, a total of 158 studies were kept;

(iv) Snowballing activity by extracting for each study its relevant references, 7 studies
were added;

(v) Conduction of the second qualitative analysis based on the analysis of the results,
keeping 163 studies;

(vi) Data extraction to solve the research questions proposed, in which 22 out of 163
studies addressed migration answered the questions by a) presenting a migration
technique and the steps needed to perform it, and b) the migration technique is
based on an Al algorithm.

3.3. Search Terms

The search terms were gathered according to the following keywords: microservices,
microservice, microservice architecture, monolith, monoliths, decomposition, migration,
transform and move. These were used in a search string, which is a set of keywords
combined with boolean operators that will execute the search.

The search string used to perform this search was:

(((microservices OR microservice OR “microservice architecture”) AND (monolith OR
monoliths)) AND (decomposition OR migration OR transform OR move OR legacy OR
modernization OR refactoring))

Since the exclusion criteria define that only studies in English are accepted, the
terms used were written in English only. To provide the best result possible, two logical
tests were applied to the string. In addition, metadata specification could have been ap-
plied. However, since the vocabulary is very particular to the Computer Science subject,
it was disregarded to define it as the subject of the search.

3.4. Study Selection Criteria

For the selection of the bibliography resulting from the search, a series of inclusion and
exclusion criteria were defined. It is important to note that there was no restriction on
the search time. The inclusion and exclusion criteria adopted in this review are described
below.

Inclusion criteria

e ICO1: Study analyses the migration of monolithic systems to microservices
* [IC02: Study presents an Al technique to identify microservices.

Exclusion criteria

* ECOI: Duplicated study.

e ECO02: Study is not written in English.

» ECO03: Study published only as abstracts or prefaces of journals and events.

* ECO04: Study is not available for download.

* ECO05: Study is not peer-reviewed.

* ECO06: Study is not related to the migration of monolithic systems to microser-
vices.

3.5. Studies Selection Procedure

Titles and abstracts of the retrieved studies were analyzed to verify whether they are suit-
able for this work. From the analysis performed, it was possible to classify the studies
with the assistance of the StArt tool as accepted, rejected, or duplicated. It was found 158
(18%) accepted, 606 (71%) rejected, and 91 (11%) duplicates.

Afterward, full texts of accepted studies were read to find answers to the questions
made in the research protocol. It is important to notice that all accepted studies conform
to the inclusion criteria and contribute to answering the questions.

4. Results

Migration techniques classification schema

In order to evaluate the works reviewed and make a comparative description among them,
we have identified common criteria regarding relevant issues in the field of monolith to
microservices migration:

* Altechnique. This feature represents the Al technique used to decompose a mono-
lith.

» Language support. This criterion deals with the monolith programming language
that is supported by each migration technique.

 Input type. This feature evaluates which aspects of a monolithic application are
required to perform migration, such as source code, log traces, and requirements,
among others.

* Granularity. This criterion evaluates the unit of analysis used by each technique
to approach migration, attempting to discover the quality of each decomposition
obtained in terms of granularity.

A total of 22 studies were reviewed and characterized according to the aforemen-
tioned criteria as described in Table 2.

Table 2. Migration techniques.

Study Al technique Input type Language| Granularity
support

[Al-Debagy and | Clustering Documentation | Agnostic | API

Martinek 2019] Word Embeddings | based (O)

[Baresi et al. 2017] | Clustering Documentation | Agnostic | API

based (O)

[Kamimura et al. | Clustering Static Java Class

2018] Cobol

[Nunes et al. 2019] | Clustering Static Java Class

[Pigazzini et al. | Topic Detection Static Java Class

2019]

[Sellami et al. 2022] | Clustering Static Agnostic | Class
(Java)

[Trabelsi et al. | Clustering Static Agnostic | Class

2022] SVM (Java)

Word Embeddings

Table 2. Migration techniques (continued).

Study Al technique Input type Language| Granularity
support
[Nitin et al. 2022] Label propagation | Static Java Class
[Brito et al. 2021] Clustering Static Agnostic | Class
Topic Detection (Java)
[Mathai et al. 2022] | Graph Neural Net- | Static Agnostic | Class
work (Java)
[Li et al. 2022] Clustering Documentation | Agnostic | Method
based (O) (Java)
Dynamic
Static
[Kalia et al. 2021] Clustering Dynamic Java Class
[Liu et al. 2022] Genetic algorithm | Dynamic Agnostic | Class
(Java)
[Jin et al. 2021] Genetic algorithm | Dynamic Agnostic | Class
(Java)
[Bajaj et al. 2020] Clustering Dynamic Agnostic | URI
[Eski and Buzluca | Clustering Source control | Agnostic | Class
2018] based
Static
[Mazlami et al. | Clustering Source control | Agnostic | Class
2017] based
Static
[Gysel et al. 2016] | Label propagation | Documentation | Agnostic | Nanoentity
Clustering based (A&D)
[Ren et al. 2018] Clustering Dynamic Agnostic | Method
Static (Java)
[Cao and Zhang | Clustering Dynamic Agnostic | Method
2022] Static (Java)
[Matias et al. 2020] | Clustering Data based Python Class
Dynamic
Static
[De Alwis et al. | Clustering Data based PHP Class
2018] Dynamic
Static

Research questions results

In order to answer RQ1 and RQ2, we have analyzed the criteria as mentioned above
independently as described below.

By AI technique Among the Al-based techniques, a wide variety of algorithms have
been employed to migrate towards microservices (Table 3). Nevertheless, clustering has
been the most popular Al technique (63%) to identify microservices. Yet, varying clus-

tering algorithms have been proposed for the decomposition problem, which is described
below according to the classification presented by Xu et al. [Xu and Tian 2015]:

Affinity propagation-based: Affinity Propagation [Al-Debagy and Martinek 2019]
Density-based: e-DBSCAN [Sellami et al. 2022]

Graph theory-based: heuristics based [De Alwis et al. 2018] and MST-based [Ma-
zlami et al. 2017]

Hierarchical-based: Girven-Newman [Gysel et al. 2016, Matias et al. 2020],
Louvain [Brito et al. 2021, Li et al. 2022], Fast Community [Eski and Buzluca
2018], Hierarchical K-means [Ren et al. 2018], Leiden [Cao and Zhang 2022],
SArF [Kamimura et al. 2018] and SLINK [Kalia et al. 2021]

Partitioning-based: Fuzzy C-means [Trabelsi et al. 2022] and K-means [Bajaj
et al. 2020]

Unclassified: [Nunes et al. 2019, Baresi et al. 2017]

Considering unsupervised techniques, the NSGA-II genetic algorithm is employed

by the two studies in the category [Liu et al. 2022, Jin et al. 2021], while topic detection
algorithms such as LDA [Pigazzini et al. 2019, Brito et al. 2021] or SLDA [Pigazz-
ini et al. 2019] are used to group lexical and structural information from the monolith.
The Word Embeddings models chosen in the reviewed studies are Word2Vec [Al-Debagy
and Martinek 2019, Trabelsi et al. 2022], FastText [Al-Debagy and Martinek 2019] and
CodeBERT [Trabelsi et al. 2022]

Al Tech- | Algorithm Studies Percentage
nique
Clustering [Al-Debagy and Martinek | 63.0%
Unsupervised 2019, Kamimurg et al. 2018, Nunes
et al. 2019, Kalia et al. 2021, Gysel
et al. 2016, Matias et al. 2020, Ren
et al. 2018, Sellami et al. 2022, Brito
et al. 2021, Li et al. 2022, Bajaj
et al. 2020, Trabelsi et al. 2022, Eski
and Buzluca 2018, Cao and Zhang
2022, Mazlami et al. 2017, De Alwis
et al. 2018, Baresi et al. 2017]
Genetic algo- | [Liu et al. 2022, Jin et al. 2021] 7.4%
rithms
Topic detection [Brito et al. 2021, Pigazzini et al. 2019] | 7.4%
Graph Neural | [Mathai et al. 2022] 3.7%
Network
Self- Word Embed- | [Al-Debagy and Martinek 2019, Tra- | 7.4%
supervised dings belsi et al. 2022]
Semi- Label propaga- | [Nitin et al. 2022, Gysel et al. 2016] 7.4%
supervised tion
Supervised SVM [Trabelsi et al. 2022] 3.7%

Table 3. Al technique classification of Al-based migration techniques.

By input type All migration techniques need one or more aspects of a monolithic appli-
cation to obtain microservices candidates. Nonetheless, the reviewed studies have used as
input different outputs of a software development cycle. Consequently, a characterization
of input types is proposed in Table 4.

] Input type Development phase
Documentation based (A&D) Analysis & Design
Data based, Static Implementation
Documentation based (O), Dynamic, Source control based | Operation

Table 4. Input type classification.

In the Analysis and Design (A&D) phases of an application, documentation is
the principal output. However, several types of documentation might be used to migrate
a monolithic application towards microservices, namely use cases [Gysel et al. 2016],
design documents [Li et al. 2022, Gysel et al. 2016], and Entity-Relationship design
models [Li et al. 2022, Gysel et al. 2016]. During the Implementation phase, source code
(referred to in this study as Static) is developed and databases and tables (referred to in
this study as Data based) are created and set up.

Finally, in the Operation (O) phase, the monolith application is deployed and
running. In this phase, operation documentation such as OpenAPI specifications [Al-
Debagy and Martinek 2019, Baresi et al. 2017] and hardware resource dependencies [Li
et al. 2022] might be required as input to perform the migration. On the other hand,
a dynamic aspect of a running monolith might be represented as log traces [Kalia et al.
2021, Liu et al. 2022, Jin et al. 2021, Ren et al. 2018, Cao and Zhang 2022, Matias et al.
2020, De Alwis et al. 2018], hardware utilization metrics [Li et al. 2022] or web access
logs [Bajaj et al. 2020]. Source control-based inputs include repositories and Git history
of commits.

As described in Table 5, in the reviewed studies the static aspect of a monolithic
application is preferred when performing migration, followed by the dynamic aspect. To
use source code as input to a migration technique is required to have access to those
files. Therefore, when source code is not available, other migration techniques rely on
the dynamic facet of an application, which corresponds to outputs generated when the
application is up and running.

To rely on the static or dynamic aspect of a monolith application only has advan-
tages and disadvantages. On the one hand, there are tools to support the static analysis of
a monolith through source code. On the other, analyzing a monolith dynamically allows
the identification of dead code and cyclic dependencies, which could affect the perfor-
mance of the proposed microservices architecture. Nonetheless, the static facet of an
application may not be sufficient to understand the true nature of dependencies in run-
time. Conversely, to analyze the dynamic aspect of an application a complete runtime log
traces from each operation performed by a user is needed, which generally conforms to
the application test suite. In this case, high test coverage is fundamental to encompass
most functionalities.

Due to the aforementioned impediments of focusing on a single aspect of an appli-
cation to perform migration, 45.4% of the studies propose a multi-facet analysis in which

the static aspect is always included. The most prevalent aspect to supplement the static
aspect is source control: by analysing code repositories and change history it is allowed to
identify code partitions that change together in time. However, it is important to note that
source control on its own has not been used as input to obtain microservices candidates.

Other studies incorporated documentation into the analysis to reflect the true pur-
pose of an application, which may diverge during the Implementation and Operation de-
velopment phases. No studies include data as the only input to guide migration.

Input type | Studies | Percentage

Static [Brito et al. 2021, Kamimura et al. 2018, | 36.4%
Mathai et al. 2022, Nitin et al. 2022, Nunes
et al. 2019, Pigazzini et al. 2019, Sellami
et al. 2022, Trabelsi et al. 2022]

Dynamic [Bajaj et al. 2020, Jin et al. 2021, Kalia | 18.2%
et al. 2021, Liu et al. 2022]
Data based + Dynamic + | [De Alwis et al. 2018, Matias et al. 2020] 9.1%
Static
Documentation based (O) | [Al-Debagy and Martinek 2019, Baresi | 9.1%
et al. 2017]
Dynamic + Static [Cao and Zhang 2022, Ren et al. 2018] 9.1%
Source control based + | [Eski and Buzluca 2018, Mazlami et al. | 9.1%
Static 2017]

Documentation (A&D) + | [Li et al. 2022] 4.5%
Dynamic + Static

Documentation based | [Gysel et al. 2016] 4.5%
(A&D)

Table 5. Input type classification of migration techniques.

By language support Although the majority of the reviewed techniques are designed
to support a monolith developed in any programming language (65.2%), a subset of them
(53.3%) currently support Java monoliths due to the fact those techniques rely on tools
that are only available for the Java language, for instance Wala [Ren et al. 2018] and Java
Call Graph [Cao and Zhang 2022].

21.7% of the studies migrate Java monoliths to microservices, thus becoming Java
the most popular monolith language to develop migration techniques. However, varied
frameworks technologies are supported apart from Vanilla Java [Pigazzini et al. 2019]:
Spring Framework [Kamimura et al. 2018], Java EE [Nitin et al. 2022, Kalia et al. 2021]
and Fenix Framework used in conjunction with Spring Framework [Nunes et al. 2019].

By granularity When obtaining microservices candidates, each technique suggests mi-
grating different types of elements to compose a microservice. Granularity denotes the
unit of the element to be migrated, and the reviewed studies propose varying levels as
described in Table 6.

Similarly to the aforementioned classification criteria, migration techniques con-
sider levels of granularity that correspond to different phases in the software development
lifecycle. During the Analysis & Design phase no code is available. In this phase, Na-
noentities [Gysel et al. 2016] are proposed as migration elements that encode not only
functionality but also data and its stores.

However, the vast majority of migration elements correspond to components that
are available in the Implementation phase (81.7%): classes and methods. Choosing
method level granularity when migrating towards microservices implies that methods of
different or the same classes will compose a microservice. In the same fashion, class
granularity involves moving whole classes to a microservice candidate.

While method granularity might be the most accurate unit of migration to choose
in order to obtain cohesive and low coupled microservices, adjustments and merging
needed to perform due to incorporating methods from different classes may take much
effort considering the few tools available to semi-automatically support the process. On
the contrary. the task of processing and analyzing classes might be alleviated thanks to
tools available to perform, for example, call graph generation. This may explain why
class granularity is the most chosen among migration techniques.

The second minority of studies (13.7%) has focused on elements made available
during the Operation development phase. Those elements include URIs and APIs, which
generally convey user-relevant functionality.

Studies Granularity | Associated devel- | Percentage
level opment phase

[Brito et al. 2021, Kalia et al. 2021, | Class 68.1%

Liu et al. 2022, Jin et al. 2021, Eski Implementation

and Buzluca 2018, Mazlami et al.
2017, Matias et al. 2020, Kamimura
et al. 2018, Nunes et al. 2019,
Pigazzini et al. 2019, Sellami et al.
2022, Trabelsi et al. 2022, Nitin
et al. 2022, De Alwis et al. 2018,
Mathai et al. 2022]

[Li et al. 2022, Ren et al. 2018, Cao | Method 13.6%
and Zhang 2022]

[Gysel et al. 2016] Nanoentity | Analysis & Design | 4.6%
[Bajaj et al. 2020] URI 4.6%

[Al-Debagy and Martinek 2019, | API Operation

Baresi et al. 2017]

9.1%

Table 6. Granularity classification.

5. Discussion

This work aims to characterize the migration of monolithic systems to microservices by
analyzing the identification of microservices techniques that are supported by Al models.
Similarly to [Fritzsch et al. 2019b], we present a characterization of techniques that have
been addressed in the literature. However, instead of proposing a technique classification

that considers which aspects of a monolith may aid in the migration (static code, meta-
data, workload data, and runtime environment), we also defined language support and
granularity criteria to decompose a monolith to provide for finer-granularity analysis.

Results show that techniques proposed in the literature are varied and have trade-
offs in terms of technological limitations or the need for manual intervention in the pro-
cess. In effect, to uniformly assess the quality of a monolith decomposition, each tech-
nique would require the usage of an industrial and/or academic accepted metric against
which decompositions could be evaluated. In the field of monolith to microservices mi-
gration, little consensus has been identified concerning how to evaluate a candidate mi-
croservices decomposition: whether decomposition should be evaluated against cohesion
and coupling metrics only or include performance or even organizational metrics depends
on the study focus. For this reason, it is difficult to assess if different Al algorithms per-
form better in terms of cohesion, coupling, performance, or organizational improvements.

Unsupervised techniques have been widely adopted to address monolith to mi-
croservices migration (81.5%) and in particular clustering algorithms that rely on a graph
representation of the monolithic application are the most used in the literature, perhaps
due to being a natural representation of the underlying software structure. While Natural
Language Processing (NLP) algorithms have not been as widely researched as clustering
algorithms, the exploration of the ability of Large Language Models (LLM) to identify
cohesive and loosely coupled microservices based on the underlying domain knowledge
represented by classes and methods could be addressed without prior input preparation
by prompting source code directly to a code-specific LLM such as Code Llama. In this
sense, this type of LLM would remove the need to focus on a specific programming lan-
guage, as these models support a wide range of programming languages out of the box.
Moreover, monolith knowledge coming from design documents or operational logs could
be wired into these models by incorporating Retrieval Augmented Generation. Nonethe-
less, practitioners should consider the costs associated with running LLM locally, both
due to licenses or appropriate hardware acquisition, as well as LLM challenges such as
bias, information hallucinations, and explainability, among others [Zhao et al. 2023].

In line with the variety of metrics used to evaluate the performance of Al algo-
rithms for the monolith decomposition task, and related to the lack of practical systems
for benchmarking microservice-based architectures reported in [Di Francesco et al. 2019],
the scarcity of a variety of open source projects in terms of size and complexity to vali-
date results should be considered by researchers who want to propose new approaches to
migrate monolithic systems to microservices. In this sense, the incorporation of synthetic
projects created by LLLM could also alleviate the task of evaluating migration techniques
on monolithic applications of different sizes and domains.

6. Threats to Validity

We have considered the most common threats to validity of systematic literature reviews
in Software Engineering reported in [Zhou et al. 2016] to account for how we mitigated
them.

Construct validity To mitigate the threat of using inappropriate or incomplete
search terms in the automatic search, we have tested our search string before executing
the research protocol to ensure results were relevant. Moreover, we have included multi-
ple databases and the StArt tool, which executes queries on the different sources to reduce

subjective errors during the search phase and ensure replicability. We have also comple-
mented our search results by including the snowballing method.

Internal validity To reduce bias in study selection and data extraction, two re-
searchers performed these tasks independently and then cross-analyzed decisions made
about each study suitability. Moreover, we have documented each accept/reject decision.

External validity To ensure the generalizability of our results, we have automated
our search and complemented it with the snowballing method. Moreover, we have in-
cluded peer-reviewed papers only, and have not restricted the publication date of biblio-
graphic materials analyzed.

Conclusion validity To allow for replicable results, we have defined a protocol
that was cross-validated by two researchers. Each researcher worked independently and
individual findings were discussed and cross-validated.

7. Final Remarks

In this work, an analysis of studies referring to the current state of the art regarding mi-
gration from monolithic systems to microservices using Al techniques is presented. In
addition, this work proposed a characterization of migration techniques in terms of Al
technique, input type, language support, and granularity. Results show that no single
technique is completely effective when migrating to microservices: aspects of a monolith
to feed into Al models or technologies constraints make it difficult to obtain a general
migration process which could be applied to any monolith system regardless of the tech-
nologies it was developed with or the domain it is contained. Notwithstanding the wide
range of Al-based migration techniques supported, clustering is the preferred one to ob-
tain candidate microservices decompositions, although little consensus is identified in the
selected studies considering the inputs required by each technique.

Considering the vast amount of peer-reviewed papers addressing monolithic sys-
tems to microservices migration analyzed in this work, as future work we are further
advancing our research by incorporating works that include gray literature, such as blogs
and websites, among other sources, in order to extend it as a multivocal literature review.

Acknowledgments

We acknowledge the financial support provided by CONICET and UADE under doctoral
grant id 14120210200034CO and project PIP no.11220200100430.

References

Al-Debagy, O. and Martinek, P. (2019). A New Decomposition Method for Designing
Microservices. Periodica Polytechnica Electrical Engineering and Computer Science,
63(4):274-281. Number: 4.

Bajaj, D., Bharti, U., Goel, A., and Gupta, S. C. (2020). Partial migration for re-
architecting a cloud native monolithic application into microservices and faas. In Bad-
ica, C., Liatsis, P, Kharb, L., and Chahal, D., editors, Information, Communication
and Computing Technology, pages 111-124, Singapore. Springer Singapore.

Balalaie, A., Heydarnoori, A., and Jamshidi, P. (2015). Migrating to Cloud-Native Archi-
tectures Using Microservices: An Experience Report.

Baresi, L., Garriga, M., and De Renzis, A. (2017). Microservices Identification Through
Interface Analysis. In De Paoli, F., Schulte, S., and Broch Johnsen, E., editors, Service-
Oriented and Cloud Computing, Lecture Notes in Computer Science, pages 19-33,
Cham. Springer International Publishing.

Basili, V. R. and Weiss, D. M. (1984). A Methodology for Collecting Valid Software
Engineering Data. [EEE Transactions on Software Engineering, SE-10(6):728-738.
Conference Name: IEEE Transactions on Software Engineering.

Brito, M., Cunha, J., and Saraiva, J. a. (2021). Identification of microservices from mono-
lithic applications through topic modelling. In Proceedings of the 36th Annual ACM
Symposium on Applied Computing, SAC *21, page 1409-1418, New York, NY, USA.
Association for Computing Machinery.

Cao, L. and Zhang, C. (2022). Implementation of domain-oriented microservices decom-
position based on node-attributed network. In 2022 11th International Conference on
Software and Computer Applications, ICSCA 2022, page 136-142, New York, NY,
USA. Association for Computing Machinery.

Christoforou, A., Garriga, M., Andreou, A. S., and Baresi, L. (2017). Supporting the
Decision of Migrating to Microservices Through Multi-layer Fuzzy Cognitive Maps.
In Maximilien, M., Vallecillo, A., Wang, J., and Oriol, M., editors, Service-Oriented
Computing, Lecture Notes in Computer Science, pages 471-480, Cham. Springer In-
ternational Publishing.

De Alwis, A. A. C., Barros, A., Polyvyanyy, A., and Fidge, C. (2018). Function-Splitting
Heuristics for Discovery of Microservices in Enterprise Systems. In Pahl, C., Vukovic,
M., Yin, J., and Yu, Q., editors, Service-Oriented Computing, Lecture Notes in Com-
puter Science, pages 37-53, Cham. Springer International Publishing.

Di Francesco, P., Lago, P., and Malavolta, I. (2018). Migrating Towards Microservice Ar-
chitectures: An Industrial Survey. In 2018 IEEE International Conference on Software
Architecture (ICSA), pages 29-2909.

Di Francesco, P., Lago, P., and Malavolta, 1. (2019). Architecting with microservices: A
systematic mapping study. Journal of Systems and Software, 150:77-97.

Eski, S. and Buzluca, F. (2018). An automatic extraction approach: transition to mi-
croservices architecture from monolithic application. In Proceedings of the 19th Inter-
national Conference on Agile Software Development: Companion, XP ’18, pages 1-6,
New York, NY, USA. Association for Computing Machinery.

Fowler, M. and Lewis, J. (2014). Microservices.

Fritzsch, J., Bogner, J., Wagner, S., and Zimmermann, A. (2019a). Microservices mi-
gration in industry: Intentions, strategies, and challenges. In 2019 IEEFE International
Conference on Software Maintenance and Evolution (ICSME). IEEE.

Fritzsch, J., Bogner, J., Zimmermann, A., and Wagner, S. (2019b). From Monolith to
Microservices: A Classification of Refactoring Approaches. volume 11350, pages
128-141. arXiv:1807.10059 [cs].

Gysel, M., Kolbener, L., Giersche, W., and Zimmermann, O. (2016). Service Cutter: A
Systematic Approach to Service Decomposition. Pages: 200.

Jamshidi, P., Pahl, C., Mendonga, N. C., Lewis, J., and Tilkov, S. (2018). Microservices:
The journey so far and challenges ahead. IEEE Software, 35(3):24-35.

Jin, W,, Liu, T., Cai, Y., Kazman, R., Mo, R., and Zheng, Q. (2021). Service Candidate
Identification from Monolithic Systems Based on Execution Traces. IEEE Transac-
tions on Software Engineering, 47(5):987-1007. Conference Name: IEEE Transac-
tions on Software Engineering.

Kalia, A. K., Xiao, J., Krishna, R., Sinha, S., Vukovic, M., and Banerjee, D. (2021).
Mono2micro: a practical and effective tool for decomposing monolithic java applica-
tions to microservices. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering. ACM.

Kamimura, M., Yano, K., Hatano, T., and Matsuo, A. (2018). Extracting Candidates of
Microservices from Monolithic Application Code. In 2018 25th Asia-Pacific Software
Engineering Conference (APSEC), pages 571-580. ISSN: 2640-0715.

Kitchenham, B. and Brereton, P. (2013). A systematic review of systematic review process
research in software engineering. Information and Software Technology, 55(12):2049—
2075.

Koschel, A., Astrova, 1., and Détterl, J. (2017). Making the move to microservice archi-
tecture. In 2017 International Conference on Information Society (i-Society), pages
74-79.

Lapuz, N., Clarke, P., and Abgaz, Y. (2021). Digital transformation and the role of dy-
namic tooling in extracting microservices from existing software systems. In Yilmaz,
M., Clarke, P., Messnarz, R., and Reiner, M., editors, Systems, Software and Services
Process Improvement, pages 301-315, Cham. Springer International Publishing.

Li, S., Zhang, H., Jia, Z., Li, Z. E., Zhang, C., Li, J., and Gao, Q. (2019). A Dataflow-
Driven Approach to Identifying Microservices from Monolithic Applications. Journal
of Systems and Software, 157.

Li, Z., Shang, C., Wu, J., and Li, Y. (2022). Microservice extraction based on knowl-
edge graph from monolithic applications. [Information and Software Technology,
150:106992.

Liu, B., Xiong, J., Ren, Q., Tyszberowicz, S., and Yang, Z. (2022). Log2ms: a framework
for automated refactoring monolith into microservices using execution logs. In 2022
IEEFE International Conference on Web Services (ICWS), pages 391-396.

Mathai, A., Bandyopadhyay, S., Desai, U., and Tamilselvam, S. (2022). Monolith to
microservices: Representing application software through heterogeneous graph neural
network.

Matias, T., Correia, F. F.,, Fritzsch, J., Bogner, J., Ferreira, H. S., and Restivo, A. (2020).
Determining microservice boundaries: A case study using static and dynamic software
analysis.

Mazlami, G., Cito, J., and Leitner, P. (2017). Extraction of Microservices from Mono-
lithic Software Architectures. In 2017 IEEE International Conference on Web Services
(ICWS), pages 524-531.

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, 1st edition.

Nitin, V., Asthana, S., Ray, B., and Krishna, R. (2022). Cargo: Ai-guided dependency
analysis for migrating monolithic applications to microservices architecture.

Nunes, L., Santos, N., and Rito Silva, A. (2019). From a monolith to a microservices
architecture: An approach based on transactional contexts. In Bures, T., Duchien, L.,
and Inverardi, P., editors, Software Architecture, pages 37-52, Cham. Springer Inter-
national Publishing.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting system-
atic mapping studies in software engineering: An update. Information and Software
Technology, 64:1-18.

Pigazzini, 1., Arcelli Fontana, F., and Maggioni, A. (2019). Tool support for the migra-
tion to microservice architecture: An industrial case study. In Bures, T., Duchien,
L., and Inverardi, P., editors, Software Architecture, pages 247-263, Cham. Springer
International Publishing.

Ponce, E., Marquez, G., and Astudillo, H. (2019). Migrating from monolithic architecture
to microservices: A Rapid Review. In 2019 38th International Conference of the
Chilean Computer Science Society (SCCC), pages 1-7. ISSN: 1522-4902.

Ren, Z., Wang, W., Wu, G., Gao, C., Chen, W., Wei, J., and Huang, T. (2018). Migrating
Web Applications from Monolithic Structure to Microservices Architecture. In Pro-
ceedings of the 10th Asia-Pacific Symposium on Internetware, Internetware ’ 18, pages
1-10, New York, NY, USA. Association for Computing Machinery.

Schugerl, P., Rilling, J., Witte, R., and Charland, P. (2009). A Quality Perspective of Soft-
ware Evolvability Using Semantic Analysis. In 2009 IEEE International Conference
on Semantic Computing, pages 420-427.

Sellami, K., Saied, M. A., and Ouni, A. (2022). A hierarchical-dbscan method for ex-
tracting microservices from monolithic applications.

Trabelsi, 1., Abdellatif, M., Abubaker, A., Moha, N., Mosser, S., Ebrahimi-Kahou, S., and
Guéhéneuc, Y.-G. (2022). From legacy to microservices: A type-based approach for
microservices identification using machine learning and semantic analysis. Journal of
Software: Evolution and Process, n/a(n/a):e2503.

Xu, D. and Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of
Data Science, 2.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang,
J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X.,
Liu, Z., Liu, P., Nie, J., and rong Wen, J. (2023). A survey of large language models.
ArXiv, abs/2303.18223.

Zhou, X., Jin, Y., Zhang, H., Li, S., and Huang, X. (2016). A map of threats to validity
of systematic literature reviews in software engineering. In 2016 23rd Asia-Pacific
Software Engineering Conference (APSEC), pages 153—-160.

