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Abstract. Code smells are symptoms of bad design choices implemented on the
source code. Several code smell detection tools and strategies have been pro-
posed over the years, including the use of machine learning algorithms. How-
ever, we lack empirical evidence on how expert feedback could improve machine
learning based detection of code smells. This paper aims to propose and evalu-
ate a conceptual strategy to improve machine-learning detection of code smells
by means of continuous feedback. To evaluate the strategy, we follow an ex-
ploratory evaluation design to compare results of the smell detection before and
after feedback provided by a service - acting as a software expert. We focus
on four code smells - God Class, Long Method, Feature Envy, and Refused Be-
quest - detected in 20 Java systems. As results, we observed that continuous
feedback improves the performance of code smell detection. For the detection
of the class-level code smells, God Class and Refused Bequest, we achieved an
average improvement in terms of F1 of 0.13 and 0.58, respectively, after 50 iter-
ations of feedback. For the method-level code smells, Long Method and Feature
Envy, the improvements of F1 were 0.66 and 0.72, respectively.

1. Introduction
Code smells are symptoms of bad design choices implemented on source code [16]. They
negatively affect software quality attributes [38], such as software comprehension [2] and
robustness [22]. To detect code smells, several techniques and tools have been proposed
[12, 20, 28, 29, 30, 32, 36]. In fact, these techniques present different types of detection
strategies, such as software metrics, textual analysis, and AST analysis [11]. For the
software metrics-based detection strategies, thresholds must be defined to identify code
smells. Defining proper thresholds is a major drawback due to their innate complexity,
being addressed by several studies that propose methods for threshold derivation [14, 17].

Several studies rely on machine learning algorithms to detect code smells have
been proposed in the literature [3, 13, 20, 21, 26, 27]. For instance, Fontana et al. [15]
provided an extensive comparison among different machine learning algorithms for de-
tecting code smells, using the same data and evaluating them in the same way. In their
study, almost all algorithms achieved good results for the code smell detection problem.
However, a replication study conducted by Di Nucci et al. [10] found diverging results.
Their study [10] indicates that the detection need to be improved for several algorithms
and code smells. In a previous work [9], we built a dataset of code smells for twenty
Java systems by using five code smell detection tools. In this dataset, we identified and
analyzed four code smells: God Class, Long Method, Feature Envy, and Refused Bequest.



Based on this dataset, we also performed a comparative study of seven machine learning
algorithms [9]: Naive Bayes, Logistic Regression, Multilayer Perceptron, Decision Trees,
K-Nearest Neighbors, Random Forest, and Gradient Boosting Machine. We found a better
performance for tree-based algorithms, such as Random Forest.

Despite the advances in machine learning algorithms, the quality of data is an
important matter to obtain high-performance machine learning systems. In a supervised
learning scenario, obtaining the labels for the training samples is one of the main con-
cerns, and it can be very expensive. As the use of machine learning to resolve problems
has become a trend, we can find the most diverse domains in which models are being
developed. In this context, it is common to find actors with domain knowledge, that we
named experts, to support the creation of high-quality data. Their knowledge can help
improve the performance of the models by providing insights and understanding about
the data being used. They also can provide the knowledge to define if some model’s
prediction is right, acting as a labeler or evaluator.

By relying on a service to simulate experts, this paper first proposes a conceptual
strategy to improve the models’ accuracy using expert feedback (Section 2). This feed-
back would be collected, for instance, after the detection being provided by a tool that
uses a trained machine learning model. The feedback provided by the expert service can
be used to update the initial model. We hypothesize that the model can keep evolving
with a qualified feedback from the expert to improve its accuracy on the next detection.
We then conduct an exploratory evaluation of the proposed conceptual strategy as follows
(Section 3). We first evaluate the viability of the feedback as a source of improvement in
the code smell detection and searched for parameters of the strategy to assess an optimal
configuration for its application. We then evaluate the strategy by simulating 50 iterations
of feedback and model training. We then compare results of the smell detection before
and after feedback. We focus on four code smells, God Class, Long Method, Feature
Envy, and Refused Bequest, detected in twenty Java systems. Our goal in this study is
to quantitatively evaluate the performance improvement of the machine learning models
after several iterations of expert feedback.

Our results indicated that machine learning models achieved an improvement on
the detection of all code smells (Section 4). For instance, for the Feature Envy detection,
the mean improvement was about 0.72 in F1, after all feedback cycles. We also found a
consistent pattern of improvement for all code smells. That is, the detection performance
presents a small variation between a few cycles, but in the long run, they all tend to im-
prove. Thus, the contributions of this paper is twofold: (1) a conceptual strategy to con-
tinuously update a machine learning model aiming to improve the detection performance
of code smells by means of continuous feedback and (2) an exploratory evaluation of this
strategy, through a service that allowed us to simulate 50 iterations of expert feedback.

2. The Conceptual Feedback Strategy

Software development is in constant evolution as should be the tools to identify or to
refactor quality issues, such as code smells. Given this scenario, we select a pre-trained
model based on the Random Forest classifier to accomplish the code smell detection task.
Our aim is to evolve this model for detecting code smells by means of expert feedback,
aligned to the idea of continuous training the supervised machine learning system.



Figure 1 depicts the cyclic conceptual strategy proposed to improve the quality of
the code smell detection. In a nutshell, the quality of the detection is improved by keeping
the model updated; i.e., by means of the knowledge of Software Engineer Experts. The
process is divided in three main routines. Each routine can be identified in Figure 1 by
the numbers in the circles. The first routine consists of the execution of a detection tool
by the User to perform the code smell detection. The detection results can be stored into
the Detection Storage for a later analysis. The second routine deals with the feedback
loop. First, the Software Engineer Experts have access to the Detection Storage. In fact,
the User and the Software Engineer Expert can be the same person since a developer is
also supposed to have knowledge about the software design. Experts can select as many
detections as they want to analyze and provide feedback. This selection can be facilitated
by explainable ML models, such as the SHAP results [7], and by the model’s confidence.
For instance, if one instance was detected as smelly, but the metrics that contributed more
to this classification do not seem to make sense to the expert, they could seek to analyze
the instance more deeply in the code. In our exploratory evaluation, we create a service
to act as an expert by accessing the ground truth of our dataset (see Sections 3.3 and 3.4).
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Figure 1. A Strategy to Detect Code Smells based on Continuous Feedback

After providing feedback for a set of instances, the third routine is triggered. The
automated pipeline updates the model currently used by the tool. As the number of in-
stances used for training is, in general, much larger than the set of feedback, it is necessary
to provide some augmentation for the data, by prioritizing them and making them impact
the retraining of the model. The model retraining, in this case, is done by merging the
augmented data with the initial data. Finally, after retraining the model, we can finish the
process by deploying the model.

We developed a prototype tool, named FeedSniffer, to support the proposed strat-
egy with four essential modules described as follows. Metrics Extraction: The first mod-
ule of FeedSniffer is responsible to calculate the software metrics for the source code.
Since several tools are available to extract metrics [24], we integrated FeedSniffer with



two existing tools: CK Metrics [4] and VizzMaintenance [5]. The software metrics ex-
tracted are used for training the models. Model Serving: The tool is also responsible to
load the trained machine learning model into memory and use it to perform the detection.
That is, it uses the pre-trained model to classify the target instance, labeling it as smelly
or not. User Interface: An interface that helps the user to perform the detections, but in
our case it has a command-line interface. That is, FeedSniffer outputs a CSV file listing
all elements (classes and methods) of the project and their respective labels (i.e., 1 for
smelly and 0 for non-smelly). Inference Persistence: This module of FeedSniffer is re-
sponsible to store the results in the Detection Storage. In case the user changes the label
of an element (e.g., turn 1 into 0), the updated list can also be stored.

3. The Exploratory Study Design
Section 3.1 defines the research questions and the metrics used for evaluation. To answer
the research questions, we followed five steps described in Sections 3.2 to 3.6.

3.1. Research Questions and Evaluation Metric
The first aspect to be considered is how the model retraining with the experts’ feedback
affects its performance. Therefore, before going into the evaluation of the entire process,
RQ1 aims to evaluate how much the detection can be improved when the retraining occurs
only once. We the evaluate with RQ2 the model performance after several cycles.

RQ1: How much the model’s performance can be improved by one-time feedback?

RQ2: How much the model’s performance can be improved by continuous feedback?

Evaluation Metric. Since the code smell datasets are highly imbalanced, we evaluated
feedback strategy with F-Measure using the unitary weight (F1). F1 is the harmonic mean
of Precision and Recall and a robust measurement of machine learning performance.

F1 = 2 ∗ precision ∗ recall
precision+ recall

3.2. Dataset: Smells, Systems, and Metrics
Code Smells. In this work, we focused on four code smells: God Class, Refused Bequest,
Long Method, and Feature Envy. God Class [16] consists of a class that accumulates
several responsibilities. Refused Bequest [16] is also related to a class. It defines a class
that inherits from another but does not even use the attributes and methods inherited.
Long Method is related to a method and consists of a method with a large and complex
behavior, providing multiple functionalities. Finally, Feature Envy is also related to a
method and consists of a method that is more associated with another class than its own.
We have selected these smells based on previous studies that analyzed the perception of
code smells by developers [33, 34]. For instance, Palomba et al. [33] investigated how
developers perceive the severity of the code smell. They have also investigated how often
they identify them. Considering a range from 1 to 5, they found that God Class and
Long Method were classified with the highest severity, with a median value of 5 and 4,
respectively. For the Feature Envy and Refused Bequest smells, the degree of severity
achieved a median value of 4. Other studies [34, 39] reported similar findings, but they
mostly found Refused Bequest as harmful as God Class and Long Method.



Software Systems and Metrics. We created a dataset with 20 open source Java systems
that contain instances of four code smells. The systems were mainly extracted from the
Qualita Corpus [35], with most of them being used in other machine learning studies [15,
10]. Table 1 presents the complete list of 20 selected systems. The first column presents
the name of the system, while the second column presents a brief classification according
to its purpose [9, 35]. The third and fourth columns depict the size of the systems in terms
of number of classes and number of methods, respectively. For every class and method
in the dataset, we extracted 17 metrics for the class level and 13 metrics for the method
level. The class level metrics were extracted using the tool VizzMaintenance [5]. This tool
calculates known metric suites [6, 8, 18, 23]. The method level metrics were extracted
by the CK Metrics tool [4]. The tool computes known metrics, such as Weighted Method
Count and more experimental ones, like Quantity of Assignments. We selected these tools
and metrics because (i) both tools export measurement data in a way we could integrate to
FeedSniffer and (ii) these metrics have been used in previous work about machine learning
detection of code smells [9]. The full list of extracted metrics can be found in our online
replication package [1].

3.3. Ground Truth Creation

To create the ground truth of code smells, we combined the result of five automatic detec-
tion tools: PMD1, JDeodorant [12], JSpirit [36], an implementation2 of DECOR [30], and
Organic [31]. We rely on the agreement among tools in a majority voting ensemble. It
consists of comparing the results among the tools to determine the final outcome. These
tools have some limitations, as each one can be used to detect only a small subset of code
smells. Therefore, we have identified which tools could detect the same code smells. The
goal was to have three different tools for every code smell. Thus, with this voting, an
instance (class or method) is considered smelly if two or more tools detected the same
smell. The result of this voting ensemble is also in our online replication package [1].

We evaluate the agreement between the tools’ results and the human perception,
since we know about the subjective nature of code smells detection [38]. The manual
evaluation was performed by 10 software engineering researchers; i.e., PhD candidates
and junior developers in our research lab. Due to the large size of the dataset, a complete
evaluation was not feasible. Instead, we rely on statiscally sampling. First, for every code
smell, we determined a sample size to meet a confidence level of 90% and a maximum
error of 10%. Then, we randomly extracted the necessary sample size from our ground
truth and grouped the samples by system. Finally, each researchers manually evaluated
code smells of two systems. The agreement between tools and a manual evaluation was
high enough for our purposes (above 80% for all systems).

3.4. Data Preparation

We defined four groups of datasets (one for each code smell) instead of only one dataset.
The features are the set of software metrics used to characterize each instance (class or
method) and the target is a binary variable indicating if the instance is smelly or non-
smelly. It is worth mentioning that not every system in the dataset contains all four code
smells. The God Class smell was found in all 20 systems, Feature Envy in 15 systems,

1pmd.github.io
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Table 1. Selected Systems
Name Description Classes Methods
Checkstyle IDE 511 2,620
Commons Codec Tool 145 1,481
Commons IO Tool 282 2,638
Commons Lang Tool 642 5,947
Commons Logging Tool 74 546
Hadoop Middleware 3,703 18,111
Hibernate Database 6,745 43,828
HtmlUnit Testing 882 7,485
JasperReports Data Viewer 1,642 14,880
JFreeChart Tool 1,037 11,528
JHotDraw 3D/Graphics 732 6,641
JMeter Testing 1,023 8,689
Lucene Tool 4,353 20,135
Quartz Middleware 268 2,495
Spring Framework Middleware 5,935 30,321
SquirrelSQL Database 73 550
Struts Middleware 2,139 12,656
Tapestry Middleware 1,957 9,276
Tomcat Middleware 1,794 14,017
Weka Tool 1,663 18,110

Total 35,600 231,954

Long Method in 13 systems, and Refused Bequest in 11 systems. Furthermore, due to
limited resources, we avoid an evaluation with a large group of actual experts to provide
feedback for all experimental runs. As a result, we decide to create a service to act as
an expert by accessing the ground truth of our dataset. Therefore, in the context of our
experimental setup, we define Oracle as a service that represents the Software Engineer
Expert. The Oracle is responsible for identifying the wrong detections, by accessing the
ground truth available for a specific instance. From these wrong detections, the Oracle is
able to provide a fraction of correct detections as feedback (e.g., 10%, 20%).

3.5. Single Training Evaluation (RQ1)

To compare the effect of updating the model with feedback from the experts, we designed
two moments for the experimentation: before and after any feedback is provided. The
evaluation process for each Target System Dataset (TSD) is defined as follows.

1. We train a model using TSD’s training data and the Random Forest algorithm,
including its hyperparameters, found as a good choice in previous work [9].

2. This trained model is used to detect the code smells on the test data, which consists
of the instances of the target system.

3. The performance metric (F1) is calculated for the detection results.

In the second moment, we perform the following procedures to update the models
with the feedback and evaluate their performance against the initial ones, obtained from
the first moment. For each TSD:

1. We ask the Oracle for the feedback from the detection results obtained in the first
moment. In this step, the amount of feedback requested varied. This amount is
defined as the Feedback Size (N).

2. We process the feedback data by duplicating them. In this step, the amount of
oversampling applied varied and it is defined as the Oversampling Ratio (K).



3. The initial training data is merged with the oversampled feedback data and is used
to retrain the model, keeping the existing hyperparameters. We also remove from
the initial test data the data provided as feedback, keeping the assessment fair.

4. The retrained model is used to detect the code smells on the test data.
5. The performance metrics are calculated again for the new detection results.

The Feedback Size (N) and Oversampling Ratio (K) provided by Oracle varied,
as we intend to explore different values. The reason is because we do not know upfront
a common value, requiring empirical evaluation. For Feedback Size (N), we tried seven
possible configurations: 10%, 20%, 30%, 40%, 50%, 60%, and 70%. For the Oversam-
pling Ratio (K), we defined eleven configurations: 1%, 5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45%, and 50%.

3.6. Continuous Training Evaluation (RQ2)

A key difference for this design is the control of the experimented variables. The first
one, Feedback Size (N), was kept constant with the value of 10%. The reason is that
our goal here is not to explore the effects of large amounts of feedback at once, as we
expect it to be provided more incrementally. First, we have conducted a pilot to evaluate
the execution of seven cycles of the strategy. The pilot was enough to make clear the
potential of the strategy and then we have expanded the number of cycles to 50. As it
is not guaranteed nor expected that after several cycles the detection to be perfect (i.e.,
it would achieve the maximum value of a performance metric) these fifty iterations were
enough to demonstrate the effects of the model updating in the code smell detection.

The other important factor to consider, which was also defined, is the Oversam-
pling Ratio (K). In this case, we defined a fixed value of 1% for two reasons. First, this
value is not aggressive, which is quite important in the strategy context, since the model
is updated more than one time. For higher values, the model could lose its generalization
power, as the data from the other systems would begin to be overwhelmed by the dupli-
cate data from the target system. Second, through the results of the pilot study, we found
some quantitative indicators that most of the best results have used lower values for the
oversampling configuration, in special, the value of 1%.

4. Results and Discussion
Section 4.1 reports the results regarding the single training evaluation, while Section 4.2
presents the results regarding the continuous training evaluation.

4.1. Single Time Feedback Results

Using the data collected before and after the feedback, we aim to understand for each
system if any of the configurations were superior to the initial result. If so, what is the
best K and N configuration to update the model. Thus, we extract the best results among
the different configurations, and compare them with the initial model performance. Based
on our results, we observed that the detection was not improved for only one system, and
it was actually worsened. We also noticed that the farther from the line the marker is,
the greater the difference in performance after the feedback. For instance, for one of the
target systems, the base F1 was around 0.2 before feedback. However, after the feedback
with one of the provided configurations, it reached an F1 of about 0.8. Nevertheless, to



make sure they are significantly different, we have performed statistical tests to confirm
it. Then, we state the following null hypotheses:

H0: Updating the model with feedback has no effect on detection performance.

We perform the Shapiro-Wilk test for normality for each one of our experimental
groups. We have selected this test because the normality tests are influenced by the sample
size. As our samples are small (less than 30 units), this test will be less affected by Type I
error (i.e., false positive). We found that for all smells except the God Class sample before
feedback, the detection performances (i.e., measured by F1) follow a normal distribution
with a significance level of 99%.

Since they follow a normal distribution, we applied the paired T-test for the sam-
ples of the code smells Long Method, Feature Envy, and Refused Bequest. For the sam-
ples of the God Class code smell, we applied the Wilcoxon signed-rank test, which is a
non-parametric version of the paired T-test. Considering the following p-values obtained
from the tests: 1.03× 10−4 (God Class), 1.96× 10−7 (Long Method), 6.06× 10−7 (Fea-
ture Envy), 6.45 × 10−5 (Refused Bequest), we found that for all code smells, we could
reject the null hypothesis. That is, updating the model with feedback affects detection
performance, with a significance level of 99%.

As expected, we observed that the best results were achieved when the expert
provides more feedback (i.e., N=70). Regarding oversampling, we found in most cases
the best results provided by the configurations with the smallest oversampling ratio (i.e.,
K=1%). Due to space constraints, detailed results about the single training evaluation is
available in our replication package [1].

Answering RQ1. The performance improvement varies according to the code smell, with
a wide improvement space, reaching an increase of up to 0.63 in F1 for some systems.
God Class detection presented an average improvement of 0.1 in F1. Feature Envy, Long
Method, and Refused Bequest achieved an average improvement of 0.26 in F1.

4.2. Continuous Feedback Results

Figure 2 summarizes the model performance across the incremental feedback cycles for
each code smell group. Each row in this figure is related to one code smell and it presents
two charts divided into two columns. The chart in the left column presents the evolution
of the F1 metric in the vertical axis across the feedback cycles displayed in the horizontal
axis. We can observe two series: the black line represents the median value and the blue
line represents the mean value for all systems evaluated. The chart in the right column
presents the evolution of the F1 metric in the vertical axis across the feedback cycles
displayed in the horizontal axis. However, as we performed ten repetitions when selecting
the 10% feedback sample, we also present the 95% confidence interval for the scores, to
avoid selection bias in the evaluation. Hence, the black lines also represent the mean
value for the F1, while the shading outlines the confidence interval area. It is noteworthy
that we plotted the mean twice to analyze two different perspectives. For the charts in
the left column, we aim to analyze the distance between the mean and the median and to
understand if there is more variance of the results across the different systems evaluated.
For the charts in the right column, we aim to analyze the impact of the random shuffling
of the feedback sample through the mean and the confidence interval.
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Figure 2. Continuous Feedback Results



For the first smell, God Class, we can observe similar results to the obtained on
the previous design. In general, each cycle provides a small increase in F1. At a short
pace, the performance is increased, but as it reaches a great F1 (above 0.9), it seems to
reach an asymptote close to the maximum F1 possible. We can understand this behavior
as there is a small space for improvement. As we discussed before in Section 3.6, we do
not expect the F1 score to reach the maximum value, even though it can happen for some
systems. Looking at the God Class chart on the left column, we can observe only a small
difference between the systems and, in general, they behave the same. From the chart
in the right column, we can observe that the selection of the feedback sample across the
cycles does not affect the results, as the confidence interval is really small.

Regarding the detection of Long Method, we can observe a linear trend of perfor-
mance increase. However, we first observe that both median and mean decrease in the
first iterations with the feedback. This may be due to the random sample selection. After
the first cycles, the performance starts to increase and stabilize when F1 reaches around
0.9. We can also observe a small difference between the mean and the median, as most of
the systems behave the same, increasing only a little bit less than some others. From the
chart in the right column, we can observe a larger band for the confidence interval. This
means that, depending on the instances present in the feedback sample, the performance
may vary between cycles. However, by looking at the broader perspective, we can ob-
serve a significant improvement between the fifty cycles. For instance, when looking for
differences between the first cycle, without feedback, and after the last cycle, we found
an improvement in F1 greater than 0.6. That is, F1 increased from an average of 0.26 to
0.92.

The Feature Envy detection presented an improvement behavior too, but not linear
as the previous smell, Long Method. The first twenty cycles present a faster improvement,
increasing from the average F1 of 0.08 to an average F1 of about 0.5. In the last thirty
cycles, it kept increasing until reaching an average F1 of 0.79. However, observing the
blue line of the left column chart, we can notice that the median presents a higher value.
Investigating the results deeply, i.e., per system, we found that some systems did not
perform well and had a very small increase, lowering the average value. However, in
general the systems performed well as can be observed by the black line (median). For
this code smell, we found two patterns of improvement. Most of the systems increased
their performance since the first cycles. However, despite also improving, some systems
follow a much slower pace until the end of the fifty cycles. Analyzing these systems,
the main common attribute is the high number of methods. This suggests that F1 could
further increase by executing more cycles. Looking at the chart in the right column, we
can also observe that the confidence interval is well contained and does not seem to affect
the overall result. However, we can observe that the band becomes broader in the last
cycles, although in general, the improvement is clear when looking over all cycles.

Finally, we have the Refused Bequest smell. For this one, we can observe a be-
havior similar to Feature Envy, in which a trend of increase in detection performance is
presented since the first cycles. However, differently from the Feature Envy detection,
the two lines, representing the median and the mean of F1, remain close throughout the
cycles. All systems evaluated had their performance increased. Worth noticing that after
only ten cycles, the mean F1 has almost doubled, from 0.37 to 0.71, ending with an av-



erage F1 of 0.94. The selection of the feedback sample also did not impact the results in
general, as we can see in the confidence interval band from the chart in the right column.
Through these analyses, we can answer the RQ2 as follows.

Answering RQ2. The performance improvement varies according to the code smell.
God Class detection presented the smaller average improvement, an increase of 0.13 in
F1, as the initial performance was already high. The Long Method detection presented an
average improvement of 0.66 in F1. For the Feature Envy and Refused Bequest detections,
we found average improvements of 0.72 and 0.58 in F1, respectively.

5. Threats to Validity

Despite the careful design of our empirical study, some limitations may affect the validity
of our results. In this section, we discuss some of those threats and our actions to mitigate
them, organizing them by construct, internal, external, and conclusion validity [37].

Construct Validity. With respect to the number of instances used to evaluate the models
after several cycles, it is important to note that the number of test instances does not drive
the results. That is, as we remove the feedback samples from the test data to keep the
evaluation fair, we also evaluated how many instances were removed and if the results
could be impacted by a small number of instances left to be evaluated. First, we did not
keep the cycles running after the number of feedback available had finished, avoiding in-
creasing the performance for the last cycles. Then, we also evaluated how many instances
from the initial set were removed from the initial amount. As we have tested the entire
dataset through our systems cross-validation, we compare the initial size of the test data
for each code smell, before and after the last cycles, for each system.

Internal Validity. Regarding the internal validity of the continuous training evaluation
study, as we set the value of the feedback size, we also replicate the process, changing the
10% randomly selected for feedback from each cycle. We aim to mitigate the possibility
of obtained results being influenced by the selection of the instances belonging to the
feedback. For instance, if in the first cycle the majority of the feedback is related to false
negatives, this could influence our model differently from if the majority of instances
in the first cycle were false positives. Beyond the fact that we can estimate the error
of our model, through these replications, we can obtain the confidence interval for our
measurements. Our focus is not on obtaining a fixed F1 value, but a range, providing
more confidence to our results, even if more systems were added to the model. In total, ten
repetitions for each system/group were performed. Each repetition preserves the random
seed for all code smells and systems on its execution.

External Validity. First, concerning the external validity of our studies, the systems eval-
uated may not represent all systems available, and they are all written in Java. However,
the strategy itself and the experimental studies designed to evaluate it are not dependent
on the programming language and could be performed in different datasets.

Conclusion Validity. Regarding the conclusion validity of the single training evaluation
study, the results found could be based on the wrong choice of the statistical tests. To
avoid it, we performed previous analyses regarding the normality of the samples and their
dependency relation. Thus, we applied two tests separately to mitigate this threat. Another
threat, for both studies, is the performance metric that drives our conclusion. As we have



discussed in Section 3.1, the main metric selected to evaluate the performance is the F1
score. The main reason is that we do not want to prioritize neither precision nor recall.
We also are dealing with heavily imbalanced data. Hence, we are focusing on the metrics
related to the class that matters, the positive one that represents the presence of a smell.

6. Related Work

Several detection techniques and tools have been proposed in the literature. Recently,
the adoption of machine learning techniques to detect code smells has became a trend
[21, 26, 27, 3, 13, 15, 10]. For instance, Khomh et al. [20] proposed a Bayesian approach
which initially converts existing detection rules to a probabilistic model to perform the
predictions. Khomh et al. [21] later extended their previous work [20] by the introduc-
tion of Bayesian Belief Networks, improving the accuracy of the detection. Maiga et
al. [26, 27] proposed an SVM-based approach that uses the feedback information pro-
vided by practitioners. Amorim et al. [3] presented an experience report on the effec-
tiveness of Decision Trees for detecting code smells. They choose these classifiers due
to their interpretability [3]. Thus, most of the proposed works focus only on one classi-
fier. They were also trained in a dataset composed of few systems and, consequently, the
results may be positive towards their approach due to overfitting.

Other studies [13, 15, 10, 9] evaluated and compared the performance of different
machine learning algorithms on distinct sets of systems. For instance, Fontana et al. [13,
15] performed a larger comparison of classifiers [15]. The notorious impact of their work
was the great performance reported. Even naive algorithms were able of achieving good
results using a small training dataset. Di Nucci et al. [10] replicated the study and verified
that the reported performance could be biased by the dataset and some procedures, such as
unrealistic balanced data, in which one-third of the instances were smelly. Cruz et al. [9]
contributed with further empirical evidences on the use of machine learning algorithms
for code smells detection by using a larger dataset of curated systems.

Few studies address a feedback process to improve the detection of code smells as
we do here. Hozano et al. [19] proposed a platform to consider the developer feedback, to
create personalized rules for a rule-based detection technique. However, we did not found
in their work how the rules evolve. Their evaluation was also performed only on two
small systems and using only the accuracy metric. It may lead to an incorrect conclusion,
without taking into consideration the data distribution. Liu et al. [25] proposed an auto-
matic way to update the thresholds used to perform code smell detection. This technique
is based on feedback provided by a software engineer. Their strategy focuses on making
it possible to interact with the threshold definition by explicitly directing the detection
regarding one metric, in their case, precision. However, different from our work, they
focused on finding metrics thresholds to provide better detection. Meanwhile, our goal
was to propose and evaluate a high abstraction strategy, aiming at providing a trained ML
model with explicit feedback from a expert service.

7. Conclusion

Code smells are important indicators of quality improvement opportunities in the source
code of a system. Although many techniques and tools have been proposed, we lack
a continuous improvement alternative for the machine learning based detection of code



smells. In this paper, we proposed a conceptual strategy to improve the code smell de-
tection through a continuous feedback approach, in which a machine learning model is
retrained over the iterations with a expert that provides feedback about the detection re-
sults. We also evaluated the strategy with an exploratory study in which we experimented
different parameterizations and simulated the use of the strategy with fifty cycles of feed-
back in a dataset of 20 software systems. We found that by using the proposed strategy,
code smell detection can be improved incrementally for all code smells. For the detection
of God Class, a code smell with a detection performance initially good, we achieved an
average improvement of 0.13 in terms of F1. For the other code smell related to a class,
Refused Bequest, after all iterations of the strategy, we achieved an average improvement
of 0.58 in terms of F1. For the method level code smells, Long Method and Feature Envy,
we achieved an average improvement of 0.66 and 0.72 in terms of F1, respectively.

As future work, we foresee some opportunities to further improve the current strat-
egy or its evaluation. For instance, a good topic to be investigated in future work would
be to add noise to the feedback acquisition. That is, provide some wrong feedbacks to
understand how the model deals with this noisy data. Another topic for future work is
the possibility of prioritizing the instances to ask for feedback. As we observed in our
results, the random selection of the group of 10% of instances to be given as feedback did
not impact the detection’s performance. However, there are other techniques from related
fields (e.g., Active Learning), that could lead us to a way of selecting a set of instances
that could make the performance of the detection improve faster (i.e., with fewer cycles).
It is also important to expand the dataset to cover other code smells and more systems. Fi-
nally, it is worth mentioning as future work an experimental evaluation with humans; i.e.,
actual software experts. For this evaluation, our prototype tool could also be improved,
for instance, with a friendly user interface.
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