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Abstract. This study delves into the integration of Large Language Models
(LLMs) in test case construction within software engineering, exploring their
potential to enhance efficiency and effectiveness in test generation. Leveraging
LLMs, known for their sophisticated natural language processing abilities, this
research conducts a detailed case study on a representative software applica-
tion to evaluate the practicality of LLMs in creating detailed and accurate test
scenarios. The investigation focuses on the challenges and advantages of LLMs
in test case development, assessing their impact on test comprehensiveness, ac-
curacy, and the formulation process. By providing a nuanced understanding
of LLMs’ role in software testing, this paper aims to inform practitioners and
researchers about their potential and limitations, offering insights into their ap-
plication in real-world testing environments and their contribution to advancing
software testing methodologies.

1. Introduction
Software testing constitutes a critical phase in the software development life cycle, en-
suring the delivery of reliable and high-quality software products. In recent years, the
advent of advanced technologies, particularly Large Language Models (LLMs), has in-
troduced novel possibilities for automating and enhancing various facets of software en-
gineering. LLMs, exemplified by models such as OpenAI’s GPT (Generative Pre-trained
Transformer)[OpenAI 2023], exhibit remarkable natural language processing capabilities
and have demonstrated applicability in diverse domains. This paper addresses the inter-
section of LLMs and software testing, focusing specifically on their role in the construc-
tion of test cases.

The use of LLMs in software testing holds the promise of increasing the efficiency
and effectiveness of test case generation. The ability of these models to understand and
generate human-like text prompts paves the way for more natural and expressive artic-
ulation of test scenarios. However, the practical implications of integrating LLMs into
the nuanced process of test case construction remain under explored. This study seeks
to bridge this gap by presenting a detailed case study that investigates the application of
LLMs in constructing test cases for a real-world software application.



The case study methodology adopted in this research involves the selection of
a representative software application, the formulation of test case construction method-
ologies leveraging LLMs, and a thorough evaluation of the outcomes. By examining the
interplay between LLMs and the complexities inherent in software testing, this study aims
to provide insights into the practical advantages, challenges, and considerations associated
with their implementation. Through this exploration, the intent is to contribute substan-
tively to the ongoing dialogue surrounding the integration of cutting-edge technologies,
such as LLMs, in the pursuit of optimizing software testing practices.

2. Related Work

The intersection of Large Language Models (LLMs) and software engineering has wit-
nessed growing interest in recent literature, reflecting a broader acknowledgment of the
transformative potential of these models in many domains. Within the realm of software
testing, where the efficacy of test case construction significantly influences software qual-
ity, the exploration of LLM applications remains a relatively nascent but promising area.

The preeminent contribution of LLMs to software engineering lies in their ability
to comprehend and generate human-like text, a feature that has inspired its application
in diverse natural language processing tasks. Prior studies, such as [Brown et al. 2020]
showcase the prowess of LLMs, exemplified by models like GPT-3, in understanding
context, generating coherent responses, and adapting to diverse language inputs. This
linguistic versatility positions LLMs as potentially powerful tools for expressing and for-
mulating test cases in a more natural, context-aware manner.

Taking advantage of LLMs, many Generative AI models have been devel-
oped to implement diverse use cases, such as generating documentation for code
[Feng et al. 2020], auto-completing code [Kim et al. 2021] and generating unit tests
[Tufano et al. 2021].

In the specific context of software testing, recent research by [Wang et al. 2024]
summarized the use of LLMs in a diverse set of applications, integrating them with tradi-
tional methods such as differential and mutation testing. Despite showing promise, LLMs
are recognized as complementary rather than exclusive solutions for software testing. The
research also combined LLMs with metamorphic testing, generating test cases based on
expected input-output relationships, and explored their role in model-based testing, en-
hancing model accuracy through natural language descriptions and adapting to system
changes.

However, existing literature lacks comprehensive insights into the practical impli-
cations, challenges, and considerations associated with integrating LLMs into the intricate
task of test case construction for real-world software applications.

3. Approach

This section outlines our approach, consisting of the semi-automated test cases construc-
tions and the evaluation framework for it. First it was explored the integration of LLMs
with software specifications for generating test cases and later elucidates our method for
qualitatively assess the effectiveness of the generated test cases.



3.1. Test cases construction

To generate test cases from the model, the strategy of prompt engineering was employed.
The prompt, which serves as the input for the LLM, comprises a set of instructions and
necessary data for task completion. The quality of the model’s response improves with
clearer and more contextual descriptions provided in the prompt. Another effective strat-
egy for achieving positive outcomes involves allowing the model to engage in reasoning
by decomposing the task into intermediate steps [Wei et al. 2022].

Figure 1. The workflow for building test cases using a Large Language Model
(represented as the robot)

An interactive method was devised to derive test cases from the model, as outlined
in Figure 1. Initially, engineers used a specially designed template to provide detailed ap-
plication descriptions efficiently. This template, refined through extensive testing, helps
pinpoint the most relevant information for the model to grasp the software context. The
model then generates a requirements document, which, combined with the initial descrip-
tion, is used to formulate and produce test cases in the required format.

The OpenAI API was used with the GPT-3.5 Turbo model [OpenAI 2023] to-
gether with the Python framework LangChain [LangChain 2023] in order to manage the
prompts, insert the context, memory, and handle interactivity. The following subsections
details the step by step of this procedure.

3.1.1. Application Description

Providing contextual information is crucial for tailoring the test cases to the specific ap-
plication at hand and preventing hallucinations, as emphasized by [Lewis et al. 2020].
Crafting this description should not become more challenging than generating the test
cases themselves. To balance this trade-off and ensure accurate communication of rele-
vant information, empirical experiments were conducted with various hypothetical soft-
ware. These experiments involved a qualitative analysis to identify potential gaps or miss-
ing information. It was observed that using one template per software feature resulted in
significantly better outcomes than attempting to describe all features in a single template
file. Consequently, a template has been devised to guide the application description pro-
cess:



What is the software name?
• A single line with the desired name to refer to the software

What is the software’s main purpose?
• A brief description with no more than 3 lines

What is the platform type?
• The platform of the software: Web, mobile, ...

Feature description
• An overview of each feature from the software

3.1.2. Prompt Design

In the prompt elaboration, throughout the tests and references about prompt engineer-
ing, the input for the model was separated into three parts, with each one comple-
menting the other, reducing the complexity and granting better quality in the responses
[Gu et al. 2023]. The prompts use the concept of Role Prompting [Kong et al. 2023],
which provides the model context in the way it should interpret the input, thus, contribut-
ing into more elaborated responses from the model.

To build the software requirements the prompt is consisted of the role description
(Ex.: QA Engineer), the feature description as stated in section 3.1.1 with all information
filled according to the under testing software, and the instructions for the expected output:

• Project name
• Project goal
• List of the software’s non-functional requirements.
• The list of the software’s functional requirements.

The first two attributes are used to confirm that the model has accurately absorbed
the given context and can succinctly summarize the software’s purpose. Additionally the
instruction also request to format the output as JSON, enabling its seamless integration as
input for subsequent prompts.

The next step is to produce the test conditions. This includes incorporating the
role, the software description, and the generated software requirements from the previous
step into the prompt. As part of the prompt’s instructions, the desired output is specified
to be a list of test conditions for each functional requirement, formatted in JSON.

In the final step, test cases are built for each test condition. This process involves
looping over the list created in the previous step. Each prompt includes several key ele-
ments: the role, the software description, the requirement, and the test condition itself. For
the output, markdown format is specified. This choice facilitates the subsequent conver-
sion of the test cases into a PDF document, significantly improving their visualization and
organization. The test cases should incorporate several essential attributes: ID, Title,
Pre-conditions, Steps, Expected results, Test Data.

3.2. Evaluation setup

To effectively evaluate test case generation, we selected Da.tes, an active web platform
with a broad range of features for connecting startups, investors, and businesses, as our



study subject. The platform’s diverse functionalities facilitated a comprehensive analysis
of test case generation effectiveness. Access to Da.tes’ existing manual test cases provided
a crucial comparison point for our research.

Our evaluation centered on the quality of test case documentation, sidestepping
metrics that necessitate code access or historical data, focusing on qualities like Clar-
ity, Correctness, Completeness, Consistency, Understandability, Self-containedness, and
Specificity, as outlined in [Barraood et al. 2021a] and [Barraood et al. 2021b].

The study employed an unbiased approach, using anonymous, uniformly format-
ted sets of 10 AI-generated and 10 manual test cases, assessed by quality assurance engi-
neers to gauge documentation quality effectively.

Two separate forms were created for the evaluation. The first form was designed
to focus explicitly on the quality sub-factors of each test case under analysis. To mitigate
volunteer fatigue and potential confusion, only the three most critical factors identified by
[Lai 2017] were used: Correctness, Completeness, and Consistency. Volunteers were
asked to rate each factor for each test case on a scale of 1-5, in accordance with the criteria
outlined in Table1.

Score 1 2 3 4 5

Meaning Very Poor Poor Regular Good Very Good

Table 1. Scores definition that was used by volunteers to rate the test cases

The second form focused on the implicit quality of the test cases, employing an
A/B testing format to gauge preferences. In this setup, two similar test cases—each testing
the same path in the software—were presented side by side. Volunteers were given 10
questions, asking them to choose between test A or test B, without knowing which was
AI-generated and which was manually crafted. Additionally, a justification field was
provided, where they could explain their choice. This feedback, inherently subjective and
not based on predefined quality factors like the first form, aims to uncover any discernible
differences between the two groups of test cases that may warrant further investigation

4. Results and Discussions
A total of 7 participants completed both forms. While the analysis is based on this limited
sample, the consistency in responses and the insightful explanations submitted by partic-
ipants offer relevant insights. We start our analysis with the quantitative scores for each
metric. To provide an overview, the average scores for each group were calculated. Fig-
ure 2 shows the comparison between AI and Manual test cases. The total average scores
across all three metrics are similar - 4.31 for AI versus 4.18 for Manual - with a slight
advantage for the AI-generated process.

The correctness metric revealed the most significant discrepancy between the AI
and Manual test groups in our evaluation. A closer examination of individual results
indicated that AI-generated tests never received the lowest score. However, the manually
written tests did receive the lowest score in a few cases, thereby lowering their average.
Despite this, the overall assessment suggests that the AI is capable of generating test cases
with a level of correctness comparable to human performance.



Figure 2. Average rate for AI and Manual test cases group split by quality factors

The same observation applies to the consistency of the test cases, where some
instances of very low scores explain the observed gap. Consistency, defined as the degree
of uniformity and reliability in test outcomes, reflects the ability of a set of test cases to
produce reliable and expected results under varying conditions. In our analysis, it was
evident that the test cases created by the AI maintained a consistent level of logic, even
though they were generated in separate interactions. This consistency is likely attributable
to the specific prompt that guided the output format, ensuring a uniform approach across
different test cases.

In the analysis of completeness, we observed that the averages were quite similar
between the two groups. However, there was a notable difference in their distributions.
The manually created tests received more top scores (35 rated as ’5’) compared to the AI-
generated tests (which received 32 top scores), but they also had a greater number of the
lowest scores. Completeness, which refers to the extent to which a set of test cases covers
all possible scenarios and functionalities of the software, can vary significantly. This
variation in scores can be attributed to the test engineer’s personal judgment, particularly
in deciding the level of detail needed based on the perceived importance or rarity of a
feature.

The second questionnaire provides more insight into the perceptions and prefer-
ences regarding the test cases, deliberately avoiding inference of any specific metrics, as
it was presented in an A/B testing format. Given the total of the responses for all tests (70
- 7 evaluators and 10 test cases), the overall preference leaned towards the AI-generated
cases (58.6%). These results are illustrated in Figure 3.

In analyzing the results on a case-by-case basis, we defined a ’clear win’ as a
scenario where the preference difference exceeds one vote (e.g., a 4 versus 3 vote count
is considered a tie). Applying this criterion, we found that only two AI-generated tests
were preferred over their manual counterparts, and similarly, two manual tests were fa-
vored over the AI ones. The remaining six test cases resulted in what can be termed as a
technical tie.



Figure 3. Pick rate for AI and Manual test cases in the A/B test

In delving into the reasons provided when Manual test cases were preferred, com-
mon themes emerged around correctness and completeness, with ’clarity’ being a fre-
quently cited new factor. Conversely, when AI-generated test cases were favored, the
justifications predominantly revolved around the level of detail and completeness. The
rationale behind the ties varied, ranging from perceptions of equivalency between the
cases to differing opinions on correctness. For example, in the evaluation of the same test
case, some evaluators identified a mistake, while others considered it more correct and
complete.

Our analysis reveals a complex picture of AI-generated versus manually created
test cases, highlighting the trade-offs and potential synergies between the two. Prefer-
ences vary, with evaluators considering factors like clarity, correctness, detail, and com-
pleteness, challenging the conventional views on automated versus manual testing. These
insights, demonstrating the nuanced aspects of test case quality, pave the way for a deeper
understanding of AI’s role in quality assurance as we delve into the concluding discus-
sions of this paper.

5. Conclusion

This paper explored the use of Large Language Models (LLMs) in generating test cases
for software engineering, focusing on a case study with the software application Da.tes.
We found that LLMs can create test cases that rival those made by humans in quality,
showcasing their potential as tools in test case development, though human input remains
crucial for ensuring accuracy and context-appropriateness. While LLMs enhance effi-
ciency and detail in test creation, their effectiveness varies, indicating the need for a com-
bined approach with human expertise. Future research should investigate the broader im-
plications, including cost and time benefits, of integrating LLMs in test case generation.
Despite some limitations in handling complex inter-feature tests, enhancing the LLM’s
understanding of feature interdependencies could significantly improve its applicability
in more intricate testing scenarios.
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