
On the Challenges to Documenting Requirements in Agile
Software Development: A Practitioners’ Perspective

Edna Dias Canedo1, Angelica Toffano S. Calazans2, Geovana Ramos Sousa Silva1,
Eloisa Toffano Seidel Masson2, Isabel Sofia Brito3

1University of Brası́lia (UnB) –Brası́lia – DF –Brazil

2University center – UniCEUB – Brası́lia – DF –Brazil

3Polytechnic Institute of Beja – Beja – Portugal
ednacanedo@unb.br, angelica.toffano@gmail.com, geovannna.1998@gmail.com,

eloisa.masson@ceub.edu.br, isabel.sofia@ipbeja.pt

Abstract. Agile Software Development (ASD) is an iterative and incremental
methodology designed to accelerate project deliveries. In this dynamic envi-
ronment characterized by constant changes, the task of documenting require-
ments becomes increasingly challenging, leading to the emergence of the tech-
nical debt issue. This research involved a survey of 84 practitioners to identify
the techniques and practices employed in documenting software requirements
within ASD teams, as well as their perceptions of the documentation process and
the challenges, regarding what factors influence it and its consequences. Our
key findings indicate that user stories are the most commonly utilized technique
by practitioners for documenting requirements. Furthermore, a deficient docu-
mentation process results in two primary consequences: rework and a knowl-
edge deficit. To address these challenges, various techniques are implemented
across different development phases, including requirement refactoring, doc-
umentation refinement meetings, and template reviews. Participants also em-
phasized the significance of having a requirements expert to enhance the doc-
umentation process and expressed uncertainty regarding the adequacy of their
existing requirements documentation.

1. Introduction

Over the past two decades, the adoption of agile methodologies has increased. How-
ever, numerous studies have highlighted deficiencies in both functional and non-
functional requirements (NFR) documentation within Agile Software Development
(ASD) context [Theunissen et al. 2022, Behutiye et al. 2020, Behutiye et al. 2022]. ASD
promotes continuous software delivery with a focus on value addition and mini-
mal documentation while accommodating late changes to meet dynamic business de-
mands. However, the rapid pace of change in this methodology creates challenges
in requirements documentation, leading to the emergence of technical debt within
ASD contexts[Behutiye et al. 2017, Mendes et al. 2019]. Technical debt serves as a
metaphor to convey the repercussions of poor software development practices to non-
technical stakeholders [Behutiye et al. 2017]. According to Lenarduzzi and Fucci
[Lenarduzzi and Fucci 2019], there are 10 types of Technical Debt (TD): Requirements,
Architectural, Design, Code, Test, Build, Documentation, Infrastructure, and Versioning.



Technical debt associated with requirements, often referred to as require-
ments debt, manifests itself when there is underspecification of requirements, meaning
that they are outdated, incomplete, or inadequately documented [Behutiye et al. 2017,
Mendes et al. 2019]. More broadly, when we refer to requirements debt, it means “the
distance between the optimal requirements specification and the actual system implemen-
tation, under domain assumptions and constraints” [Ernst 2012]. There are three types
of requirements debt [Lenarduzzi and Fucci 2019]: 1) incomplete user needs, when user
needs are neglected; 2) requirement smells, when the user needs expressed through feed-
back channels (i.e., app stores, social media, interviews) are neglected; and 3) mismatch
implementation. These categories directly relate to software requirements.

Documentation technical debt encompasses issues related to nonexistent, inade-
quate, or incomplete project documentation [Mendes et al. 2019]. Agile teams commonly
employ documentation techniques like user stories and story cards, which can introduce
limitations in software requirements and their documentation, often oversimplifying them
[Marek et al. 2021, Jarzebowicz and Weichbroth 2021]. The lack of documentation is
considered one of the most significant weaknesses of Requirements Engineering. The
inadequacy of user story formats and the challenge of validating their consistency and ver-
ifiability reinforce the deficiency in documentation in ASD contexts [Curcio et al. 2018].

The consequences of technical debt in the context of ASD are far-reaching, in-
cluding [Mendes et al. 2019]: inefficient testing, user dissatisfaction due to inconsistent
documentation, difficulties in knowledge transfer to new team members, software main-
tenance and evolution problems, rework during implementation and testing, limited un-
derstanding of the system among team members, ineffective artifact utilization due to
disorganized information, duplicated efforts to compensate for documentation gaps, com-
munication problems due to poor-quality or missing documentation, schedule delays, and
increased project costs due to documentation issues. Additionally, difficulties in under-
standing documentation and a lack of synchronization between software and its documen-
tation compound these challenges within ASD teams [Theunissen et al. 2022].

Several authors have investigated the importance of increasing the quantity
and quality of documentation in ASD teams, identifying it as a persistent challenge
[Theunissen et al. 2022, Curcio et al. 2018, Behutiye et al. 2022]. According to Curcio
et al. [Curcio et al. 2018], requirements engineering in the context of ASD is still im-
mature and needs more research, particularly studies that present empirical evaluation.
In this context, this work aims to identify practices and techniques utilized in literature
and industry for software requirements documentation within ASD teams and assess how
the artifacts support this documentation. The study also investigates ASD teams’ percep-
tions, in terms of what factors influence it and its consequences, regarding their current
documentation practices and the proposed solutions for addressing identified challenges,
especially concerning the impact of technical debt on requirements and documentation.

Our main findings highlight that user stories are the predominant technique for
documenting software requirements in ASD teams, and the development team’s knowl-
edge of the software solution plays a significant role in requirements documentation.
Moreover, the primary consequence of absent or outdated requirements documentation
is the need for rework in delivered software and a resultant decline in quality. Our find-
ings further underscore that: i) requirements documentation is typically not carried out



by practitioners with specific requirements engineering expertise; ii) maintaining updated
and high-quality requirements documentation poses a challenge; iii) there is a lack of a
cultural emphasis on continuous requirements documentation within the agile process.

2. Research Design

This study investigates how software requirements are documented by Agile Software De-
velopment (ASD) teams, what factors influence it, as well as the consequences of missing
or outdated requirements documentation. To reach this goal, we defined the following
research questions (RQs): RQ.1. How do ASD teams document software requirements?
RQ.2. What factors influence requirements documentation and lack of documentation
in ASD? RQ.3. What techniques do practitioners use in requirements documentation to
make it easier to understand and communicate with stakeholders? RQ.4. What issues or
challenges do ASD teams face in requirements documentation?

We opted for an online survey to elicit data and apply qualitative and qualitative
analysis. We followed the guideline of Linaker et al. [Linaker et al. 2015]. The survey
was chosen as the primary research method to capture practitioners’ perceptions of how
ASD teams document software requirements, what factors influence documentation, what
techniques teams use, and the challenges they face in their daily activities. Therefore, the
survey was performed based on two criteria: (1) obtain practitioners’ profiles; (2) collect
practitioners’ perceptions. The survey presented open-ended and close-ended questions
for both criteria.

The survey population consisted of practitioners working with agile software de-
velopment from several organizations in Brazil and Portugal. A control question was
included at the beginning of the survey to filter the participants and ensure that responses
were only from the target audience. The participants were recruited through our per-
sonal contacts, and we also advertised the questionnaire on our social networks for self-
recruitment of participants. All of this paper’s authors were involved in designing and
validating the survey questions. Two authors, with more than 23 years of experience in
software development and requirements elicitation, described the survey questions, and
the other authors (two) validated them. The survey consists of 21 questions, nine closed-
ended and twelve open-ended questions. All survey questions and answer options are
available in Zenodo at https://zenodo.org/records/10157806.

We used the Google Forms platform 1 to create the survey. At the beginning of
the research, we presented the consent form, including the conditions and stipulations.
We also presented our contact information (email). The survey was anonymous and re-
spondents were not asked to provide any contact information. However, we asked them
to provide their e-mail address if they wished. The survey was available from October
16th to November 15th, 2023 (30 days). The average response time of each participant
to answer the survey was 33 minutes and 2 seconds. In total, 84 practitioners responded
to the survey. After preparing the survey questions, we conducted a pilot. We validated
the survey pilot with three researchers from the study and 5 representatives from agile
software development teams. Grounded Theory (GT) was used for qualitative analysis to
perform open and axial coding [Corbin and Strauss 2014] on the open questions.

1https://www.google.com/forms

https://zenodo.org/records/10157806


3. Results and Discussions
We collected the responses of 84 practitioners, which are available in Zenodo at
https://zenodo.org/records/10157806. Most participants have considerable experience in
software development and agile software development and work in the requirements elici-
tation, development/programming, or maintenance/evolution phases of the agile software
development project lifecycle in which they participate.

3.1. RQ.1. How do ASD teams document software requirements?

To answer RQ.1, we asked practitioners how requirements are documented in their ASD
projects. The answers were analyzed with Grounded Theory [Corbin and Strauss 2014].
To enable traceability, we include a direct quote from one respondent along with the
answer identified in open-ended questions and we present the discovered codes slanted:
“The documentation of requirements by the ASD team is performed using user stories,
and they are sent to the development team to implement sprints based on the importance
and priority of the requirement.” Main code: Requirements documentation is performed
using user stories. – Category: Technique – Subcategory: User Stories. The most used
technique by ASD teams to document software requirements are User Stories and
Business Rules.

One of the participants mentioned that “Stakeholder involvement is imperative
and the documentation must evolve iteratively, and all documentation must be created
responsibly and reflect all the system’s needs. In addition, the analysis of what needs to
be included in the requirements documentation must reflect the needs of the organiza-
tion, the project’s specific needs, the team’s, and the business rules”. Another participant
mentioned that “the software requirements documentation must be elaborated by the re-
quirements engineer with the participation of the stakeholders. In addition, it is important
to use prototypes and user stories to facilitate communication between team members and
stakeholders, to resolve all doubts and/or inconsistencies”.

It is interesting to point out that Marek et al. [Marek et al. 2021] and Jarzebow-
icz et al. [Jarzebowicz and Weichbroth 2021] also identify user stories as the techniques
commonly used by ASD teams, although the authors also identified a common problem
with the use of this technique: limitation and simplification of requirements. Accord-
ing to Curcio et al. [Curcio et al. 2018], the lack of data in the user stories templates
and the difficulty in validating their consistency and verifiability are factors that con-
tribute to the fragility of Requirements Engineering in the context of ASD. Heikkila et
al. [Heikkilä et al. 2015] mentioned the insufficiency of the user story format, stating that
properties such as consistency and verifiability of user stories are challenging to validate
and user stories do not convey enough information for software design, and separate sys-
tem and subsystem requirements are required, among other issues. In the answers to this
question in the survey, some terms were mentioned by practitioners, such as: “insuffi-
cient”, “negligent”, “without due rigor”, and “quickly”. Thus, our findings allow us to
infer that despite being the technique most used by ASD teams, this technique has some
challenges that have not yet been resolved.

According to Perera et al. [Perera et al. 2023], requirements documentation debt
is the insufficient or incomplete requirements specifications found in use cases and user
stories. Furthermore, they are low-quality specifications or do not describe the software

https://zenodo.org/records/10157806


under development. The authors also mention outdated requirements, which are cases
where specifications were developed to an appropriate level of quality in early versions
of the software but are subsequently not updated with new requirements or changes to
existing requirements. In our findings, user stories are the most used techniques in the
literature for requirements documentation in ASD. This allows us to conclude that even
though it is a technique that presents several problems, it is the one most used by software
development teams.

RQ.1 Summary: Most practitioners are experienced in software development
(more than ten years – 58.2%) and ASD (more than four years) and work in the
requirements elicitation phase and development/programming. The ASD teams
consider the requirements documentation important and should be performed by a
RE practitioner, and the technique they use most is the user stories.

3.2. RQ.2. What factors influence requirements documentation and lack of
documentation in ASD?

To answer RQ.2, we asked practitioners what factors might influence requirements docu-
mentation in ASD. Most participants (84%) stated the team’s knowledge of the software
solution; for 62%, the team members turnover; for 62%, having requirements specialists
on the team; for 57%, the involvement of business representatives during software de-
velopment; for 55%, the organization’s requirements, such as processes and auditing; for
44%, the deadline for each iteration; for 41%, the contractual or other agency require-
ments; and for 35%, the criticality/risk of the solution.

Our results partially confirm the findings of Mendes et al. [Mendes et al. 2019],
who identified as possible causes of documentation technical debt the lack of techni-
cal capacity of the practitioner responsible for documenting the requirements, high staff
turnover, poor time management, political influences and hierarchies of the organization.
Our findings are also similar to those of Behutiye et al.[Behutiye et al. 2017], who iden-
tified a lack of understanding of the system being built. In another work, Behutiye et al.
[Behutiye et al. 2020] identified that the experience of developers might affect the docu-
mentation of quality requirements. Our findings ratify the findings in the literature and
indicate the possibility of adding two more causes of documentation technical debt: 1)
contractual or other agency requirements and 2) the criticality/risk of the solution. We
also ask about the consequences of missing documentation or outdated documentation in
ASD. Below is one of the statements made by a participant:“The main consequence of
the absence of requirements documentation is communication problems, both between
the requirements teams and the development team and between the contracting organiza-
tion and the stakeholders. In addition, there may be requirement prioritization and rework
issues.”

Table 1 presents the coding performed to identify in survey responses what are
the consequences of missing or outdated documentation. Among the categories of conse-
quences, although rework has only one subcategory, it was mentioned by 47 participants,
whereas Communication has the most subcategories but totaled 32 mentions. Among the
subcategories, the most significant consequence was Rework over requirements
implementation, followed by Lack of quality in deliveries with 28



mentions and Project planning issues with 17 mentions.

Table 1. Consequences of the lack or non-update documentation

Category Subcategory #Cited
Rework Rework over requirements implementation 32

Communication Communication difficulties among team members and stakeholders 11
Difficulties to execute the products’ maintenance or evolution 8
Difficulties in requirements implementation 6
Difficulties in understanding the software 3
Lack of reference for team members 2

Prioritization Difficulty in prioritizing requirements 5
Planning Project planning issues 15

Project schedule issues 11
Project cost issues 9

Software Quality Lack of quality in deliveries 17
Dissatisfaction of end users and stakeholders 5

Risks Non-compliance risks 7
Financial risks 5
Information security risks 3

These results partially ratify the findings by Mendes et al. [Mendes et al. 2019],
who identified as consequences of faulty documentation: the rework over implementation
and tests; communication problems due to the poor quality or absence of documentation;
problems in the maintenance of the software; the difficulty of the team members having
complete knowledge of the system that was being developed; lack of perception of the
existing risks due to the lack of documentation. Behutiye et al. [Behutiye et al. 2017]
also identified system quality degradation, increased cost of maintenance, and complete
redesign or rework of the system as a consequence. Our findings also confirm these results
found by the authors.

We asked which documentation issues are most relevant in ASD, and prac-
titioners mentioned the lack of documentation for functional and non-functional re-
quirements and system architecture, as seen in other works [Behutiye et al. 2020,
Behutiye et al. 2022, Robiolo et al. 2019]. In addition, we also identified that the doc-
umentation needs to be updated at each change of the software, also reported by
Theunissen et al. [Theunissen et al. 2022] for the smooth running of projects. One
of the participants mentioned that “the lack of specification of business requirements
that impact legal requirements, such as the Brazilian General Data Protection Law
(LGPD)[Canedo et al. 2022, Canedo et al. 2021] or General Data Protection Regulation
(GDPR) [Aberkane et al. 2021] may cause legal sanctions, such as changing legisla-
tion changing tax calculations or changing input/output layouts”. Theunissen et al.
[Theunissen et al. 2022] classified the information necessary for documenting the re-
quirements in context and environment, which encompasses anything that affects the sys-
tem but is not included in the primary goals, such as legal and environmental issues. The
authors stated that the absence of this information could lead to documentation that is
often lacking, incomplete, out-of-date, or of low quality.

Another participant mentioned that “The most relevant documentation prob-
lems in ASD are the difficulty developers find in implementing the functional and
non-functional requirements, the dissatisfaction of the stakeholders and the team’s lack



of responsibility in the project’s initial phases in carrying out a good requirements
documentation”. This statement confirms the previous findings of Behutiye et al.
[Behutiye et al. 2017, Behutiye et al. 2020] and Mendes et al. [Mendes et al. 2019]. Per-
era et al. [Perera et al. 2023] also stated that although requirements technical debt is sim-
ilar in many ways to technical debt in software code, it also has its own components,
such as requirements artifacts, which have a cycle feedback that involves the user to ac-
curately collect their needs. This involves additional costs due to sub-optimal decisions
concerning requirements, which may occur during Requirements Engineering and Soft-
ware Implementation activities. Our results presented in Table 1 corroborate the authors,
where the rework category is the most mentioned by survey participants, followed by
software quality and planning.

We also investigated what solutions are applied by the ASD teams when these doc-
umentation issues happen. The participants mentioned the following measures: require-
ments refactoring; recurrent meetings with the team to refine the documentation (layout,
business rules, technical validation, and business validation) since the beginning of the
process; review of the documentation template, workflow, or specification; correction of
the requirements documentation; and improvement of the requirements detailing to de-
pict precisely the functionalities and their respective restrictions. Regarding who has the
responsibility of documenting the software requirements in the organization in which the
ASD teams work, they informed that they are carried out by 1) senior software engineers
together with the lead UX designer; 2) product owner; 3) scrum master; 4) all team mem-
bers; 5) requirements analyst; 6) business analyst; 7) developers; 8) project managers;
and 9) architects. According to the perception of most survey participants, this attribution
by the ASD team of the practitioner responsible for documenting the software require-
ments in the organizations they work with is incorrect. Some participants mentioned:
“This assignment is not correct. The organization should hire a requirements specialist
to carry out the entire Requirements Engineering phase of the software to be developed
by the ASD team.”; and “No. The elicitation, documentation, and validation of software
requirements should be carried out by a requirements practitioner who knows the creative
techniques for eliciting requirements.”

RQ.2 Summary 2: The main consequence of the lack of requirements documen-
tation is rework and lack of quality in product deliveries. The factors that influence
requirements documentation are the team’s lack of knowledge of the software so-
lution, staff turnover, and lack of requirements experts on the team.

3.3. RQ.3. What techniques do practitioners use in requirements documentation to
make it easier to understand and communicate with stakeholders?

It is important to highlight that to answer this RQ, it was decided to research the tech-
niques used to document requirements in three contexts: 1) the techniques used in organi-
zations by participants; 2) the techniques used, in the participants’ perception, to facilitate
understanding and communication with customers; and 3) the techniques used, in the par-
ticipants’ perception, to facilitate understanding and cooperation between analysts and
developers. According to Bomström et al. [Bomström et al. 2023], practitioners with dif-
ferent perspectives require information in different ways to complete their daily tasks and
it is essential to identify the techniques used to understand this information.



Regarding the techniques used by requirements analysts/engineers to document
software requirements in order to understand them or facilitate understanding and com-
munication with interested parties, the most used techniques used by ASD teams are user
stories (69%), business rules (60%), meetings (60%), prototyping (51%), functional de-
scription (43%), epics (33%), requirements list (27%), organization’s own templates and
scenarios (21%). Regarding which techniques analysts use to document the requirements
for cooperation purposes between analysts and development teams to facilitate the mainte-
nance/evolution of the product, the most used techniques are user stories (70%), meetings
(49%), prototyping (46%), rule of business (46%), functional description (41%), list of re-
quirements (31%), use cases (31%), epics (26%), organization-specific templates (20%),
UML models (14%), and change decisions recording made by stakeholders (13%).

Concerning requirements specification techniques practitioners use to document
requirements in ASD teams, user stories (69%) are the most commonly used technique,
followed by meetings, business rules, prototyping, functional descriptions, use cases,
epics, requirements lists, and the organization’s own templates. These results support
the findings by [Jarzebowicz and Sitko 2019], who identified user stories as the most
commonly used technique by practitioners for requirements elicitation with stakehold-
ers and for carrying out software maintenance or evolution. The authors also identified
the use of epics, use cases, and prototyping techniques. As well as Jarzebowicz et al.
[Jarzebowicz and Sitko 2019], we have identified a small variation in the use of these
techniques by ASD teams.

We identified little variation in the use of requirements specification techniques
by ASD teams, considering the two contexts analyzed in this research, customers and
development teams. However, we identified a greater use of user stories by software
development teams and a lesser use of this technique by customers. These findings al-
low us to infer that the technique most used by ASD teams is user stories. This finding
corroborates the findings of Mendes et al. [Mendes et al. 2019]. However, Heikkila et
al. [Heikkilä et al. 2015] stated that user stories might not be sufficient when used as
the sole source of requirements documentation, leading to difficult prioritization of re-
quirements. This also allows us to infer that part of the problems related to requirements
documentation can be derived from problems already identified in previous studies due
to the use of user stories. Considering that the agile process follows the software devel-
opment life cycle that includes requirements specification, analysis, design, coding, test-
ing, and delivery of partially implemented software [d Darothi Sarkar and Gupta 2012],
[Sajjade 2020], we chose to rename these phases to facilitate understanding, and inserted
the Modeling, Maintenance/Evolution and Management phases, as per the Swebok ver-
sion 3 [Bourque 2023] and considering that other authors also identify these other phases
in the software development cycle [Saravanan et al. 2020], [Gurung et al. 2020].

A significant number of practitioners (71%) reported that the techniques are used
to document software requirements in the Requirements Specification phase of the soft-
ware development cycle; 57% of them reported that the documentation is carried out in
the Analysis and Design phase; 54% respondents said they are in the Development/Pro-
gramming phase; 35% practitioners stated that it is in the Modeling phase; 31% that doc-
umentation is carried out in the Maintenance/Evolution phase; 20% practitioners claimed
to be in the Testing phase; and 20% of them are in the Project Management phase. This



result is not a surprise to us, since some of the techniques mentioned by the participants
(meetings, scenarios, and personas) were also mentioned by Chang et al. and Dev et al.
[Chang et al. 2008, Dev et al. 2023] as techniques that are used in other phases of agile
software development process. This finding allows us to infer that part of the techniques
used by ADS teams can and are used, even in smaller quantities, at different stages of the
development process.

Most practitioners (86%) stated that the requirements artifacts derived from using
the techniques to document software requirements are used later in the Development/Pro-
gramming phase of the software development lifecycle. Some participants (62% ) stated
that artifacts are used in the Testing phase, 58% stated that they are used in the Mainte-
nance/Evolution phase, 35% stated that they are used in the Management phase, and 35%
stated that it is in the modeling, respectively. 29% of the practitioners stated that they are
used in the Analysis and design phase. Finally, 23% of them stated they are used in the
Elicitation phase. Our findings differ from those of Alsaqqa et al. [Alsaqqa et al. 2020].
According to the authors, documents are rarely used after the requirements identification
and documentation phases, and project progress is measured through software testing
rather than documentation. Our findings allow us to infer that, in practice, the use of doc-
umentation by ASD teams is more constant and frequent, especially in the requirements
elicitation and development/programming phase. Heimicke et al. [Heimicke et al. 2020]
presented several proposals for hybrid agile models, recognizing the need to adapt the
agile manifesto [Fowler et al. 2001] in the software industry. Thus, this recognition of the
use of documentation in all stages of the software development process confirms the need
to make some adaptations to the principles of the manifest.

Some practitioners mentioned that the artifacts generated to document the require-
ments are sufficient to ensure an adequate software evolution. Below are some statements:
“The generated artifacts clearly describe what should be done by the development team
and help the testing team on how they should proceed.”; and “By registering the business
needs and the needs identified in the execution of the sprints, applying the proper prior-
itization, the need for two teams (one for development and one for support) is avoided,
the team specializes in the product, avoiding rework and promoting a constant delivery of
value to the business.” Other practitioners stated that the artifacts generated in the docu-
mentation of software requirements are not sufficient to ensure proper software mainte-
nance and evolution: “It is not enough, other documents are necessary to guarantee the
maintenance of the product, for example, diagrams of behavior and structure of the sys-
tem, modeled from the requirements.”; and “It is not enough, the evolution of the product
also depends on the management of the knowledge base of the artifacts produced by the
requirements documentation. Thus, the access, organization, and understanding of the
artifacts produced need to be simple and of good quality.”

Regarding practices and techniques used to document requirements being con-
sistent with Agile guidelines, practitioners mentioned that: “Are perfectly adherent to
Agile. The model is for identifying and building the product backlog that will be main-
tained and evolved throughout the project, both by the needs identified by the business
and by the needs identified by the development team. The requirements prioritization de-
termines what goes into each sprint according to the business need and the team’s ability
to deliver, constantly adding value. The other characteristics of agile are preserved and



can be adjusted according to the maturity and capacity of each organization.”; and “It is
adherent because it favors face-to-face communication and reduces waste on volatile or
non-reusable artifacts. ”

In the perception of a few practitioners, the practices and techniques currently
adopted by ASD teams are not adherent to Agile: “ I understand not. Agile privileges
software over comprehensive documentation. Furthermore, it is not clear what an ideal
documentation should be. In financial systems with risk of damage to the organization,
internal audits and controlling bodies that require documentation, and high turnover of
teams, documentation is essential and necessary, contradicting the Agile principles.”; “
The practices and techniques we adopt are not Agile compliant. We use cases to docu-
ment the requirements because we believe that for the proper maintenance of the systems,
it is necessary to have good documentation.” Summarizing some answers about the adher-
ence of documentation practices to agile, practitioners mentioned that “when complete”;
“if updated”; “if they follow the evolution of the product”; “yes, but the implicit knowl-
edge of the participants is essential”; “lack of sufficient artifacts”. This allows us to infer
that several factors may interfere with whether or not the artifacts generated to document
the software requirements are sufficient to perform maintenance. It is noteworthy that this
finding is different from other studies [Behutiye et al. 2017, Mendes et al. 2019] which
identified that the documentation performed by ASD teams could be considered a tech-
nical debt, as they have several problems that result in problems such as rework, low
productivity, and communication failures.

RQ.3 Summary: The techniques most used by ASD teams to document software
requirements are user stories, business rules, and meetings. Furthermore, practi-
tioners stated that these techniques are used mainly in the requirements elicitation
and development phases. Small differences in usage were identified between the
techniques used with customers and the techniques used by the development team.

3.4. RQ.4: What issues or challenges do ASD teams face in requirements
documentation?

To answer RQ.4, we asked practitioners what challenges related to specific ASD docu-
mentation and practices they face daily in their projects. In total, 71 participants reported
the challenges their teams faced in documenting software requirements, which were coded
into categories. Table 2 presents all categories and subcategories identified in the process
of coding the challenges faced by ASD teams in requirements documentation. We have
identified 4 categories: 1) Training; 2) Knowledge; 3) ASD team culture; and 4) Doc-
umentation. The category most mentioned by participants was Training – participants
mentioned that the lack of trained professionals makes it difficult to correctly understand
systems requirements, leading to a very high occurrence of turnover in ASD teams. They
believe that this phenomenon occurs because professionals working in Agile Software
Development (ASD) need to stay consistently updated, undergoing improvement courses
to enhance their job performance.

Some participants mentioned that the lack of training means that others do not
know the techniques and tools available in the literature and on the market to carry out
requirements documentation. The second most mentioned category was Knowledge –



participants believe that the lack of requirements specialists in ASD teams generates sev-
eral problems, such as difficulty in keeping functional requirements documentation up-
dated and accessible to all team members and in selecting existing techniques and tools
in the literature to document requirements. Some of these challenges presented in Ta-

Table 2. Challenges faced by ASD teams in requirements documentation

Category Subcategory #Cited
Training Lack of trained professionals 56

Knowledge Lack of a qualified professional 54
Lack of requirements specialist to carry out the specification activity 44
Lack of requirements professionals on teams 38
Lack of a practitioner on the team with knowledge of existing tech-
niques and practices for documenting requirements

37

Difficulty in registering the relevant facts of the sprint and the lessons
learned

33

ASD team culture Requirements documentation is not necessary 51
Turnover on ASD teams 47
Lack of commitment from team members to document requirements
decisions

11

Documentation Lack of documentation 39
Keeping the documentation up to date 38
Lack of documentation of business rules 33
Misconception that the agile methodology does not require documen-
tation

32

Lack of understanding of the importance of documentation 27
Poorly specified and incomplete requirements 19

ble 2 were also identified by Theunissen et al. [Theunissen et al. 2022], Behutiye et al.
[Behutiye et al. 2017], and Mendes et al. [Mendes et al. 2019]. The practitioners’ per-
ceptions presented in Table 2 allow us to infer that the requirements documentation in the
ASD may suffer from a problem inherent to the agile process itself due to the culture/idea
that the product coding stage should start as early as possible fast as possible. Theunissen
et al. [Theunissen et al. 2022] identified that documentation is hard to understand, con-
sidered a waste when it does not appear to contribute directly to the end product, and is
easily out-of-sync with implementation. These concepts inherent to agile models can hin-
der or compromise the identification, specification, documentation, validation, updating,
and tracking of software requirements.

Our findings collaborate with the findings of Perera et al. [Perera et al. 2023] who
stated that the causes of requirements technical debt are: a) neglecting user needs; b) miss-
ing to capture user feedback from one or more user feedback channels and ambiguities
introduced during formalization of requirements smells; c) implementing a suboptimal
solution to a requirements problem and insufficient and incomplete requirements missed
due to the lack of requirements traceability or documentation inefficiencies occurred in-
tentionally or unintentionally; d) inconsistent management of requirements from differ-
ent stakeholders; e) requirements that are only partly implemented; and e) inadequate or
poorly conducted requirements elicitation and analysis.



RQ.4 Summary: In the practitioners’ perception, the challenges related to docu-
mentation and practices in ASD are the lack of trained practitioners in the require-
ments area to carry out the RE phase, lack of knowledge, and the culture of the
ASD teams and organizations that documentation is not an important artifact.

4. Threats to Validity
External validity: first, given the delicacy and complexity of the subject, we cannot guar-
antee that participants expressed their thoughts without considering them professionally
or socially desirable. To mitigate this threat, we informed participants that the informa-
tion would not be made available to the organizations they work for. They were only used
within the scope of this research. Secondly, the sample of participants can be considered
small and only represents the perception of Brazilian and Portugal agile practitioners. To
mitigate this threat, we collected the perceptions of different practitioners from different
organizations and states in Brazil. Capturing the perceptions of practitioners working on
ASD teams in other countries may require more effort and the use of multiple techniques.
Thus, we cannot generalize the results obtained. Furthermore, participants’ answers are
not necessarily coherent and consistent and may contradict their words and activities in
the labor market. Despite this, practitioners’ perception demonstrates the complexity of
Requirements Engineering activities, which emphasizes the importance of research con-
cerning the lack of recognition of the importance of requirements documentation in ASD.

Construct validity: despite our confidence in the scientific rigor employed in con-
ducting the study, we acknowledge the inevitability of participants’ subjective interpre-
tation of the questions. To mitigate this threat, we validated the survey with three re-
searchers from the study and five representatives from agile software development teams.
Conclusion validity: although we are confident in the scientific rigor of conducting
the study, it is inevitable the subjectivity in the researchers’ interpretation of the data
[Seaman 1999]. To mitigate this threat the analysis of the survey’s open questions was
first carried out by two researchers, and a third researcher carried out the validation. In
addition, any inconsistencies were discussed with the fourth researcher. These measures
also allowed to avoid bias and validate the closed questions, ensuring that the list of op-
tions is sufficiently complete. Despite this, open-ended questions allow respondents to
report factors beyond the list of options in closed-ended questions. Internal validity: col-
lecting survey data allowed us to minimize threats to internal validity because the partici-
pants were selected randomly through email contacts, and the researcher did not interact
with the participants. We also advertised the questionnaire on our social networks for
self-recruitment, so there was no influence from the researcher on the results. Moreover,
the survey has a description and questions designed to identify practitioners who meet the
desired criteria, i.e. practitioners working with agile software development.

5. Conclusions and Future Work
The techniques most used by ASD teams are user stories and business rules. User stories
have several problems when documenting requirements, although they are the most used
by ASD teams. In the perception of the ASD teams, the main factors that influence
the documentation of the requirements in the ASD are the knowledge of the software
solution by the team members, team member turnover, having a requirements specialist



in the team, the involvement of the business representatives during the development of the
software, and the business and audit processes of their organizations.

Most practitioners mentioned that the lack or non-update of requirements docu-
mentation in ASD generates rework in the implementation of software requirements and
various difficulties related to communication, mainly between agile teams and stakehold-
ers. Furthermore, the lack of documentation significantly impacts project planning and
software quality. We identified some actions that ASD teams use to solve problems related
to failures in requirements documentation, such as refactoring the requirement, holding
meetings with the ASD team to refine documentation, reviewing the template/flowchart
used to carry out requirement documentation, and updating/correcting requirements doc-
umentation. As future work, we intend to replicate this research with practitioners from
other countries to understand the challenges of the lack of documentation and what are
the agile principles that led to the incorporation of the culture that agility values only the
quick delivery of the product without taking into account the quality of the artifacts gen-
erated during the software development lifecycle, mainly from the software requirements
documentation.

References
Aberkane, A., Poels, G., and vanden Broucke, S. (2021). Exploring automated gdpr-

compliance in requirements engineering: A systematic mapping study. IEEE Access,
9:66542–66559.

Alsaqqa, S., Sawalha, S., and Abdel-Nabi, H. (2020). Agile software development:
Methodologies and trends. Int. J. Interact. Mob. Technol., 14(11):246–270.

Behutiye, W., Rodrı́guez, P., and Oivo, M. (2022). Quality requirement documentation
guidelines for agile software development. IEEE Access, 10:70154–70173.

Behutiye, W., Seppänen, P., Rodrı́guez, P., and Oivo, M. (2020). Documentation of qual-
ity requirements in agile software development. In Li, J., Jaccheri, L., Dingsøyr, T.,
and Chitchyan, R., editors, EASE ’20: Evaluation and Assessment in Software Engi-
neering, Trondheim, Norway, April 15-17, 2020, pages 250–259. ACM.

Behutiye, W. N., Rodrı́guez, P., Oivo, M., and Tosun, A. (2017). Analyzing the concept
of technical debt in the context of agile software development: A systematic literature
review. Inf. Softw. Technol., 82:139–158.

Bomström, H., Kelanti, M., Annanperä, E., Liukkunen, K., Kilamo, T., Sievi-Korte, O.,
and Systä, K. (2023). Information needs and presentation in agile software develop-
ment. Inf. Softw. Technol., 162:107265.

Bourque, P. (2023). Software Engineering Body of Knowledge (SWEBOK). [Online;
accessed 18. Nov. 2023].

Canedo, E. D., Calazans, A. T. S., Bandeira, I. N., Costa, P. H. T., and Masson, E.
T. S. (2022). Guidelines adopted by agile teams in privacy requirements elicitation
after the brazilian general data protection law (LGPD) implementation. Requir. Eng.,
27(4):545–567.

Canedo, E. D., Calazans, A. T. S., Cerqueira, A. J., Costa, P. H. T., and Masson, E. T. S.
(2021). Agile teams’ perception in privacy requirements elicitation: Lgpd’s compli-



ance in brazil. In 29th IEEE International Requirements Engineering Conference, RE
2021, Notre Dame, IN, USA, September 20-24, 2021, pages 58–69. IEEE.

Chang, Y., Lim, Y., and Stolterman, E. (2008). Personas: from theory to practices. In
Gulz, A., Magnusson, C., Malmborg, L., Eftring, H., Jönsson, B., and Tollmar, K.,
editors, Proceedings of the 5th Nordic Conference on Human-Computer Interaction
2008, Lund, Sweden, October 20-22, 2008, volume 358 of ACM International Confer-
ence Proceeding Series, pages 439–442. ACM.

Corbin, J. and Strauss, A. (2014). Basics of qualitative research: Techniques and proce-
dures for developing grounded theory. Sage publications.

Curcio, K., Navarro, T., Malucelli, A., and Reinehr, S. S. (2018). Requirements engi-
neering: A systematic mapping study in agile software development. J. Syst. Softw.,
139:32–50.

d Darothi Sarkar, S. S. and Gupta, D. (2012). Agile processes and methodologies: A con-
ceptual study. International Journal on Computer Science and Engineering (IJCSE),
4 (05).

Dev, J., Rashidi, B., and Garg, V. (2023). Models of applied privacy (MAP): A persona
based approach to threat modeling. In Schmidt, A., Väänänen, K., Goyal, T., Kris-
tensson, P. O., Peters, A., Mueller, S., Williamson, J. R., and Wilson, M. L., editors,
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems,
CHI 2023, Hamburg, Germany, April 23-28, 2023, pages 189:1–189:15. ACM.

Ernst, N. A. (2012). On the role of requirements in understanding and managing technical
debt. In Kruchten, P., Nord, R. L., Ozkaya, I., and Visser, J., editors, Proceedings of
the Third International Workshop on Managing Technical Debt, MTD 2012, Zurich,
Switzerland, June 5, 2012, pages 61–64. IEEE/ACM.

Fowler, M., Highsmith, J., et al. (2001). The agile manifesto. Software development,
9(8):28–35.

Gurung, G., Shah, R., and Jaiswal, D. P. (2020). Software development life cycle models-a
comparative study. In International Journal of Scientific Research in Computer Sci-
ence, Engineering and Information Technology.

Heikkilä, V. T., Damian, D. E., Lassenius, C., and Paasivaara, M. (2015). A mapping
study on requirements engineering in agile software development. In 41st Euromi-
cro Conference on Software Engineering and Advanced Applications, EUROMICRO-
SEAA 2015, Madeira, Portugal, August 26-28, 2015, pages 199–207. IEEE Computer
Society.

Heimicke, J., Chen, R., and Albers, A. (2020). Agile meets plan-driven – hybrid ap-
proaches in product development: A systematic literature review. Proceedings of the
Design Society: DESIGN Conference, pages 577–586.

Jarzebowicz, A. and Sitko, N. (2019). Communication and documentation practices in
agile requirements engineering: A survey in polish software industry. In Wrycza, S.
and Maslankowski, J., editors, Information Systems: Research, Development, Appli-
cations, Education - 12th SIGSAND/PLAIS EuroSymposium 2019, Gdansk, Poland,
September 19, 2019, Proceedings, volume 359 of Lecture Notes in Business Informa-
tion Processing, pages 147–158. Springer.



Jarzebowicz, A. and Weichbroth, P. (2021). A systematic literature review on implement-
ing non-functional requirements in agile software development: Issues and facilitating
practices. In Przybylek, A., Miler, J., Poth, A., and Riel, A., editors, Lean and Ag-
ile Software Development - 5th International Conference, LASD 2021, Virtual Event,
January 23, 2021, Proceedings, volume 408 of Lecture Notes in Business Information
Processing, pages 91–110. Springer.

Lenarduzzi, V. and Fucci, D. (2019). Towards a holistic definition of requirements debt.
In 2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2019, Porto de Galinhas, Recife, Brazil, September 19-20, 2019,
pages 1–5. IEEE.

Linaker, J., Sulaman, S. M., Höst, M., and de Mello, R. M. (2015). Guidelines for con-
ducting surveys in software engineering v. 1.1. Lund University, 50.

Marek, K., Winska, E., and Dabrowski, W. (2021). The state of agile software develop-
ment teams during the covid-19 pandemic. In Lean and Agile Software Development -
5th International Conference, LASD 2021, Virtual Event, January 23, 2021, Proceed-
ings, volume 408 of Lecture Notes in Business Information Processing, pages 24–39,
https://doi.org/10.1007/978-3-030-67084-9 2. Springer.

Mendes, L., Cerdeiral, C., and Santos, G. (2019). Documentation technical debt: A quali-
tative study in a software development organization. In do Carmo Machado, I., Souza,
R., Maciel, R. S. P., and Sant’Anna, C., editors, Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, SBES 2019, Salvador, Brazil, September 23-27,
2019, pages 447–451. ACM.

Perera, J., Tempero, E. D., Tu, Y., and Blincoe, K. (2023). Quantifying requirements
technical debt: A systematic mapping study and a conceptual model. In Schneider, K.,
Dalpiaz, F., and Horkoff, J., editors, 31st IEEE International Requirements Engineer-
ing Conference, RE 2023, Hannover, Germany, September 4-8, 2023, pages 123–133.
IEEE.

Robiolo, G., Scott, E., Matalonga, S., and Felderer, M. (2019). Technical debt and waste
in non-functional requirements documentation: An exploratory study. In Franch, X.,
Männistö, T., and Martı́nez-Fernández, S., editors, Product-Focused Software Pro-
cess Improvement - 20th International Conference, PROFES 2019, Barcelona, Spain,
November 27-29, 2019, Proceedings, volume 11915 of Lecture Notes in Computer
Science, pages 220–235. Springer.

Sajjade, Z.-S. Z. (2020). Agile process model for software development. Journal of
Advancement in Software Engineering and Testing, 3 (03).

Saravanan, T., Jha, S., Sabharwal, G., and Narayan, S. (2020). Comparative analysis
of software life cycle models. In 2020 2nd International Conference on Advances in
Computing, Communication Control and Networking (ICACCCN), volume 2, pages
906–909.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering.
IEEE Trans. Software Eng., 25(4):557–572.

Theunissen, T., van Heesch, U., and Avgeriou, P. (2022). A mapping study on documen-
tation in continuous software development. Inf. Softw. Technol., 142:106733.


	Introduction
	Research Design
	Results and Discussions
	RQ.1. How do ASD teams document software requirements?
	RQ.2. What factors influence requirements documentation and lack of documentation in ASD?
	RQ.3. What techniques do practitioners use in requirements documentation to make it easier to understand and communicate with stakeholders? 
	RQ.4: What issues or challenges do ASD teams face in requirements documentation?

	Threats to Validity
	Conclusions and Future Work

