
Tracking technical debt in agile low code developments
Renato Domingues12, Miguel Reis2, Miguel Araújo2, Marcelo Marinho1, Mário J. Silva23

1Departamento de Computação – Universidade Federal Rural de Pernambuco (UFRPE)
Recife – PE – Brazil

2Truewind, Axians Portugal
Recife – PE – Brazil

Lisboa – Portugal

3INESC-ID, IST, Universidade de Lisboa
Lisboa – Portugal

renato.domingues@ufrpe.br, miguel.reis@axians.com,

miguel.araujo@axians.com, marcelo.marinho@ufrpe.br, mjs@inesc-id.pt

Abstract. We present a new practice for tracking technical debt in agile low
code developments using new metrics obtained from the development environ-
ment. The automated collection of some of the metrics has significantly reduced
the effort devoted to collecting project meta-data and makes it possible to run
frequent self-assessments and internal audits with little effort. We have obtai-
ned evidence that more frequent audits during development help to identify and
reduce technical debt, thus improving the quality of delivered software. In ad-
dition, we witness a general increase in the quality score of projects developed
under the new practice.

1. Introduction
Software organizations aim to deliver high-quality products and services, on time and at
the lowest cost. However, in practice, design trade-offs and unplanned events frequently
force developers to take shortcuts when developing their code. These time-saving short-
cuts, which solve near-term problems but do not account for long-term implications, are
one of the causes of what is known as technical debt [Cunningham 1992].

Low code is becoming prevalent for fast development of enterprise application
software. However, higher productivity and reduced costs of low code development could
be achieved at the expense of quality management practices established for software en-
gineering. We believe that the quality of reliable complex enterprise software solutions
based on agile low code platforms does not need to be sacrificed for speed. In fact, low
code development methods, when supported by an appropriate methodology relying on
automated metrics collection, should enable software engineers to achieve higher produc-
tivity while delivering high-quality complex enterprise solutions.

Some low code platforms help manage tech debt. AI Mentor Studio, from the
OutSystems platform for enterprise software development, provides tech debt manage-
ment support1. However, managing technical debt growth is hard to achieve, since ke-

1https://success.outsystems.com/documentation/11/managing_the_
applications_lifecycle/manage_technical_debt/get_an_overview_of_the_
overall_technical_debt/

eping it under control depends on teams behavior. Hence, establishing practices and
software audits remains necessary to make the technical debt visible beyond the scope
of individual project teams.

To address these challenges, we developed a lightweight, largely automated soft-
ware auditing process tailored to our practice. This new process complements the data
provided by the Outsystems platform with self-reported assessments and automated me-
trics.

The main objective of this paper is to introduce QSP - Quality Solutions Program,
our approach for tackling technical debt in low code-based software solutions. QSP in-
cludes a tool that collects data from developers and exposes the internal audit results to
end-users quickly and visually. QSP has been developed and used for the last two years at
Truewind2, an international company focused on agile transformation and agile low code
development.

With QSP, we reduce the effort and time costs of carrying out project audits and
allow them to be more frequent. Using the plots and charts generated in QSP, we have
observed a general improvement in tech-debt scores over time, showcasing the success of
our approach to managing tech debt with minimal additional effort (cost).

2. Background
2.1. Technical Debt
Cunningham introduced technical debt stating that Shipping first-time code is like going
into debt. A little debt speeds development so long as it is paid back promptly with a
rewrite... The danger occurs when the debt is not repaid. Every minute spent on not quite
right code counts as interest on that debt [Cunningham 1992].

McConnell later defined technical debt as delayed technical work that is incur-
red when technical shortcuts are taken, usually in pursuit of calendar-driven software
schedules [McConnell 2008].

In 2016, at the Dagstuhl Seminar 16162, academic and industrial experts proposed
the most widely accepted definition of technical debt in software systems as a collection
of design or implementation constructs that are expedient in the short term, but set up
a technical context that can make future changes more costly or impossible. Technical
debt presents an actual or contingent liability whose impact is limited to internal system
qualities, primarily maintainability and evolvability [Avgeriou et al. 2016].

Krutchen classified the entries in a backlog according to their Visibility and va-
lue [Kruchten et al. 2012]: Green/Visible features are visible and have positive value;
Red/Visible defects are visible and have negative value; Yellow/Architectural features are
invisible and have positive value; and Black/Technical debt is invisible and has negative
value. When determining the work of an iteration, the Product Manager wants more green
items to be worked on, Customer Support wants more red items, and Architects the yellow
ones, but no one wants to deal with the black items.

Li et al. carried out a systematic review to identify and classify the types of tech
debt and tech debt management. Ten types of tech debt were identified: Requirements,

2https://www.truewindglobal.com/

Architectural, Design, Code, Test, Build, Documentation, Infrastructure, Versioning and
Defect, as well as eight types of management: Identification, Measurement, Prioritization,
Prevention, Monitoring, Repayment, Representation and Communication [Li et al. 2015].

2.2. Software Audits

Technical debt can be tackled as a quality issue. Asserting the quality of software
is a complex task requiring multiple instruments, and one of the most used is au-
dits [Helgeson 2009]. A software audit may be conducted at three levels: product, pro-
cess, and system. The product audit is the lowest level and focuses on the final product.
At the intermediate level, the process audit checks the methodology used in the product
and its behavior. This audit yields the most visible results and is thus the most common.
Lastly, the system audit (or quality audit) is the most complete, complex, and laborious. A
system audit can cover the organization as a whole. Additionally, the development team
(internal) can conduct these audit types or require an independent expert (external audits).

Audit processes are often only carried out at the end of a project, since they can
be very expensive due to hiring third-party services and consume time. Depending on
depth and complexity, an audit could take hours, days, or weeks. Excessive time (and
cost) in an agile environment can be prohibitive. On the other hand, when an audit is
carried out at the end stage of software development, it is often not possible to invest on
substantial code refactoring, whether due to meeting delivery deadlines or lack of budget,
which could remove identified technical debts.

2.3. Metrics and Audits for Agile Project Management

Metrics to define the success of an agile project include customer satisfaction, bu-
siness value delivered, velocity, budget against actual cost, defects into production,
cycle time, defects resolution, customer retention, estimation accuracy, test pass/fail
overtime, revenue/sales impact, product utilization, and scope change in a rele-
ase [Mkoba and Marnewick 2020]. Software quality can improve by automating the col-
lection of metrics to measure agile teams’ quality as it makes it possible to provide sprint-
by-sprint performance feedback [Guerrero et al. 2019]. In a case study of 120 students
divided into 20 teams carrying out a project in four two-week iterations, students wor-
ked without feedback in the first two iterations. In the two final iterations, they gained
access to a software tool providing feedback, and their quality metrics showed a positive
increase.

To identify problems earlier and facilitate their correction in agile development
projects, it is important to know which metrics have to be audited, and the interaction
between the auditor and the team so that the auditor understands what is being audited
and the need to conduct audits at each project cycle [Truong 2020].

Joshi identifies three key components for an agile audit [Joshi 2021]: Backlog
(collection of scoped work like audit plan), Sprints (scoped items divided into sprints time
period), and Scrums (short and concise meetings to evaluate the work done and identify
bottlenecks). He also defines five levels of maturity for an audit:

1. Minimal stakeholder engagement.
2. Improving team cooperation and planning methods.
3. Integration with agile practices and stakeholder collaboration.

4. Well-defined metrics are measured.
5. Audit optimization and agile audit tools are applied.

An agile audit has three main phases [KPM 2020]:

Planing and preliminary research: Determine what will be audited, what aspects are
relevant to the audit, and define some metrics such as Definition of Ready and
Definition of Done.

Audit execution: Defines how the sprint planning will be carried out, how the workload
will be distributed, and based on the results of the previous sprint to schedule the
next audit.

Completion and evaluation: Once the activities have provided enough information,
carry out a product audit shared with all members involved; this audit contains
objective, scope, conclusion, recommendations, and action plans.

2.4. Low code software development tools

For Waszkowski one of the advantages of Low code platforms is the support to visual
programming tools with graphical user interfaces for application design, instead of hard-
coded programming techniques [Waszkowski 2019]. Meanwhile, Sahay et al. state that
by using low code platforms, developers can focus on the business logic rather than de-
aling with setting up computing infrastructure, managing data integrity across different
environments, and ensuring non-functional aspects [Sahay et al. 2020].

The Outsystems low code development platform offers several tools that help ma-
nage software quality. Among these tools, we have the Quality Apps Program3, which is
used to monitor the quality of low code application developments made on the platform,
and AI Mentor Studio4, for static code analysis.

3. Auditing Low code developments with QSP

In our earlier practice, internal audits were established, but they were not frequent due to
the effort of time and personnel needed to conduct them. Audits were normally postponed
until the late stages or even after the last iteration before releasing a software project. So, it
was also common that some of the problems encountered could not be properly resolved,
with a negative impact on the perceived quality of Truewind’s agile low code process
for complex systems development. Some customers were reluctant to pay for what they
perceived as expensive additional work.

Our new methodology for auditing agile low code projects relies on fast and short
self-assessments, inspired by Kim et al.’s approach of increasing the frequency of internal
audits in the agile development process [Kim et al. 2013]. In addition, new audit metrics
are also proposed to better represent the concept of agile, including productivity, team
performance, and correct selection of stories.

Our Quality Solutions Program (QSP) is our internal agile low code development
process for complex enterprise solutions. QSP presently supports three practices:

3https://www.outsystems.com/blog/posts/launching-the-quality-apps-program/
4https://www.outsystems.com/product-updates/ai-mentor-studio/

Engagement Practice: monitors the use of agile methodologies and practices such as
the use of Key Performance Indicators (KPIs), and the preparation and develop-
ment of the sprints. The stakeholders conducting this practice are the Engagement
Manager and the project’s Auditor.

QA Practice: manages quality of the development process and mainly takes care of tes-
ting. The Stakeholders for this practice are the QA Lead and the Auditor.

Engineering Practice: The engineering part is responsible for the code, in this part, the
issues present and the code developed are checked to verify the existence of possi-
ble problems and/or bad practices. The Stakeholders responsible for this practice
are the Tech Lead and the Auditor.

3.1. Self-assessments in QSP

To guide a QSP self-assessment, we provide a checklist that teams use to evaluate their
adherence to QSP best practices. The QSP self-assessment checklist provides a systema-
tic approach to ensuring that crucial quality benchmarks are met throughout the project.
Teams can effectively gauge their progress by answering key questions, such as:

• Does the project have a demo?
• Does the project have security tests planned?
• Is the team running sprint reviews?
• Is the team running sprint retrospectives?
• Is the team keeping optimal test coverage rates?

One of OutSystems AI Mentor Studio functions is to identify tech debts present in the
code during development, so we can collect data from it and use it as one of the self-
assessment inputs metrics to be able to monitor the amount of tech debts present th-
roughout the process.

Most self-assessment questions in audits are framed as Boolean to keep the time
required to complete an audit as short as possible. An answer score of 1/0 on a Boolean
question means that the requirement was considered met/not met. For non-Boolean ques-
tions, answers with half scores (0.5) are also possible. The final score is calculated by
averaging the scores of all provided answers:

FinalScore =

∑
answer∑

Questions
(1)

The Quality Apps Program of OutSystems awards a high-quality seal to those
projects that obtain a minimum score of 85% in their assessment. In QSP we adopted
the same threshold of 85% to award high-quality recognition to our teams’ development
teams.

All self-assessment scores are saved in the database and compared throughout the
project, so a team’s progress can be tracked throughout the entire process.

A key aspect of these self-assessments is that audit responses are visible to all
company employees. Enabling this type of peer monitoring helps keep the reliability of
responses high and helps promote and disseminate team practices that obtain higher QSP
assessment scores.

3.2. Audits in QSP
A QSP audit lasts a maximum of two hours. If some questions remain unanswered within
that time, the audit stops and only the answered questions are considered. To ensure that
the most relevant questions are answered more frequently, all questions have a priority
value and are asked by the order of priority. Priorities are calculated based on the time it
takes to answer a question, its category, and/or internal rules.

Many development services at Truewind do not start with a clean slate. Projects
may take on earlier developments by other teams or may even have been initially de-
veloped by other organizations. Such projects, in turn, may present different forms of
technical debt that would influence both the team’s work and the audit scores of the pro-
ject. We call these debts legacy items. As the scores are public within the company,
a project team could be unfairly perceived negatively by peers unaware of the project’s
starting point.

With this in mind, we give two scores to every QSP audit:

Project score: Sum of the self-assessment and the audit results considering the legacy
issues.

Team score: Sum of the self-assessment and the audit results excluding the legacy issues.

All data submitted to QSP by a team and obtained self-assessment results are
stored and compared against their previous submission. As a result, teams receive real-
time feedback on how their tech debt is evolving. With this information in hand, teams
can analyze and better understand what they did right and what needs to be reviewed and
improved.

4. Metrics collection automation
With the QSP, engagement managers can run a self-assessment of a project, which pro-
vides results obtained from automatically collected data. Within a self-assessment, there
are six categories of metrics: Lean, Reliability, Methodology, Delivery, Dev-Ops, and
Strategy – Value. Each of these metrics may or may not weigh on the final result of the
self-assessment. Table 1 shows some of these metrics (those that do not weigh on the final
score of the self-assessment are marked with * at the end of their title).

4.1. Information extraction
We initially established the company’s Jira5 issue tracking system as the primary data
source. However, after an initial analysis of the historical data, we realized that the lack of
common guidelines for filling out Jira forms was destroying the usefulness of the extracted
data. Some of the problems encountered are:

• Lack of filling in relevant text fields, such as description and summary, as well as
numeric fields, such as time spent and estimated time;

• Multiple interpretations for the meaning of a given field;
• Incorrect use of the issue type when creating an issue.

We then defined new practices for structuring and standardizing the meta-data in
Jira projects, enabling automatic extraction of information. The newly adopted practices
include, among others:

5https://www.atlassian.com/software/jira

Audit Category Metric
Lean Project FTE vs User Stories and Cycle time*
Reliability Reported incidents since last assessment
Reliability Number of non-trivial bugs in Quality*
Methodology Definition of Ready
Methodology Definition of Done
Methodology Sprint planning done
Methodology Sprint review done
Methodology Sprint retrospective done
Delivery Deploy & Rollback plan available
Delivery Sprint duration according to the plan
Delivery Backlog management (prioritized, refined for sprint n and n +

1 and high-level for the remaining)
Delivery % of Story items done
Delivery Estimation accuracy (Delivery - fixed price) & Velocity

(AMS)
Dev-ops Time taken from code being deployed into QA to Production
Dev-ops Time to restore
Dev-ops Change fail %
Strategy - Value Identified Business and Operational Outcomes
Strategy - Value Available Stakeholder map analysis

Table 1. EM’s self-assessment metrics in QSP’s Audit categories

Project creation centralization: New projects must be created through a form reques-
ting the necessary information. Previously, we let our project leaders define their
projects however they found most suited, thus creating a hard-to-manage variety
of project patterns.

Boards template: Project boards must be created using a pre-defined template for each
project type. Previously, leaders could also create several attributes in Jira and
name them arbitrarily, making it hard to find what each one represented.

Issue types standardization: Allowed issue types have been limited to a pre-defined set.
We found that the semantics of each issue type among engagement managers were
very subjective, so there was no standard defining what each project metadata
attribute represented.

Standardization of the project title: The name of projects in the company´s Jira repo-
sitory must follow a defined pattern coding its project type. As the predefined
project types in Jira do not comply with our internally defined types, we stan-
dardized project naming rules so that it is possible to identify a project’s type by
scanning a project’s name on Jira.

Burn remaining estimate: As soon as a ticket enters the Testing phase, any remaining
estimates should automatically be burned (dropped to zero) so that the total re-
maining effort is always up to date. One of the problems identified during the
data analysis was that several issues were transferred to the ”Done”state but the
estimate was not correctly filled, causing the sprint remaining effort on our Jira
repository to show incorrect values.

After implementing these new practices in Jira, we waited approximately six
months for new data to be generated. With the new data in hand, we observed six projects
to assess to what extent the new practices achieved the desired objectives. We concluded
that the data of all six tested Jira projects was ready for automation.

4.2. QSP metrics collection

Many metrics of QSP self-assessments cannot be obtained from the data in Jira, just as
some information that the data contains is not always clear to the Engagement Manager
when performing a self-assessment. Therefore, it was necessary to select which metrics
could be extracted automatically for QSP self-assessments. We arrived at three categories
of metrics:

1) User Story Definition metrics:

INVEST criteria: User Stories should be focused on features – not tasks, and written
in business language. Doing so will enable business people to understand and
prioritize the User Stories.

User stories sizing: A User story is the smallest unit of work that needs to be done.
Taking the INVEST acronym for Story definition, the S (Small) is the most im-
portant, and we should guide our teams to cut their work into less than 2 days
chunks wherever possible.

User stories average size: Purely informative data that compares the average number of
hours in user stories for this sprint against the company average.

Acceptance criteria: It clearly defines the scope, desired outcomes, and testing criteria
for pieces of functionality that the delivery team is working on.

Definition of Ready (DoR) & Definition of Done (DoD): Reinforce transparency, as-
sure Built-In Quality, and set the right expectations for the work items to be plan-
ned, developed, and completed.

Work item type: Purely informative data that shows the number of issues of each type
created in this sprint.

2) Board Management metrics:

Reported defects: It is purely informative information that shows the quantity of each
type of defect severity created in this sprint.

Backlog prioritization or MoSCoW: Backlog is prioritized in a way that helps build
consensus, establish a unified direction, and gain a broader perspective.

Defects management: Verify if the defects are being handled as any other Backlog item
(sized, classified).

UX/UI management: UX/UI Backlog should be handled as any other activity: Planned,
developed, and reviewed / validated. As such, it is checked whether there are
issues of this type in this sprint.

Sprint goal defined: While it’s easy to gather a bunch of Backlog Items to work on in a
Sprint, it’s a little harder (but much more valuable) to have a set of Backlog Items
that fit together and in this way, provide more business value.

3) Quality & Control metrics:

Sprint Definition: Compare the difference between the items that were planned at the
beginning of the sprint and how many of them were completed.

Capacity Tracker: Calculates the capacity in hours of this team for this sprint, based on
the number of sprint days, developers, team members’ off days, and a constant to
represent the sprint stabilization period, then compares it with the estimated time
for the issues planned for this sprint.

Estimation Accuracy: Compares the number of worklog hours logged within the sprint
period against the capacity value of that sprint. If a defined minimum threshold is
not met, it is assumed that the project team did not log the correct number of hours
for the sprint and will receive the maximum penalty for this metric (0%). If above
the threshold the Estimation accuracy is computed by subtracting from 100% the
absolute value of the observed Relative Accuracy Error of the estimation:

RelAccuracyError =
(
∑

planned−∑
logged)∑

planned
(2)

EstimationAccuracy = 100%− |RelAccuracyError| (3)

Issues Estimation: Compares the number of issues that were planned for the sprint and
defects with severity Major or Critical that have effort estimation with the total
number of issues of these types.

of bugs in Quality: That is a two-step metric:
1. Get the list of Stories belonging to this project and compare it with the list

of issues that have test coverage. If the result of this comparison is larger
than the minimum threshold defined, then this sprint has a minimum test
coverage and can go to the next step, otherwise, it means that not enough
tests were planned for this project and it receives the maximum penalty for
this metric.

2. We compare the number of defects that are of Critical, Major, and Minor
severity with the number of Increments (Stories and Improvements).

4.3. QSP Audit scores

We assign four score grades to each metric: Excellent, Good, To improve, and Not met,
which corresponds to obtaining 100% of the metric’s full score, 2/3, 1/3 and 0%, respecti-
vely. Furthermore, we have also developed the metrics so that they are always categorized
into one of the four available grades or are in a range of 0 to 100%. By default, we con-
sider Excellent those with 85% or above, Good from 84 to 75%, To improve 74 to 50%,
and below that is Not met. Similar to the final self-assessment score, we can calculate the
final audit score using Equation 4:

AuditScore =
f∑

i=1

Metrici ∗ weighti (4)

4.4. QSP Dashboards

To give a perspective on what data is provided to developer teams, we will be showing
throughout this section some of the QSP dashboards of audited projects. While the data
are real, all project and employee names given below, as well as some acronyms are
replaced with pseudonyms to preserve confidentiality.

Figure 1 shows an example of what information is presented on a project dashbo-
ard. Figure 1a, displays the self-assessment delivery deadlines. If a deadline is being rea-
ched/has passed and the result has yet to be delivered/has already passed, the orange/red
color is used to highlight it. The central part of the panel shows the Project Score and the
Team Score of the project in this assessment, together with a comparison with the past
score (both scores had a drop of 0.92%). As the grade is above 85%, this card is colored
green, otherwise, it would be colored red. Below we can see some project indicators,
prioritizing those that did not pass the tests, thus making it clearer what needs to be im-
proved. In the displayed project, two indicators are colored red (not passed), one yellow
(To be improved), and one green. Figure 1b displays the complete history of scores of a
project.

a) self-assessment delivery deadlines

b) QSP scores timeline; as the project does not have legacy items, the Project and Team
Scores are always the same

Figure 1. QSP-audited project summary.

Figure 2 shows the Methodology audit score and metrics to be improved and pre-
sented to Engagement Managers.

Figure 2. Engagement Manager details of a QSP audited project. The audit score
is shown on the left and the metrics that need to be improved on the right.

5. Results
At the time of writing this article, the QSP has been used in more than 30 projects and
currently has 8 others active, by teams from different sizes, from 3 to 10 members per
team.

Figure 3a) shows the average score of the projects in the metrics most directly
related to technical debts, such as the number of debts and discovery, which represent the
number of simple technical debts found in the project and an analysis of the application
architecture in search of debts, respectively. Initially, in the first four months, we had
the lowest team scores, but since the third month, all team scores are already above the
desired 85%. Meanwhile, project scores are most often below expectations, this may be
because the project was started by the team at that time but is a project with many legacy
items. This shows the importance of using the two scores to account for legacy items, as
this could negatively impact team morale and mislead managers. Figure 3b), shows the
average of the scores of all internal audits carried out by all QSP projects, such as EM
Audits, Quality Audits, and UX/UI audits, when applicable. Initially, the projects were
not performing so well, but since December 2022 they have reached values above the
target score. The quality part took a little longer to be developed and that is why we only
have data from 2023, but as shown in Figure 3c), despite having only reached the target
in June, from that month onwards, all scores reached the target value.

Finally, Figure 3d) shows the mean of the final score of all the projects and teams.
Although once again the first four months had the lowest results, since then, we have

always achieved the target score. The Project score on the other hand, despite reaching
the 85% mark in every month except the first four and December of 2023, likely because
the teams inherited a new project with high technical debt, still reached the target score in
all other months.

When we take the grades for the year 2022 we obtain an average score of 88.22%
for tech debt, 85.80% for audits and 87.64% for the final score, in 2023 these metrics rose
to 93.88 %, 91.52% and 91.96% respectively. The quality metric cannot be calculated
in this way given that the 2022 sample is only one month, however if we take the first 6
months and compare them with the following 6 months we obtain 78.12% and 94.62%.
With this we can see that the score of projects in year 2023 were better than those in
2022 in all aspects, where the tech debt score increased by 6.42%, audit score 6.67%
and the final score in 4.93%. The sum of all these indicated results, together with other
non-measurable results such as greater interest among employees in talking about how to
improve, lead us to consider the QSP as a successful project in our environment.

a) Technical debit metrics score

b) Project audit score

c) Quality metrics score

d) Final score

Figure 3. Overall performance of projects in the QSP

6. Conclusion
Our new QSP is supported by an app that easily and graphically presents the technical
debts of a project. The app includes an automatic metrics collection module that enables
fast and frequent self-assessments. We presented various metrics used both in internal
audits and self-assessment questionnaires, along with the new practices established across
software teams in our organization.

A notorious outcome of introducing QSP is that it helps trigger technical conver-
sations among development teams. Previously it was uncommon to observe co-workers
talking about their difficulties. Co-workers often did not even know they could obtain
help until it was too late. Through QSP they are now able to find and contact those who
had succeeded in overcoming similar hardships.

It is important to also highlight some of the limitations and points for improve-
ment identified throughout the development of QSP. The first major current limitation is
the fact that we are heavily dependent on the API provided by Jira. The second is also
related to a recurring situation in projects developed for customers who required that all
the project development artifacts be maintained in their Jira instance, or in some other
repository that they use, and do not provide open access to the API by QSP. Therefore,
we do not have direct access to project data and are unable to perform automatic extrac-
tion and auditing. This problem, however, could be mitigated by informing customers
of the benefits of using QSP to track tech debt and offering them access to the collected
data, in exchange for opening access to their repository for collecting project data. A
third problem is somewhat more complex and does not directly involve our code. In our
self-assessments, lies in the answers are not encouraged nor rewarded. However, if in our
working culture lies becomes pervasive and unreported, auditors would need to constantly
check the veracity of obtained answers. This would create an even greater workload on
auditors than if no self-assessment had been made, leading to a reduction of our auditing
capacity and consequently removing the advantage of our approach.

There are some points where data collection automation needs improvement. For
example, for String fields the automation only checks if they are not empty, no content
validation is performed. Presently, there is an optional manual intermediate step in the
audit, where an auditor can manually look at the values of each field and change their
scores if he deems it necessary.

Referências
(2020). Agile internal audit: White paper on working agile within internal audit functions

(part ii: Concrete guidance for the set-up of the agile internal audit function and the
execution of agile audits). KPMG, https://assets.kpmg.com/content/
dam/kpmg/nl/pdf/2020/sectoren/agile-internal-audit-2.pdf.
Accessed: 2023-09-23.

Avgeriou, P., Kruchten, P., Ozkaya, I., and Seaman, C. (2016). Managing technical debt
in software engineering (dagstuhl seminar 16162). In Dagstuhl reports, volume 6.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Cunningham, W. (1992). The wycash portfolio management system. ACM Sigplan Oops
Messenger, 4(2):29–30.

Guerrero, A., Fresno, R., Ju, A., Fox, A., Fernandez, P., Muller, C., and Ruiz-Cortés, A.
(2019). Eagle: A team practices audit framework for agile software development. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 1139–
1143.

Helgeson, J. W. (2009). The software audit guide. Quality Press.

Joshi, P. L. (2021). A review of agile internal auditing: Retrospective and prospective.
International Journal of Smart Business and Technology, 9(2):13–32.

Kim, D. H., Kim, D. S., Koh, C., and Kim, H. W. (2013). An information system au-
dit model for project quality improvement by the agile methodology. International
Journal of Information and Education Technology, 3(3):295.

Kruchten, P., Nord, R. L., and Ozkaya, I. (2012). Technical debt: From metaphor to
theory and practice. Ieee software, 29(6):18–21.

Li, Z., Avgeriou, P., and Liang, P. (2015). A systematic mapping study on technical debt
and its management. Journal of Systems and Software, 101:193–220.

McConnell, S. (2008). Managing technical debt. Construx Software white
paper: https://www.construx.com/wp-content/uploads/2019/02/
CxWhitePaper_TechnicalDebt.pdf. Accessed: 2023–09-27.

Mkoba, E. and Marnewick, C. (2020). Conceptual framework for auditing agile projects.
IEEE Access, 8:126460–126476.

Sahay, A., Indamutsa, A., Di Ruscio, D., and Pierantonio, A. (2020). Supporting the un-
derstanding and comparison of low-code development platforms. In 2020 46th Euro-
micro Conference on Software Engineering and Advanced Applications (SEAA), pages
171–178. IEEE.

Truong, L. (2020). Agile auditing: More value, less resources. Edpacs, 62(1):4–7.

Waszkowski, R. (2019). Low-code platform for automating business processes in manu-
facturing. IFAC-PapersOnLine, 52(10):376–381.

