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Abstract. The Internet of Things allows digital business processes to use 

physical devices to automate and improve the execution of some of their tasks. 

A business process is executed by a process engine, which usually provides 

built-in mechanisms to interact with IoT devices through REST APIs. However, 

IoT devices are technologically heterogeneous by nature. If they are not based 

on REST, the native support provided by process engines is not enough to 

interact with them. In addition, in case IoT devices have REST APIs, built-in 

mechanisms of process engines provide technologically coupled solutions since 

the engine must be configured with the connection data of each specific device. 

Thus, time-consuming adaptation tasks are required to update the process 

engine if IoT devices need to be replaced due to changes in business 

requirements. In this work, we provide a solution to improve these problems 

based on ontologies, BPMN, and microservices. First, IoT devices are 

abstractly described by means of the notions proposed by the SAREF ontology. 

Then, executable BPMN models that use the ontological descriptions of IoT 

devices are defined to implement a business process. Finally, microservices are 

used as instantiations of the IoT devices defined with the SAREF ontology, 

playing the role of gateways between the process engine and the real IoT 

devices, providing a high level of technological independence between both. 

1. Introduction 

The Internet of Things (IoT) enables the connection of the physical world to digital 

business processes (BP). BPs use IoT devices as digitalised physical resources that 

participate as actors to automate and improve the execution of some of their tasks 

(Beverungen et al., 2020). For instance, during the execution of a BP, robotic bridges can 

be automatically opened upon the arrival of a ship, or a CO2 sensor can be accessed to 

know the CO2 level of an environment at a specific time. The BPs that make use of IoT 

devices are known as IoT-enhanced BPs (Torres et al., 2020).  

 IoT devices are heterogeneous by nature. They differ regarding communication 

protocols, interaction paradigms, data formats, and computing and storage power. For 

instance, there are commercial CO2 sensors that save the measures into their cloud server 

and provide an API REST to access them, while others allow a direct wireless connection 

through the MQTT protocol1. BPs are executed by a process engine, which is responsible 

 

1 See as representative examples these two commercial CO2 sensors that provide a cloud-based REST API 

and wireless MQTT-based communication, respectively: (1) https://www.disruptive-

technologies.com/products/wireless-co2-sensor, (2) https://envira.global/nanoenvi-iaq/  

https://www.disruptive-technologies.com/products/wireless-co2-sensor
https://www.disruptive-technologies.com/products/wireless-co2-sensor
https://envira.global/nanoenvi-iaq/


  

for instantiating and controlling their execution (Weske, 2012). Currently, the most used 

BP engines are those based on the Business Process Model and Notation standard 

(BPMN, 2010), and there is a myriad of different commercial options (e.g., Camunda2, 

Bonita3, Bizagi4, Siganvio5, etc.).  

 Most of the existing BPMN engines provide built-in mechanisms to access 

external resources through REST APIs, which can be used to interact with IoT devices 

that support this communication model. However, these solutions require configuring the 

BPMN engine with the connection data of the IoT devices (protocol (HTTP or HTTPS), 

IP, port, path, HTTP method, input data, output data, etc.), which creates coupled 

implementations of IoT-enhanced BPs. If IoT devices need to be replaced due to changes 

in business requirements after an IoT-enhanced BP is deployed, time-consuming 

adaptation tasks are required to update the BPMN engine accordingly. On the other hand, 

if the BPMN engine needs to interact with IoT devices supported by other technologies, 

such as MQTT-based communication, complex bridges need to be implemented and 

integrated into the engine, which, in addition, also creates coupled implementations.  

 Thus, the integration of BPMN engines with IoT devices in order to implement 

IoT-enhanced BPs is not an easy task since different technological restrictions must be 

considered depending on the devices’ underlying technology. This is still more complex 

if we need an IoT-enhanced BP implementation decoupled from the IoT technology in 

such a way that changes in the IoT devices do not require the adaptation of the BPMN 

engine after an IoT-enhanced BP has already been deployed. 

 We think this problem can be improved with the use of microservices, ontologies, 

event-based communication, and the proper development tools. In our previous work 

(Valderas et al., 2022), we proposed an architecture based on microservices to support 

the development of IoT-enhanced BPs. In (Valderas et al., 2023), we demonstrate how 

this architecture can support interdisciplinary development teams. However, this solution 

introduces technological dependencies among the architectural elements, which produce 

interoperability problems when some of them need to be replaced to support new 

technological requirements.  In (Valderas & Torres, 2023), we improved this problem by 

introducing a bottom-up (i.e., from IoT devices to the BPMN engine) event-based 

communication that allows IoT devices to inject data into the BPMN engine in a 

decoupled way. In this work, we complement all the previous work by supporting a 

decoupled top-down (i.e., from the BPMN engine to the IoT devices) ontology-based 

communication in such a way a BPMN engine can ask an IoT device for the execution of 

a task without requiring knowing the underlying technology of the device. 

 The rest of the paper is organised as follows: Section 2 introduces a motivation 

example in order to understand the problem faced in this work properly. Section 3 

presents an approach based on ontologies, BPMN and microservices to develop IoT-

Enhanced BPs, and Section 4 introduces an architecture to support their deployment and 

execution. Section 5 analyses the related work, and conclusions and further work are 

commented on in Section 6. 

 
2 https://camunda.com/  
3 https://www.bonitasoft.com/  
4 https://www.bizagi.com/  
5 https://www.signavio.com/  

https://camunda.com/
https://www.bonitasoft.com/
https://www.bizagi.com/
https://www.signavio.com/


  

2. Motivation Example 

In this section, we present a motivation example to understand better the challenge we 

face in this work. Let’s consider the IoT-enhanced BP presented in Figure 1, which 

describes the process of managing the CO2 level in a smart library. It is defined in BPMN 

by applying the modelling guidelines presented in (Valderas et al., 2022). In a nutshell: 

(1) A pool is used to represent the whole IoT-enhance BP within an organisation; (2) each 

IoT device that participates in the process is represented by a lane within this pool; (3) 

each IoT device’s action required by the BP is defined as a Service Task in the 

corresponding lane; and (4) data autonomously injected by the IoT devices into the 

process is represented by means of message flows drawn between a pool that represents 

the physical world and the pool that represents the IoT-enhance BP. These message flows 

are labelled with the IoT device that injects the data. 

 According to the process shown in Figure 1, we have a CO2 sensor informing the 

BP about the CO2 level periodically (let’s suppose every ten minutes). When the CO2 

level is lower or equal to 2000 ppm, the BP does nothing. However, if the CO2 level is 

greater than this value, an emergency protocol is executed. First, an emergency air 

renewal system is started, and the notification of CO2 levels is stopped in the sensor. 

After waiting for five minutes, the BP directly requests the current level of CO2 to the 

CO2 Sensor. If it is lower or equal to 1500 ppm, the emergency air renewal system is 

stopped, and the sensor notifications are configured every ten minutes again. Otherwise, 

the BP asks the CO2 Sensor to notify the CO2 level every minute, an alarm is activated 

to warn people who are inside the library that they must leave, and access to the library 

is forbidden. Once the library is empty, the alarm is stopped. Regarding the CO2 level, 

the BP waits until it is lower or equal to 1000 ppm. At this moment, the emergency air 

renewal system is then stopped, CO2 notifications are configured every 10 minutes, and 

access is allowed again. 

 

Figure 1. An IoT-enhanced BP for controlling CO2 level 

How IoT devices autonomously inject data such as the CO2 level or the detection of 

presence into the process (i.e., message flows of the above-introduced BPMN model) was 

already faced in (Valderas & Torres, 2023). Thus, this challenge is out of the scope of 

this paper. In the current work, we face how a BP engine that executes the BPMN model 



in Figure 1 can interact, for instance, with the CO2 sensor in order to explicitly ask for 

the CO2 level (Service Task Get CO2 Level defined in the lane CO2 Sensor) or with 

the access controller to deny the access of people (Service Task Deny Access defined 

in the lane Access Controller) in a decoupled and independent way from the 

underlying technology of these IoT devices. 

In order to see how current commercial BPMN engines support the interaction 

with external resources, let’s analyse two of the most used open-source platforms: 

Camunda and Bonita. Regarding REST APIs, Camunda provides different solutions to 

do so, including the delegation to Java code, scripts, or connectors (Deehan et al., 2022). 

All of these solutions need either to hard-code the connection data of IoT devices in a 

specific piece of code or use the modeller interface to configure it. For simplicity 

purposes, Figure 2A only shows how a connector can be configured through the modeller 

interface in order to interact with a CO2 sensor that publishes a REST API. In the same 

way, Bonita allows connecting to a REST API either through a custom connector6 

implemented in Java, Groovy or Kotlin, which requires to hard-code the connection data, 

or using the REST built-in connector and configuring it through a wizard (as shown in 

Figure 2B). Regarding other technologies, such as the MQTT protocol, Camunda 

provides two solutions: either to implement a Java module that manages the interaction 

with the message broker or to use an external library that must be integrated into the 

commercial tool (Zambroski & Pohl, 2016). In Bonita, a custom connector should be 

implemented by using the above-commented programming languages. 

Figure 2. Connection of Camunda (A) and Bonita (B) with a REST API 

Camunda and Bonita are only two representative examples of commercial BPMN 

engines. However, the rest of the engines that we can currently find in the market provide 

6 https://documentation.bonitasoft.com/bonita/latest/process/connector-archetype-tutorial 

https://documentation.bonitasoft.com/bonita/latest/process/connector-archetype-tutorial


  

analogous solutions. Note that these solutions make the execution of the BPMN model 

that defines an IoT-Enhanced BP totally dependent on the technology that supports the 

IoT devices. Thus, changes in these devices require complex adaptations in the BPMN 

engine. For instance, consider that we initially configured the IoT-enhanced BP in Figure 

1 to use a CO2 sensor that provides a REST API. We needed to create a configuration 

like the one shown in  Figure 2 for each Service Task defined in the CO2 Sensor lane. 

Consider, also, that time after the deployment of the process, the CO2 Sensor needs to be 

replaced by another model that supports a communication based on MQTT. In this 

situation, time-consuming tasks of programming and re-configuration in the BPMN 

engine are needed in order to work with the new underlying technology. In addition, note 

that the CO2 sensor used in the IoT-enhanced BP in Figure 1 provides three operations 

through its REST API: Get CO2, Start Notifications and Stop 

Notifications. The newly deployed CO2 sensor should also provide these 

operations, or the logic of the process should be redefined. 

 To conclude this section, we can see that changing an IoT device when an IoT-

enhanced BP is already deployed can be a complicated task if the BPMN engine that 

executes it directly interacts with the participant devices. In this work, we propose a 

solution based on the integration of BPMN and ontological descriptions of IoT devices 

in order to improve this problem. 

3. Developing ontology-based IoT-Enhanced BPs 

The solution we present in the work is a development process for IoT-Enhanced BPs 

based on the SAREF ontology, BPMN, and microservices. This process includes the 

following three stages: 

1. IoT Device Ontological Description: In this stage, we propose to use the SAREF 

(Smart Appliances REFerence) ontology (Daniele et al., 2017) in order to describe 

IoT devices in an abstract way, totally independent from any manufacturer or 

technology. There are other ontologies that represent IoT concepts, such as SOSA7 

SensorML8 or SAO9. We used SAREF because its concepts facilitate the description 

of the different functional capabilities that are provided by IoT Devices (actuating, 

meter, and sensing), which helps us to integrate them into a business process properly.  

2. IoT-Enhanced BP Design: This stage consists of creating a BPMN model that 

describes the logic of the process that must be implemented. This BPMN model 

includes references to the abstract IoT devices defined in the previous stage. 

3. IoT Device Microservice Implementation: As we explain in Section 4, the BPMN 

model defined in the previous stage is deployed in an architecture in which 

microservices play the role of gateway between the BPMN engine and the physical 

IoT devices. In this stage of the process, these microservices must be implemented as 

instances of the abstract descriptions of the IoT devices defined in the first stage. We 

use microservices because this architectural solution was proposed to create systems 

as a composition of highly decoupled independent business components and the main 

goal of this work is providing a high level of decoupling between BPMN engines and 

IoT Devices. 

 
7 https://www.w3.org/TR/vocab-ssn/ 
8 https://www.ogc.org/standard/sensorml/ 
9 http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao 



  

Next, we introduce additional details about each stage through the motivating example. 

For replicability purposes, the ontology, BPMN model, and software artefacts developed 

to implement the motivating example can be found in a GitHub repository10.   

3.1.  Ontological Description of IoT Devices 

SAREF11 is a reference ontology for smart devices that provides an important 

contribution to enabling semantic interoperability in the IoT. Among the different 

concepts defined in this ontology, we use the following: (1) Device, a tangible object 

designed to accomplish a particular task by means of one or more functions; (2) Actuating 

Function, a function that allows transmitting data to a device, such as level settings (e.g., 

temperature) or binary switching (e.g., open/close, on/off); (3) Sensing Function, a 

function that allows a device transmitting data autonomously, such as measurement 

values (e.g., temperature) or sensing data (e.g., occupancy); (4) Meter Function, a 

function that allows getting data from a device at a specific time such as current meter 

reading or instantaneous demand. The SAREF ontology also introduces concepts to 

describe the data structure that is managed by each function. However, this issue is left 

as further work. 

 As a representative example, Figure 3A graphically shows the SAREF description 

of the CO2 sensor used in the motivating example. This device is defined with one 

Sensing Function (CO2 Level Sensing), which is the one focused on autonomously 

transmitting the CO2 level; two Actuating Functions (Start Notifications and 

Stop Notifications), which allow to configure whether or not the CO2 level must 

be transmitted autonomously by the sensor and the periodicity; and one Metter Function 

(getCO2Level), which allows to get the CO2 level from the sensor at a specific instant. 

 

Figure 3. SAREF ontological description of a CO2 Sensor (left) created in 
Protégé (right) 

Currently, there are many tools and languages that can be used to create ontologies 

(Slimani, 2015).  In this work, we used Protégé12 (see Figure 3B), which is a very popular 

open-source tool in the field of semantic web and computer science research. In order to 

 
10 https://github.com/pvalderas/pvalderas-iot-enhanced-bp-saref  
11 https://w3id.org/saref 
12 https://protege.stanford.edu/  

A B 

https://github.com/pvalderas/pvalderas-iot-enhanced-bp-saref
https://w3id.org/saref
https://protege.stanford.edu/


  

integrate the semantic description of IoT devices with the BPMN modeller presented 

below, it was exported as an OWL file. 

3.2. BPMN Modelling 

In order to define the BPMN model that represents an IoT-Enhanced BP, we use the 

modelling approach presented in (Valderas et al., 2022), which has been summarised 

when introducing the motivating example in Section 2.  

 In our previous work, we created a web modelling tool13 that allow us to apply 

this modelling approach to create BPMN models of IoT-Enhanced BPs. However, this 

tool includes specific data of the IoT devices into the BPMN models to make them 

executable, which links these models with the devices, creating a coupled solution. In this 

work, we have extended the web modelling tool in order to create BPMN models 

associated with ontological descriptions of IoT devices. This is complemented by the 

microservice architecture presented in Section 4, which allows the discovery of IoT 

devices that fit an ontological description and the interaction with them by means of 

decoupled event-based communication. 

 A SAREF OWL parser14 has been developed and integrated into the tool to load 

ontological descriptions of IoT devices. As commented in Section 2, our modelling 

approach proposes to include IoT devices as BPMN lanes and the actions of these devices 

as service tasks. Thus, the extended version of the tool, once a SAREF ontology is loaded, 

allows the modeller to link each BPMN lane with one of the IoT devices defined in the 

SAREF ontology (see Figure 4A) and link the Service Tasks with the SAREF Actuating 

or Meter functions defined for the device (see Figure 4B). Note that Sensing functions 

are not provided in this wizard since they define the autonomous behaviour of the devices 

instead of operations that can be called by an external system. 

   

Figure 4. Snapshots of the web modelling tool 

The BPMN model created by this tool is totally independent of the data required to 

interact with IoT devices. It only includes the names of the SAREF devices associated 

with BPMN lanes and the name of the SAREF functions associated with Service Tasks. 

 
13 http://pedvalar.webs.upv.es/iot-enhanced-bp-modeller/  
14 The reader can test the parser by uploading the OWL file available in the GitHub repository (or a 

analogous one) from the menu option ‘IoT System->Create an IoT System from an Ontology’ 

A B 

http://pedvalar.webs.upv.es/iot-enhanced-bp-modeller/


  

How this definition is transformed into the actual execution of an operation in a real IoT 

device is achieved by means of the implementation of the proper microservices, as we 

explain next. 

3.3. Microservice Implementation 

The last stage in the process proposed to develop IoT-Enhanced BPs is the 

implementation of microservices that play the role of instantiations of the devices 

described through the SAREF ontology in stage 1. These microservices must implement 

the code required to interact with a real IoT device in order to support the functions 

defined in the ontological descriptions.  

 As we explain in the next section, the BPMN engine that executes the BPMN 

model of an IoT-Enhanced BP will interact with these microservices through an event-

based bus. This means that these microservices must react by executing a specific 

operation in the real IoT device as a response to an event published in a bus by the BPMN 

engine. These events will represent the request for the execution of an operation in terms 

of the SAREF ontology. 

 

Figure 5. Example of IoT Microservice implementation 

In order to support this event-based reactive behaviour and facilitate the implementation 

of the proposed microservices, we have implemented a library based on the Java Spring 

Boot framework. Inspired by a solution we already used in our previous work (Valderas 

et al., 2023), this library provides a set of Java annotations that allow microservice 

developers to semantically annotate the Java code according to the IoT device 

descriptions done with the SAREF ontology. This library uses reflection mechanisms to 

detect these annotations and inject the functionality required to respond to the event-based 

requests performed by the BPMN engine. As a representative example, the code that is 

shown in Figure 5 implements the microservice that is in charge of managing a CO2 

sensor. Note how the main class is annotated with SAREFDevice and the methods that 

implement the interaction with IoT devices are annotated with 



  

SAREFActuatingFunction or SAREFMeterFunction. These two last 

annotations link the name of a SAREF function to a specific Java method in such a way 

that when the BPMN Engine publishes an event requesting the execution of a function 

(e.g., Get CO2 level), the functionality injected by the library is able to know the Java 

method that must be executed. The code that implements each of these methods depends 

on the underlying technology of the IoT device, which is out of the scope of this paper. 

Further details about the event-based reactive behaviour that is supported by this library 

are presented in the next section. 

4. Supporting microservice architecture 

The previous section has introduced how IoT-Enhanced BPs are developed by means of 

the SAREF ontology, BPMN models, and microservices. In this section, we introduce a 

microservice architecture that integrates these software artefacts in order to execute this 

type of process in a technology-independent way. This architecture improves the one 

presented in (Valderas et al., 2022) by supporting event-based communication between 

BPMN engines and IoT devices. It is shown in Figure 6. 

 

Figure 6. Microservice-based architecture to execute SAREF-based BPMN 
models of IoT-Enhanced BPs 

The microservices included in the proposed architecture are the following:  

(1) BP microservice, which is endowed with a BPMN engine that oversees executing 

IoT-enhanced BPs such as the one presented in Figure 1. In addition, the 

communication adapters Command Publisher and Result Listener are also deployed 

into this microservice. These adapters support event-based communication with IoT 

microservices (presented below). The tasks they perform to achieve this 

communication are introduced below in more detail. Note that this is an infrastructure 

microservice that can be used to deploy several IoT-enhanced BPs independently 

from their domain.  

(2) An IoT microservice for each IoT device, which supports each SAREF device by 

implementing a backend that is in charge of managing the interaction with the real 

device in order to execute operations. This backend is implemented according to the 



  

technology used by the device. Two communication adapters are also included in 

these microservices to support event-based communication with the BP 

microservice: Command Listener and Result Publisher. These adapters contain the 

functionality that is automatically injected when IoT microservices are implemented 

by using the Java library presented in Section 3.3.  

The communication between the BP microservice and the IoT microservices is 

asynchronously done through topic-based event buses, which implement publish-

subscribe communication (Eugster et al., 2003) through message queues. Publish-

subscribe communication allows for the decoupling of producers and consumers, 

enabling scalability and a loosely coupled architecture. Message queuing ensures reliable 

and asynchronous communication with features like load balancing and message 

persistence. In addition, we use these event buses to implement the Command pattern 

(Dupire & Fernandez, 2001), which is a behavioural pattern used in object-oriented 

programming. A request is wrapped under an object as a command and passed to an 

invoker object. The invoker object looks for the appropriate object which can handle this 

command and passes the command to it to be executed. We adapt this pattern so that the 

request is created by the BP microservice and published to a topic-based Command Event 

Bus (see Figure 6). This request asks for the execution of a SAREF function. IoT 

microservices are subscribed to the Command Event Bus in such a way the request is 

handled by the appropriate microservice, which executes the corresponding operation in 

the IoT device. Once the operation is executed, the obtained result is published by the 

microservice into a topic-based Result Event Bus. The BP microservice is subscribed to 

this bus in such a way it obtains the results of executing the requested SAREF function. 

4.1 Command-based communication in detail 

Let’s explain in more detail how the request to execute a SAREF function by the BP 

microservice is transformed into the execution of the operation of a real IoT device by 

applying the Command pattern (see execution steps depicted in red in Figure 6). A BPMN 

model such as the one presented in Figure 1 is executed by the BPMN engine deployed 

into the BP microservice. For each BPMN Service Task that is associated with a SAREF 

function (step 1), the BP microservice creates a request that asks for the execution of this 

function in the context of a specific running instance. This request is defined in JSON 

format by the Command Publisher adapter (step 2), and it is published in the topic-based 

Command Event Bus. The topic in which the request is published is the name of the IoT 

device that must execute it. An example is shown below, which asks for the execution of 

the Get CO2 Level function. This request is published on the CO2 Sensor topic. Note 

how the IoT device that defines the topic and the function included in the request are 

defined according to the description done with the SAREF ontology. They are obtained 

by the Command Publisher adapter from the name of the Service Task that is being 

executed by the BPMN engine and the name of the lane in which the task is defined (see 

the BPMN model in  Figure 1). The name of the process is obtained from the BPMN pool. 

The name of the device is also included in the request for validation purposes. 

{ 

   "process": "Smart Library", 

  "instance": "582b8617-bcf5", 

  "device": "CO2 Sensor", 

  "function": "Get CO2 Level" 

} 



  

 Once the request is published, the BP microservice, which is subscribed to the 

Result Event Bus, waits for the publication of the response by the corresponding IoT 

microservice. IoT microservices are subscribed to the Command Event Bus and are 

waiting for requests published in the topics associated with their name. For instance, the 

CO2 Sensor microservice is waiting for requests published on the CO2 Sensor topic 

(step 3 in Figure 6). Once a request is published on this topic, the Command Listener 

adapter of this IoT microservice oversees executing the Java method that corresponds to 

the SAREF function included in the request (step 4). These methods are identified by 

using the annotations presented in Section 3.3. 

 Once the Java method that corresponds to the requested SAREF function is 

executed, the result is managed by the Result Publisher adapter of the IoT microservices, 

which contains the functionality required to publish them into the topic-based Result 

Event Bus (step 5). The BP microservice is subscribed to this bus in order to receive the 

results of the requested function (step 6), which are managed by the Result Listener 

adapter in order to be injected into the BPMN engine (step 7). In this case, the topic used 

to communicate the IoT microservices and the BP microservice is defined by a string 

made up of the process instance ID and the function name. For instance, the response to 

the previous request is published in the topic 582b8617-bcf5.GetCO2Level in such a 

way the BP microservice is able to obtain the response for the execution of a function for 

a specific running process instance. The response constructed by the Result Publisher 

adapter of each IoT microservice is also based on the SAREF ontology. However, details 

about this issue are omitted due to space restrictions. 

 

4.2 Proof of concept validation 

According to Völter (2006), a way of preliminary evaluating the proposal of a new 

architecture is through developing a prototype. Next, we introduce a realisation of the 

above-introduced architecture as a prototype involving mapping technology choices onto 

the solution concepts.  

 The main goal of the proposed microservice architecture is to facilitate decoupled 

interoperability among BPMN engines and IoT devices when the former needs to execute 

operations of the latest. Thus, in addition to developing a prototype with specific 

technology choices, we faced changing a participant IoT device in order to analyse the 

adaptation tasks that are required. 

 The implemented prototype. For the development of the initial prototype, we 

considered the running example presented in this paper, and we take as a basis the 

technology choices we made in previous work (Valderas et al., 2022): 

• The event buses were implemented by means of the RabbitMQ Message broker. 

• The BP microservice was supported by a Windows system with the community version 

of the Camunda 7 engine. We also deployed the Command Publisher and the Result 

Listener adapters. 

o The Command Publisher was developed as a Java library integrated into Camunda 

in order to manage the execution of each Service Task. This library also contains 

configurable functionality to facilitate the publication of messages into the 

Command Event Bus. Currently, the RabbitMQ message broker is supported. 



  

o The Result Listener adapter was developed as a Java library that contains 

configurable functionality to facilitate the subscription to the Result Event Bus 

(currently, RabbitMQ) in order to process the results published by the IoT 

microservices. This library also includes the functionality required to inject the 

results obtained after the execution of an operation into the corresponding process 

instance. 

• IoT microservices were implemented in Java by using the library introduced in Section 

3.3. Their backends were initially implemented to interact with IoT devices that 

provide a REST API. Each of these microservices was deployed into Windows 

systems. The Command Listener and Result Publisher adapters were also deployed 

into each microservices. These adapters were developed as Java libraries that contain 

configurable functionality to facilitate the interaction with RabbitMQ in order to both 

receive the commands published into the Command Event Bus and publish the 

operation results in the Result Event Bus, respectively. 

 Replacement of an IoT device. Once this prototype was developed, we analysed 

its correctness through the execution of the BPMN model of the running example and the 

analysis of logs. Afterwards, we replaced the CO2 Sensor based on REST with an 

analogous one that uses an MQTT queue to publish data. To support this change, we just 

needed to reimplement the backend of the IoT microservice that manages the interaction 

with the CO2 Sensor in order to work with an MQTT queue instead of accessing a REST 

API. The communication adapters of this microservice did not require any modification 

since the communication with the event buses is totally decoupled from the backend. 

Also, no other microservice in the architecture requires an adaptation, neither the BP 

microservice nor the IoT microservices that manage other devices. 

 Discussion. The proposed architectural solution was shown to facilitate 

adaptation when an IoT device is replaced by another with a different technology. The 

decoupled communication model based on the Command pattern and event-based buses 

provided a high level of independence among the BPMN engine and the IoT devices. 

Also, this architectural solution facilitated the simultaneous interaction of the BPMN 

engine with IoT devices that are technologically different. For instance, once the initial 

REST-based CO2 Sensor was replaced by the MQTT-based version, Camunda interacted 

with IoT devices supported by two different technologies (i.e., the CO2 Sensor based on 

MQTT and the other devices based on REST). However, this was totally transparent for 

the engine. On the other hand, the use of microservices as gateways between the BPMN 

engine and the IoT devices allows for providing a common interface for all the IoT 

devices (based on the defined SAREF functions), although they do not support some 

operations natively. For instance, the CO2 sensor defined in the SAREF ontology 

provided three operations: Get CO2, Start Notifications and Stop Notifications. As the 

newly deployed MQTT-based sensor did not support the start and stop of notifications, 

we could implement some code that emulates them in the microservices’ backend, 

maintaining a correct interaction with the BPM engine. Note that although some coding 

tasks were required to replace one IoT device with another, they were totally decoupled 

from the BPMN engine, and it was not necessary to stop the BPMN engine, adapt the 

BPMN model, and redeploy it. 



  

5. Related Work 

How to deal with the design and implementation of IoT-enhanced BPs has already been 

addressed in the literature by different authors. In this section, we provide an overview of 

some of these works and the architecture they present but also consider other works more 

focused on cyber-physical systems in general and how they deal architectonically with 

the heterogeneity and changing nature commonly found in this type of systems. 

 Regarding the specification and execution of IoT-enhanced BPs, most of the 

proposals we find in the literature (Mandal et al., 2017; Mottola et al., 2019; Suri et al., 

2017) focus on providing a supporting infrastructure to specify and execute this type of 

BP properly. However, none of them addresses the technology decoupling issues along 

the whole architecture as we do, meaning that we always find solutions that are tight to 

the underlying technology. These solutions extend existing modelling notations (e.g., 

BPMN) to represent specific aspects of an IoT system (e.g., a sensor, an actuator, an event 

triggered by the physical world, etc.) as well as the interaction with them. Thus, BP 

engines need to be extended to be able to execute such extensions, turning proposals into 

highly coupled solutions with the BP engine. Our solution, in contrast, can be used with 

any commercial BPMN engine without the need to extend it to support new constructors. 

 To decouple all the infrastructure required to specify and execute such systems, 

other works make a clearer separation between the different layers of their proposed 

architecture (Kim et al., 2014; Sasirekha & Swamynathan, 2016; Schönig et al., 2018)). 

For example, Kim et al. (2014) propose to achieve the integration between BPs and IoT 

devices by means of adapters. In the proposal, there is a four-layer division that separates 

BPs (BP layer), software services (SW Service layer), adapters (Adaptation layer), and 

IoT services (IoT Service layer). While the BP layer directly invokes services from the 

SW Service layer and the Adaptation layer, there is no direct interaction with the IoT 

Service layer. In fact, this interaction is performed through the Adaptation layer, which 

includes adapters that respond to services requested by BPs and invoke IoT services in 

response to such requests. Besides this, IoT services are described according to the 

SensorML modelling language. Sasirekha & Swamynathan (2016) also propose an 

architecture of four layers: the BP layer, the semantic service layer, the web service layer, 

and the device layer, where BPs are specified in BPEL, services using semantic web 

languages, i.e., ontologies, and IoT devices are represented by means of an ontology 

which is defined as the integration of a defined domain ontology and the SSN ontology. 

Finally, Schönig et al. (2018) propose an architecture composed of three layers: the IoT 

layer, which contains sensors and wearable devices of human participants; the IoT 

infrastructure and communication middleware; and the BPMS. Besides this architecture, 

this work proposes to extend BPMN with Data variables to enrich BP models with data 

obtained from physical objects (e.g., machine status or actor position) and to specify how 

and where connected IoT devices influence the process. All these approaches try to 

achieve a more decoupled architecture, although the different layers communicate with 

each other through direct calls. We improve these solutions by achieving a more 

decoupled interaction based on the Command pattern and the use of asynchronous event 

buses based on a publish/subscribe communication. 

 Regarding the field of cyber-physical systems, we find the works developed by 

Cao et al. (2021) and Gómez et al. (2021), which propose the use of event-driven 

architectures (EDA) together with other architectonical solutions to overcome the 



  

technology decoupling challenge of such systems. On the one hand, Gómez et al. (2021) 

propose an architecture based on SOA, microservices, and Complex Event Processing 

(CEP) to offer a flexible service catalogue that allows them to connect to the system on 

any kind of device and interact in different scenarios. On the other hand, Cao et al. (2021) 

propose the use of an ontology model in an event-driven architecture to make sure that 

the event-driven services provided by organisations follow the organisational event 

access rules. Specifically, the ontology model is used to define the domain-specific 

concepts related to events. Although these works propose a similar solution to ours, the 

use of the Command pattern based on the SAREF ontology provides a higher level of 

decoupling, in addition to the fact that these solutions do not consider the specification of 

IoT-enhanced BPs. 

6. Conclusions 

This work has presented an approach to improve interoperability issues when 

implementing IoT-Enhanced BPs. It is based on the use of BPMN, the SAREF ontology 

and a microservice architecture that implements the Command pattern through 

asynchronous event buses. 

 Unlike current solutions of commercial BPMN engines, which are technology-

coupled since they insert the connection data of IoT devices into the BPMN models, our 

approach allows an implementation of IoT-Enhanced BPs in which BPMN engines can 

interact with IoT devices without knowing their underlying technology. This makes it 

easier to replace IoT devices when requirements change since the BPMN engine and the 

deployed models do not need to be modified. 

 As further work, we plan to extend this approach by introducing goal-oriented 

modelling techniques in such a way the BPMN engine can execute the tasks of an IoT-

Enhanced BP by using the IoT devices that better help achieve the specific goals in terms 

of, for instance, non-functional properties such as performance, energy consumption, user 

experience, and so on. 
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