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Abstract. Some of the major challenges facing Web applications are those of
portability, adaptability, and evolution, not only in the environment in which
they run but also in the way in which they must be developed, often requir-
ing different languages, frameworks, tools, environments, platforms, etc. MDD
takes into account these issues. However, achieving portability, adaptability,
and evolution depends to some extent on the degree of independence that the
models adopt. This paper focuses on the Architecture Specific Model (ASM) of
MoWebA (Model Oriented Web Approach). It analyses its impact on portability
and adaptability across different architectures. A case study is presented to val-
idate this issue by extending MoWebA to three different architectures. In such
extensions, we analyze the grade of adaptability of MoWebA and automation of
PIM-ASM, as well as the grade of independence of the PIM metamodel.

1. Introduction
Current Web engineering methods center on developing techniques and/or models needed
to define the design processes, and on providing tools to support them, following the
MDD (Model Driven Development) approach in many cases [Brambilla et al. 2017].
Various quantitative and qualitative studies show how MDD practices contribute to in-
creasing the efficiency and effectiveness in software development [Panach et al. 2021]
[Farshidi et al. 2021], and others propose challenges that need to be addressed by the
Web and MDE community [Bordeleau et al. 2017][Rossi et al. 2016].

The main challenges facing applications today include portability, adaptability,
and evolution, not only in the environment in which they run but also in the way they
need to be developed. This often requires different languages, frameworks, tools, envi-
ronments, platforms, etc. MDD takes these issues into account. However, the degree of
independence of the models is critical to achieving such desirable properties.

In previous studies, we proposed the MoWebA approach [González et al. 2016b]
[González et al. 2016a]. Some of its features have a positive impact on the portability and
adaptability problems. In particular, this study focuses on the analysis of the Architecture
Specific Model (ASM), which corresponds to a level of abstraction between the Platform
Independent Model (PIM) and the Platform Specific Model (PSM), encapsulating details
related to the architecture the developed software will have. This encapsulation makes
it possible to improve both the generalization of the modeling and its understanding (by
separating concepts). Therefore, it keeps the portability of the PIM regarding the different
architectures (e.g., RIA, SOA, Mobile) and facilitates the adaptability and evolution of the
method to different architectures.



Different extensions of MoWebA have been presented for various architectures:
MoWebA4RIA (extension of MoWebA for RIA functionalities) [Nuñez et al. 2018],
MoWebAMobile4FC (extension of MoWebA for mobile applications for functions in the
cloud) [Sanchiz et al. 2018], and MoWebAMobile4Persistence (Extension of MoWebA
in mobile applications for the persistence layer) [Núñez et al. 2020]. MoWebA prescribes
the definition of a new ASM for each extension, along with the respective PIM-ASM
transformation rules and ASM-Code generation. Furthermore, each extension presented
the validation of the proposal.

This study enriches the previous works by presenting a case study to analyze the
role of the ASM phase, both for modeling and transformation processes, based on the
three previous experiences. The aim is to determine the degree of adaptability and evolu-
tion of the MoWebA method, including the automation of PIM-ASM, as well as the grade
of independence of the PIM metamodel, concerning the three different architectures.

The main findings are as follows. All three extensions were successfully devel-
oped from the same PIM metamodel with a reduced number of adaptations. Each ex-
tension has involved revising the elements defined in the PIM Metamodel and defining
the ASM Metamodel for a specific architecture. The ASM-PIM transformation has been
completed for the ASM elements that are derived from the PIM by inheritance, with a few
manual adjustments.

The rest of the paper is structured as follows. Section 2 presents the related works.
Section 3 provides a brief introduction to MoWebA, with some details on the ASM model.
Section 4 focuses on the analysis of MoWebA’s adaptability to different architectures.
Finally, Section 5 concludes and outlines future work.

2. Related Works
The Model Driven Development approach provides various benefits in terms of portabil-
ity, adaptability, and evolution [Brambilla et al. 2017]. Thus, several web methodologies
follow the Model Driven Web Engineering approach [Rossi et al. 2016].

Moreover, several methodologies such as WebML and UWE propose extensions
to consider emerging technologies and architectures. Such extensions are generally con-
templated with new constructors that are introduced in the proposal’s notation by UML
stereotypes, or specific DSL included in the original notation for modeling so that the
original proposal becomes an enriched one for the extension under consideration. In
other words, the adaptation mechanism is based on the inclusion of notational elements
in the models, thus reducing their independence from the platform or architecture. This is
because the extensions are not defined as a separate modeling layer. The result of this ex-
tension mechanism is that the platform-independent modeling (PIM) stage contemplates
elements of a specific platform or architecture, combining both concepts in a single fi-
nal model. Other proposals decided to add architectural-specific information at the PSM
level. In this case, architecture and platform details are included at the same modeling
level, losing portability at the architectural level for different technologies where it can be
implemented (e.g., UWA for RIA [Bernardi et al. 2014]). However, the WebRatio Mobile
Platform [Brambilla et al. 2014], an extension of WebML, is the only one that considers
an ASM to some extent. None of the others capture the requirements for specific architec-
tures at a different level of abstraction, as proposed by MoWebA. As a counterpart, to offer



a greater reusability of the PIM facilitating the architectural evolution of the Web appli-
cations, this mechanism of extension requires some additional effort, including the need
for metamodels and the definition of the corresponding transformation rules, to achieve
automatic transformations on the proposed architecture or platform. But with this separa-
tion, a clear distinction is made between what would be the problem space, presenting a
model that is completely independent of the target architecture or platform; and the solu-
tion space, through the specific extension oriented to architecture, platform, and the final
code.

For a more detailed analysis and discussion of the role of ASM in the portability,
adaptability, and evolution of the methodology, we refer the interested reader to section
2.2.1 of [González 2022].

3. MoWebA at a Glance
Figure 1 presents the dimensions of MoWebA that cover its modeling and transformation
processes. MoWebA adopts the MDA approach by identifying three different phases
related to modeling and transformation activities (the Phases dimension): i) the problem
space, covered by CIM (Computational-Independent Model), and PIM; ii) the solution
space, covered by ASM, and PSM; and, iii) the source code definition, covered by the
ISM (Implementation-Specific Model) and manual code adjustments.

The Levels dimension deals with complementary perspectives to be considered
in every phase (content, business logic, navigation, presentation, users). Finally, the As-
pects dimension addresses structural and behavioral considerations for each perspective
[González et al. 2016b].

Figure 1. Dimensions of MoWebA that cover its modeling and transformation
processes.

To develop applications, MoWebA defines two main complementary processes:
the first related to modeling activities and the second one related to transformation activi-
ties. To formalize the modeling and transformation processes, it adopts the MOF language
for the definition of the abstract syntax, and the UML profile extension for a precise defi-
nition of the modeling language (i.e., concrete syntax).



The ASM allows details related to the architecture to be moved out from the prob-
lem space (PIM) to an intermediate model in the solution space (ASM), preventing the
PIM from containing such details and contributing to its so desired portability. Moreover,
the ASM model can result in different PSM models, one per each implementation plat-
form. Therefore, the ASM model enriches previous models with additional information
related to the system architecture (e.g., Rich Internet Application (RIA), REST, mobile,
among others).

In this line of thought, MoWebA can be extended to other architectures through
the definition of the ASM, used to complement the PIM with information about a specific
architecture. To utilize an ASM model, it must first be defined. This involves specify-
ing the corresponding metamodel, among other steps. The ASM metamodel definition
follows the recommendation of Brambilla et al. [Brambilla et al. 2017]. Furthermore,
MoWebA complements the suggested process with additional steps that go from the def-
inition of the concrete syntax until the generation of the final code of an application
[González et al. 2016a]. The steps of this process are synthesized below:

1. Define the ASM metamodel using MOF, and corresponding UML Profile.
2. Specify the mapping rules from PIM elements to ASM elements.
3. Define transformation rules from PIM to ASM using standard transformation lan-

guages such as Atlas Transformation Language (ATL) or Query/View/Transfor-
mation (QVT).

4. Define transformation rules from ASM to PSM and PSM to code, or from ASM
to code, using Model-to-Model (M2M) and Model-to-Text (M2T) transformation
languages, respectively.

Indeed, the MoWebA approach requires some additional effort as a counterpart to
improving the portability of the PIM and facilitating the architectural evolution of appli-
cations. This additional effort includes the need for the specification of ASM metamodels
and the definition of the corresponding transformation rules, to achieve automatic trans-
formations on the proposed architecture. In any case, it should be noted that these steps
will only be executed once when targeting a new architecture for the first time.

Once the ASM for a specific architecture is defined, it can be used to develop an
application for the selected architecture following these steps:

1. Define the MoWebA CIM and PIM diagrams following the modeling process.
2. Apply transformation rules to obtain the first version of the ASM model.
3. Make manual adjustments (if necessary) to complete the ASM model.
4. Generate the PSM models and the final code, applying transformation rules.
5. Include manual adjustments, if necessary.

Figure 2 illustrates the proposed process for the development of applications for
a specific architecture. In the figure, we can see that the process begins with the PIM
definition with the MagicDraw tool (http://www.nomagic.com/products/magicdraw.html)
using the corresponding UML profiles. The PIM model is then exported to an XMI file,
which is imported into the EMF (https://www.eclipse.org/modeling/emf/) tool, where,
through the mapping of the defined M2M transformation rules, it is transformed into a
new XMI with diagrams corresponding to the ASM. The new XMI is imported into the
Acceleo tool. The latter uses the transformation rules to perform transformations from



Figure 2. MoWebA development process

model to text, generating the code in different languages depending on the architecture
specified.

We claim that the ASM extension mechanism proposed by MoWebA can improve
the adaptability and evolution of MoWebA. To support this assertion, we present below a
case study that aims to analyze this aspect.

4. Analyzing the Extension of MoWebA to other architectures
The focus of the study is on the ASM phase, both for modeling and transforma-
tion processes. The experience was structured taking into account a framework that
Runeson et al. [Runeson et al. 2012] have defined for case studies. The case study
was done as part of a research project at the Catholic University of Asuncion called
”Mejorando el Proceso de Desarrollo de Software: Una propuesta basada en MDD”
(https://www.dei.uc.edu.py/proyectos/mddplus/), Paraguay.

In this experience, the extensions were made to three different architectures:
MoWebA4RIA (extension of MoWebA for RIA functionalities) [Nuñez et al. 2018],
MoWebAMobile4FC (extension of MoWebA for mobile applications for functions in the
cloud) [Sanchiz et al. 2018], and MoWebAMobile4Persistence (Extension of MoWebA
in mobile applications for the persistence layer) [Núñez et al. 2020].

Using the GQM [Basili et al. 1994] template, the main purpose of this validation
was described as follows: ”Analyze the MoWebA method for the purpose of determin-
ing the grade of adaptability and evolution of the method with respect to the architecture
from the point of view of the researcher in the context of a research project with stu-
dents, professionals, trainee researchers, and MDD experts”.

Based on this general objective, we propose the following research questions:

• RQ1: To what extent are the evolution and adaptability of the extension mecha-



nism proposed by MoWebA achieved to incorporate new architectures?
• RQ2: How independent is the MoWebA PIM for use in the modeling stage before

ASM?
• RQ3: To what extent automation can be obtained with MoWebA’s model-to-

model and model-to-code transformation rules?

This study was developed by a research team composed of 11 participants (five
undergraduate students, one master’s degree student, two PhD students, and three MDD
PhD experts). The final-year undergraduate students involved in the project knew MDE
and MDD, in addition to previous knowledge and experience with the MoWebA proposal.
One of the undergraduate students was in charge of performing the PIM-ASM mappings
and developing the M2M transformation rules from PIM to ASM and the others have
worked independently in the definition of the metamodels and the code generation rules
for each extension.

4.1. Design of validation

The follow-up of the development of the extensions was accompanied by weekly meet-
ings of approximately 2 hours duration. The weekly meetings were held for one year
(including a series of validation experiences for each extensions that are not included in
this paper for reason of space). The meetings were oriented to follow the experiences
done in the period, complemented with open interviews, observations, and focus groups.

The extension proposals have been divided into stages, considering the process
proposed by MoWebA for ASM extension and other additional activities. The activities
carried out for the development of the extensions are: i) Definition of the scope to be
considered for extensions; ii) Revision and adjustments to the PIM taking into account
the architecture established for the extension; iii) ASM metamodeling using MOF; iv)
PIM-ASM mapping; v) PIM-ASM transformation rules definition with ATL; vi) Defini-
tion of code generation rules; vii) Proof of Concept development; viii) Validation of the
extension. For each activity, we identified sources of data to be considered during the
experience analysis stage.

In the following subsections, we will present a synthesis of the metamodels pro-
posed for the three architectures, and then focus on items (iv), (v), (vi), and (viii). The
details of each of the extensions can be found in the following articles [Nuñez et al. 2018]
[Sanchiz et al. 2018] [Núñez et al. 2020].

4.1.1. ASM Metamodel and UML Profile Definition

The MoWebA4Ria metamodel incorporates the functionalities to model the features of
client data, client business logic, and asynchronous communication between client and
server. To save data in a web client, specifically in a web browser, there were created two
concepts, a ClientValueObject, which extends the value object of the original MoWebA
logic diagram, and a ClientStaticObject, which extends a static object, a new element
introduced in the logic diagram to represent sets of statically defined values as properties
of the class. In terms of processes executed on the client, there were created three elements
considered in the presentation page, the RichForm, the RichTextInput, and the RichTable.



To allow asynchronous communications between client and server there were created the
element called AsynchronousCall.

The MoWebAMobile4FC metamodel extends the logic diagram of MoWebA to
enable the definition of logic processes. Network communication is viewed as a logic
process. The logic diagram comprises the logic processes (i.e., TProcesses and the proce-
dures for doing a specific task (i.e., Services). Also, the logic diagram has ValueObjects,
which group attributes of entities and enable access to the entities’ data. The extensions
for obtaining the ASM are based on the REST architecture and the four types of net-
work communication functions: CloudServer, ResourceInterface, RestProcess, and Re-
quest type (lightdata, download, upload, loadImage).

The MoWebAMobile4Persistence metamodel focuses on the data access level of
mobile applications. The definition of the mobile ASM for persistence started with the
extension of MoWebA’s Entity Diagram at the PIM to take advantage of conceptual el-
ements of the structural type. In this extension, we can define mobile applications with
local data persistence and data provider components. Regarding data persistence, we in-
troduce elements to identify what data will be stored on the device (persistentEntity tag
value), and what type of persistence will be used (persistentType tag value). Concerning
data providers, we introduce the following interfaces: WebServiceInterface, HardwareDe-
viceInterface, and MobileAppDataInterface, for the representation of external providers
(via web-services), internal providers (through commonly supported sensors among plat-
forms) and interoperability with other applications (data types defined for communication
between applications), respectively.

4.1.2. PIM-ASM Mapping Rules

A visual analysis of the defined profile was used to perform the mapping. During the
mapping phase, we noticed that, in general, when the relation between elements from
source and target profiles is an inheritance, the transformation that allows us to obtain the
corresponding target element is very simple and consists of the application of the correct
stereotype.

In MoWeba4Ria mapping, we identified the following mapping: i) A Table el-
ement of the PIM, becomes a RichTable in the ASM; ii) A Form element of the PIM,
becomes a RichForm; iii) A TextInput of the PIM, is transformed into a RichTextInput; iv)
A StaticObject element of the PIM, becomes a ClientStaticObject; v) A ValueObject of
the PIM, is transformed into a RichValueObject.

In MoWebaMobile4FC mapping, we identified the following mappings: tPro-
cess from the PIM becomes a restProcess in the ASM, a service from the PIM becomes
cloudService and a valueObject from the PIM becomes a cloudValueObject.

In MoWebAMobile4Persistence mapping, we could detect that a class Entity in
the PIM model, becomes a PersistentEntity class in the ASM model and that property
entityProperty in the PIM model is transformed into a persistentEntityProperty in the
ASM model.

When the relation between two elements in one profile is not an inheritance, the
mapping becomes a bit more difficult. In the case of the RIA profile, we found two rela-



tions of this type, one between the ServiceState and AsynchronousCall elements, and the
other between the ServiceState and RichTable elements. Analyzing these relationships,
we could conclude that the AsynchronousCall must be created when it is related to a Ser-
viceState, which, in addition, must represent an asynchronous service. This condition can
be detected automatically, allowing the automation of the transformation.

4.1.3. PIM to ASM Transformation Rules

For the definition of the M2M transformation rules, we have chosen ATL
(http://www.eclipse.org/atl/) (Atlas Transformation Language) over QVT
(http://www.omg.org/spec/QVT/About-QVT/). This choice was based, above all, on the
fact that ATL is considered one of the most widely used transformation languages, both
in academia and industry, and a mature tool support is available [Brambilla et al. 2017].

Another significant choice was the selection of the engine execution mode of
the ATL transformation, which has two modes of execution: default and refining
[Garcı́a Rubio et al. 2013]. When the source and target metamodels are different, it
is mandatory to use the default execution mode, but when the metamodels of the
source and target models are the same you can opt for either of the two execution
modes [Garcı́a Rubio et al. 2013]. In our case, both, the metamodels of source and
target models are the same because MoWebA’s implementation is based on profiles
[González et al. 2016b]. Moreover, the M2M transformation from PIM to ASM fits con-
ceptually better to the refining mode, since the PIM is justly refined to obtain the ASM.
For all this, we opted for the refining execution mode. This choice has greatly reduced
the number of necessary transformation rules. However, this also led to some complica-
tions, since the application of profiles in ATL is performed in the imperative block and
turns out this option when using refining mode. For the above reason, we were forced
to change the compiler. The default compiler in Eclipse is the EMF-specific Virtual Ma-
chine (EMF-specific VM), but it also provides other compilers. We opted for the EMF
Transformation Virtual Machine (EMFTVM). Although the main reason for this choice
was that it allows the use of the imperative block in the refining mode, which is necessary
to work with profiles, there are some other advantages. For example, its performance is
roughly 80% better than the EMF-specific Virtual Machine, and allows us to invoke native
Java methods.

Another important aspect of the transformation rules definition is the Configura-
tion file. Configuration files allow the designer to control some transformation aspects,
allowing the achievement of two important capabilities: on the one hand, the possibility
of capturing specific design decisions of the system under design that would otherwise
not be automated, and on the other hand, the possibility that the designer has some level
of influence over the transformation rules. Two different configuration files have been
considered. One that allows to indicate which elements of the model are transformed and
which are not, called ”ArchConfTransformacion.yaml”, and another one that allows to
specify some properties for the classes created automatically when executing the M2M
transformation rules, called ”ArchConfAsynchronousCall.yaml”.

Among the challenges of the M2M transformation that have been tackled, we can
mention:



1. The inability to work with profiles in the refining mode, forced us to use a compiler
different from the one proposed by default.

2. The asynchronous services identification, is necessary for automating the creation
of asynchronous classes.

3. The correct configuration of the IDE to access native Java methods was created
expressly for the processing of the configuration files.

The called rules is another vital section of transformation rules. The called rule
named applyMobileStereoTypes allows changing the stereotypes in the target model.

4.1.4. ASM to Code Generation

After the generation of the ASM of the application, it is possible to go through the process
of generating code. To do this, we have defined transformation rules from model to text
using the Acceleo tool for the three extensions.

These transformation rules follow a template-based approach in which text tem-
plates are specified with entries for data to be extracted from the model diagrams. The
MTL (http://www.omg.org/spec/MOFM2T/1.0/) language was used for the definition of
the templates, and OCL to make queries to the model. In addition, services defined in
Java were used to extend MTL with greater functionalities.

In the case of MoWebA4RIA, these rules are responsible for transforming ele-
ments defined in the logic and content diagrams to HTML5, Javascript, jQuery, jQuery
code, and Datatables libraries.

In MoWebAMobile4FC we have built a service in Java to extend the functions of
the MTL. We have built the transformation rules based on the classes, properties, and op-
erations characterized by the respective stereotypes, tag values, and enumerations defined
in the ASM’s profile. In this sense, such rules perform a mapping between the model ele-
ments defined and the target code to be generated. The generation for both sides, mobile
and cloud, depends on each combination of a CloudServer, a RestProcess, ResourceIn-
terface and CloudRequestHandler. The target code generated consists, on one side, of
native mobile code written in Java for Android, in Swift for iOS, and on the other side, in
open source code written in Javascript with Node.js for the Openshift and Amazon Web
Services platforms. Additionally, our cloud implementation is based on Docker which is a
container where an application runs. Moreover, Docker is an emerging method developed
by the open-source community for easing the portability of cloud applications.

In MoWebAMobile4Persistence, the generated target codes for Android and
Windows Phone are Java and C#, respectively. Additionally, GUI code is also gener-
ated for Android (XML) and Windows Phone (XAML). This generated code is ready
to be executed for both mobile platforms, Android and Windows Phone, with previous
compilation in their respective IDEs.

The tools defined for the three MoWebA extensions, which in-
clude the metamodels, UML profiles, PIM-ASM transformation rules, and
ASM-code transformation rules, are available on the MDD+ project website
(http://www.dei.uc.edu.py/proyectos/mddplus/herramientas/).



4.2. Data Collection

The data collection can be classified as first-degree since we were in direct contact with
participants and we collected data in real-time using different methods. The main sources
of data were results/outputs expected for each stage.

We considered as information sources for data collection:

1. the project documentation, which includes PIM metamodels, ASM metamodels,
PIM-ASM transformation rules, ASM-Code generation, proof of concept, and all
the documentation generated for each validation extension;

2. the work sessions’ timesheets of each validation extension.

The quantitative data were collected from these information sources. On the other hand,
the qualitative data were obtained from the comments and opinions of the participants.

In the first place, the project documentation allowed us to determine the success
rate of the participants. Therefore, the timesheets permitted us to determine the comple-
tion time of each process in the validation extensions. Table 1. presents a summary of
data collected during the experience.

Table 1. Summary of data collected during the experience.

Data Collection method Materials Outputs
1. Definition of the scope to be considered for extensions.
Focus Group, Open, and semi-
structured interviews

Scientific documentation
(articles, proceedings,
books)

Theoretical framework and state
of the art related to each archi-
tecture; Document with scope
definition.

2. Revision and adjustments to the PIM taking into account the architecture
established for the extension.
Observation (category 3);
Archival data

Magic Draw; MoWebA
specification; Internet

PIM metamodel modified; PIM
modification report.

3. Metamodel and UML profile: definition of architecture metamodels, con-
sidering the Brambilla et al. framework [Brambilla et al. 2017]. Definition of
UML profiles.
Observation (category 3);
Archival data

Magic Draw; Brambilla
specification; UML pro-
file specification

MOF definition for each archi-
tecture; UML profile definition
for each architecture; Explana-
tory report

4. PIM-ASM mapping.
Observation (category 3);
Archival data

Magic Draw Mapping rules identification

5. PIM-ASM transformation rules definition with ATL.
Observation (category 3);
Archival data

ATL tool Transformation rules in ATL;
Explanatory report

6. Definition of transformation rules from the ASM model to the final code.
Generation of source code.
Observation (category 3);
Archival data

Acceleo tool Transformation definition in Ac-
celeo; Documentation



Table 1. Summary of data collected during the experience.

Data Collection method Materials Outputs
7. Proof of Concept development.
Focus group; Open and semi-
structured interviews

MagicDraw; ATL tool;
Acceleo

PIM Models; ASM models,
code generated

4.3. Data Analysis

The analysis carried out consists of a qualitative analysis and judgment for each research
question, based on the data collected and the monitoring throughout the process. We
begin the section with table 2, which presents a summary of the activities carried out and
the achievements reached for each of the extensions.

Table 2. Resume of activities of ASM extensions development

Task RIA Mobile for Func-
tion and the Cloud Mobile for Persistence

Scope for the
extensions

client data, client business
logic, and asynchronous
communication between
client and server

light-data, load-
image, download-
files, upload-files

data persistence mecha-
nisms: databases, files,
and key-value pairs
providers: external,
internal, and other appli-
cations

Modifications
to the PIM
metamodel

Logic Diagram: stati-
cObject and value at-
tribute. Content Diagram:
requestType attribute of
Form element, name at-
tribute of List element,
submitButton as a special-
ization of Button

none
Entity Diagram: Enti-
tyProperty element and
Datatype

PIM Diagrams
extended

Logic and Content Dia-
grams

Logic Diagram Entity Diagram

PIM elements
extended into
the ASM meta-
model

6 elements: valueObject
and staticObject into
the Client Data; table,
form and textInput into
the Client Business
Logic; and service in the
Asynchronous Communi-
cation)

3 elements: val-
ueObject, service
and TProcess

2 elements: persis-
tenceEntity and persis-
tenceEntityProperty

Number of ele-
ments defined in
the ASM meta-
model

11 elements: 3 for Client
Data, 4 for Client Busi-
ness Logic and 4 for
Asynchronous Communi-
cation

18 elements: for
Mobile Cloud
Communications

17 elements: 5 for data
persistence y 12 for data
providers



Table 2. Resume of activities of ASM extensions development

Task RIA Mobile for Func-
tion and the Cloud Mobile for Persistence

PIM-ASM
Mapping

5 direct mapping ele-
ments from inheritance
and 1 mapping from asso-
ciations

3 direct mapping
elements from in-
heritance

2 direct mapping ele-
ments from inheritance

PIM-ASM
Transformation

ATL with refining mode
and 2 configuration files

manually
ATL with refining mode
and 1 configuration file

M2T
Code
Generation

M2T Tool: Acceleo
M2T Tool: Ac-
celeo

M2T Tool: Acceleo

Final code: HTML5,
Javascript, jQuery, jQuery
UI, and Datatables li-
braries

Final Code: Java
(Android), Swift
(iOS), Node.js ,
Docker

Final Code: Java (An-
droid) and C# (Windows),
GUI code in XML (An-
droid) and XAML (Win-
dows)

Below we discuss each of the research questions.

RQ1: To what extent are the evolution and adaptability of the extension mecha-
nism proposed by MoWebA achieved to incorporate new architectures?

From the experience with the three different extensions, we can conduct the fol-
lowing analysis:

• All three extensions have been successfully developed, starting from the same
PIM metamodel, with a reduced number of adjustments to the already defined
PIM level. However, we had to make some decisions for the development of the
extensions, which have involved some minor adjustments to the PIM metamodel,
and changes in the environments to be used for the definition of the transformation
rules (e.g. the ATL tool used for M2M transformations explained in section 4.1.3).

• The MoWebA proposal for adaptation to other architectures can be done by users
with knowledge of MDD and the use of standards. This observation is made
because the extensions have been developed by undergraduate students whose
knowledge and experiences have been the fundamentals, tools, and standards of
MDD. They have learned the MoWebA proposal during their degree studies and
as part of the work carried out in the project.

• One aspect to consider is that the greater the number of elements of the ASM
metamodel that are not related to elements of the PIM metamodel (either through
inheritance or association), the degree of PIM-ASM automation decreases. There-
fore, more effort is required in manual adjustments to the ASM model before code
generation. However, the configuration files have allowed to introduction of de-
sign decisions before the transformation processes and thus increased the degree
of automation.

• Finally, regarding the number of elements added in the ASM metamodels, we
consider that it corresponds to a reasonable and manageable amount to include



new concepts in a methodological proposal (11 for RIA, 18 for Cloud Commu-
nications, and 17 for persistence). On the other hand, the fact of considering the
modeling of a specific architecture (ASM) in a different level of abstraction is not
mandatory and should be included only in case the architecture must be specified
in the modeling process. Doing so, the PIM remains independent of the proposed
extensions.

RQ2: How independent is the MoWebA PIM for use in the modeling stage before
ASM?

The extensions made to MoWebA have involved revisions to the elements defined
in the PIM metamodel and the definition of the ASM metamodel for a specific archi-
tecture. In some cases, these revisions implied a more detailed specification of certain
existing elements, and in other cases the inclusion of new no contemplated elements into
the PIM. In all three cases, the extensions were made based on diagrams already defined
in the PIM, since each extension aims to consider aspects of an architecture that includes
one or more layers of an application. It should be noted that for the three metamodels
defined, there are elements that correspond to specializations of elements from the PIM
(e.g. richForm is a specialization of form in the RIA metamodel, CloudService as a spe-
cialization of Service in the FC extension, or persistenceEntity as a specialization of entity
in the persistence ASM).

Table 2 shows some details of how the extensions were made. From this Table we
have conducted the following analysis:

• The first has to do with the extended diagrams. In this regard, it should be noted
that the three extensions have been based on diagrams already existing in the PIM,
which leads us to believe that the PIM has the necessary independent modeling
elements to carry out these extensions.

• Another aspect worth mentioning is that specializations of existing concepts have
also been made in the three extensions, i.e., elements have been redefined or spe-
cialized to orient the elements towards specific architectures. It gives us evidence
that the generic or independent concepts are included in the PIM metamodel.

• In two of the three extensions, new elements have been proposed, or, existing ele-
ments have been redefined in the PIM metamodels. This is because, in addition to
being required for the extensions, they have been considered as generic concepts,
i.e., independent of the architecture, so we decided to include them in the PIM
metamodels (e.g., the staticObjects identified in RIA, or EntityProperty added to
the PIM during the persistence extension). It should be noted, however, that the
number of new elements included in the PIM has been minimal (2 classes and 3
attributes in RIA, no elements in Cloud, 1 class and 1 enumeration in Persistence),
which again confirms the fact that the PIM is independent enough to be extended,
but at the same time has the necessary elements to PIM modeling.

RQ3: To what extent automation can be obtained with MoWebA’s model-to-
model and model-to-code transformation rules?

ASM-PIM transformation has been completed for ASM elements derived from
PIM by inheritance.

In cases where additional information has been required from the user to include



design decisions, the configuration files have allowed to enter such information before
performing the transformations, thus improving the degree of automation.

The PIM-ASM transformation experiences described in [Núñez et al. 2020] have
shown that although it is possible to include manual adjustments to the ASM models
generated from the PIM, the configuration files have helped to reduce these percentages
considerably.

It should also be noted that the following manual adjustments have been made by
using the extensions: i) including certain elements in the ASM that could not be derived
from the PIM; ii) modifying the final code related to the user interface of the applications
and other adjustments for the generation of the application from the code generated in
Acceleo; iii) modifying the final code and the models for validation purposes.

5. Conclusions and Future Works
The purpose of this study was to analyze the role of the Architecture Specific Model
(ASM) phase in both modeling and transformation processes. Specifically, we examined
its use in extending MoWebA for three different architectures: MoWebA4RIA (an exten-
sion for RIA functionalities), MoWebAMobile4FC (an extension for mobile applications
with functions in the cloud), and MoWebAMobile4Persistence (an extension for mobile
applications with a persistence layer). MoWebA prescribes the definition of a new ASM
for each extension, along with the respective PIM-ASM transformation rules and ASM-
Code generation. The development of the extensions was followed up through weekly
meetings over one year. These meetings were complemented by open interviews, obser-
vations, and focus groups.

The results show that MoWebA provides an interesting degree of adaptability and
automation to the PIM-ASM, as well as independence from the PIM meta model. Ex-
perience has shown that all three extensions were successfully developed from the same
PIM metamodel with a reduced number of adaptations. Each extension has involved re-
vising the elements defined in the PIM metamodel and defining the ASM metamodel for a
specific architecture. Two of the extensions have included the PIM-ASM transformation
rules with configuration files. While in the other extensions (i.e., (MoWebAMobile4FC),
the PIM-ASM transformation required a few manual adjustments.

We identified several opportunities to improve and extend the proposal. In the
modeling dimension, it is relevant the development of a modeling tool to simplify the
use of MoWebA for PIM and ASM modeling, along with the revision and improvement
of Model-to-Model and Model-to-Code transformation rules. Considering the need for
adaptation of the methodologies, we envision the extensions to other environments and
architectures. Finally, usability experiences with MoWebA and further validation of the
proposal (e.g., formal experiments or case studies) in industrial or commercial contexts
are necessary steps to consolidate the approach.
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