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Abstract. Understanding the human genome and deciphering the Language 
of Life is a grand challenge that modern sequencing technologies are making 
feasible by generating huge amounts of data whose correct interpretation has 
yet to be accomplished. To do it, two knowledge dimensions must be 
integrated: the predictive one, Machine Learning-oriented, that obtain 
accurate information from data, and the explainable one, Conceptual 
Modeling-based, that uses a symbolic representation to provide meaning to 
the data in order to understand and explain the semantics behind 
predictions. This position report discusses the problem, contextualizes it 
under a Life Engineering perspective, and it proposes how to face the design 
of AI-based data management platforms that follows the introduced ideas. 

1 Introduction 

Deciphering the language of life is a grand challenge that the modern genome 
sequencing technologies are making more and more feasible. This position paper 
discusses how combining two dimensions of Knowledge Engineering -a predictive 
one, Machine Learning (ML)-oriented, and an explainable one, Conceptual Modeling 
(CM)-based- can guide the process of understanding the genome, using the genomic 
medicine of precision as working context. 

 Software Engineering (SE) has made possible to create a software whose final 
code representation is a binary language represented by millions of 0s and 1s. This 
binary language is generated by compiling programming languages whose 
instructions we, Humans, know well because we have invented them. Programs 
written in these languages are obtained from Conceptual Models that represent the 
relevant aspects of the domain under analysis. Model-driven Development research 
and practice is still being developed to show to transform Conceptual Models into 
executable programs [Pastor and Molina 2007]. 

 Making an analogy with SE, Life Engineering (LE) is exploring how to discover 
the instructions of the programming language of life that instead of being a binary 
language of 0s and 1s, is a quaternary, four-letter language (A, C, G, T) with a 
biological background, where those four letters represent four nucleotides. Millions 



 
of them together constitutes a program of life, which is our genomic sequence. A 
massive data generation process is continuously running thanks to the unstoppable 
progress of the genome sequencing technology, what is generating more and more 
data about the genome. 

 But data without semantics are useless, especially when our final purpose is to 
understand the genome and discover what are the instructions of the programming 
language that should guide that understanding process. ML techniques process data 
and train algorithms that predict valuable information. In our working domain, which 
is the genome-based medicine of precision this means that if a given patient (person) 
has a health problem (e.g. colorectal cancer (CRC)). Training a function with a 
sufficient number of samples from people with and without the considered disease 
(phenotype), a ML process can solve the predictive knowledge perspective of the 
game. 

 But to diagnose a sample with a CRC without explaining why this is the case, 
is an incomplete result. The explainable knowledge dimension is required. It is 
incorporated by applying an explainable AI process which is based on the use of a 
Conceptual Model of the Human Genome (CMHG) that delimits which is the relevant 
information to be considered to “explain” why the diagnosis is given. Navigating 
through the CMHG from genotype to phenotype information, the results provided by 
the ML trained function can be explained. For instance, selecting features related to 
genome variants that are relevant for the disease, the presence of these variants 
together with their associated effects in the protein synthesis process and their 
pathway participation’s role can make the wished explanation process feasible.  

 Through the paper, these ideas are developed in more details. In section 2 we 
emphasize the analogy between the SE and LE perspectives, characterizing what do 
we mean by LE as a main process to face the grand challenge of deciphering the 
language of life. Taking the medicine of precision working domain of reference, and 
with the goal of articulating what is the valuable knowledge to be considered, Section 
3 discusses the predictive knowledge dimension that is associated to a ML-based 
process, while Section 4 focuses on the explainable dimension, which is guided by the 
use of a CMHG as the main artefact, and that complements the ML perspective. 
Section 5 discusses the benefits of combining the predictive and the explainable 
knowledge dimensions, and how effective software platforms to manage health 
genomic data can be designed and implemented. Finally, conclusions and references 
close the work. 

2 From Software Engineering to Life Engineering 

Figure 1 depicts our comparison between SE and LE. Following a top-down 
perspective, SE has created programming languages that built programs with which a 



 
problem domain is represented. The software production process includes a set of 
models and models transformations from the conceptual model (that represents the 
relevant information of the domain under analysis) to the program (using instructions 
of a selected programming language) and to the code (binary code). 

 

 
Figure 1: The analogy between Software Engineering and Life Engineering: from 
models, to programs, to code 

LE follows a data-driven, bottom-up perspective. In this case, sequencing technologies 
allow us to get data and to know the lowest-level code (quaternary code-based), but 
we don’t know yet which are the instructions of the programming language of life 
that is hidden behind this huge amount of genomic code that we accumulate. In a 
reverse way, we have to go from code to (biological) programs, and to models of life. 
Modeling life is still a further goal, but understanding the code of life is the problem 
that we are already facing. Our big challenge, a scientific challenge for humanity, is 
how to discover the instructions of that programming language of life. This is what 
we mean by deciphering the language of life. To do it, the SE analogy provides a useful 
approach, that has two main steps: 

1. Massive data gathering, that is what modern sequencing techniques makes 
continuously feasible. 

2. Discovery of programming patterns that are behind those data. 

As it happens in SE, abstraction is an essential mechanism to make the information 
obtained from data explainable. The genomic-based medicine of precision provides a 
right working context to progress in that direction. Once a given disease (phenotype) 
is selected, comparing the genome (code) of healthy and unhealthy people (step 1), it 
becomes possible to identify programming patterns that are hidden in the data (step 
2).  

 This is what we are doing in our PROS Research Center (within the VRAIN 
Research Institute at the Universitat Politècnica of València), and what we present 



 
here. Our strategy to advance in that direction is based on the need to distinguish 
clearly the two dimensions of knowledge that we discuss next:  

• A predictive knowledge, ML-oriented because once a phenotype is selected, it 
trains a function with the corresponding clinical data in order to predict if a 
person is positively diagnosed. 

• An explainable knowledge, that is CM-based: using a holistic conceptual 
model of the human genome, the relevant pieces of information are identified, 
and explanations associated to a provided prediction are given. 

The correct integration of these predictive and explainable knowledge facets can be 
seen as the two sides of the coin that any AI-based software platform for managing 
genome data must accomplish. Such a software platform must achieve the 
combination of i) the adequate use of ML techniques to get a right prediction 
(predictive knowledge dimension) with ii) a trustworthy explainable AI, based on a 
conceptual model that provides a common, shared under-standing of the domain in 
order to establish cause-effect relationships for understanding the biological behavior 
and explaining a given prediction (explainable knowledge dimension). 

3 The Predictive Knowledge Dimension (ML-oriented) 

Using ML techniques, what we refer to as “the magic of mathematics” makes possible 
to train an algorithm with data in order to generate a model that predicts valuable in-
formation with a maximum accuracy [Swanson et al. 2023] In clinical terms, this 
means to follow the process of: 

1. Selecting a phenotype of interest. 
2. Understanding the task to be performed and selecting the right scope. 
3. Creating the datasets by collecting the relevant data and improve its quality. 
4. Selecting the appropriate ML technique intended to deliver the most accurate 

results in the domain under analysis. 
5. Informing the final result. 

The final result is the prediction provided by the selected ML technique. This 
predictive knowledge dimension states that a given diagnosis is associated to the 
patient whose data analytics process has been accomplished. Large initiatives as The 
Cancer Genome Atlas (TCGA) provides an effective data background to train different 
ML approaches [Liñares-Blanco et al. 2021]. This knowledge dimension covers the 
fast-thinking perspective discussed in [Guizzardi et al. 2023], where a clear distinction 
in made between “fast thinking” (data-driven) and “slow thinking” (theory-driven) 
characterization. The “fast thinking” side of the coin focuses on learning from data 
even if a precise conceptual counterpart is lacking. Paraphrasing Immanuel Kant, 
“Concepts without data are empty; data without concepts are blind”: an explainable 



 
knowledge dimension is then needed to have the full picture (the “slow thinking” side 
of the coin). 

4 The Explainable Knowledge Dimension (CM-based) 

Explaining a prediction requires to use abstraction to understand what concepts are 
behind data representations, and what causal relationships explain natural effects. To 
do it well, any sound Explainable AI process must start with getting a shared 
understanding of the studied domain [Spreeuwenberg [S.d.]]. This is why the 
explainable knowledge dimension is CM-based: a holistic Conceptual Model of the 
Human Genome (CMHG) becomes a key artifact to identify relevant concepts that 
cover how genome, transcriptome and proteome are connected with the functional 
counterpart that pathways characterize. In several previous works we have presented 
and evolved such a CMHG, that provides the semantic basis to explain why a given 
prediction makes sense [Pastor et al. 2021] [Reyes Román et al. 2016] [Pastor 2008]. 

 This explainable dimension is about concepts’ identification, about how they 
relate to each other, and about how previous, reported associations between concepts 
and effects in the context of a particular disease explain the identification of a precise 
diagnosis. Additionally, this explainable dimension discovers connections between 
functional biological effects, and their “code” counterpart. Navigating through the 
CMHG, it is for instance possible to associate genome variations with functional 
problems that allow us to infer those programming patterns that lead to the emergence 
of the programming instructions of the Programming Language of Life, the grand 
challenge behind the final goal of our long-term research work: deciphering the 
language of life. 

 Looking at health problems as “software” bugs that can be first identified, then 
corrected (by using the recently discovered genome edition techniques, the CRISPR-
based approaches) opens a window of opportunity that has never before being possible 
to reach: to understand and subsequently manipulate the human genome. This is 
where SE and LE converge: LE-based solutions must now provide methods and tools 
to advance in how to make explainable the predictive, databased knowledge that is 
provided through genome sequencing. This is where integrating both types of 
knowledge with a sound, semantic ground becomes a need for any software platform 
to be designed and developed. 

5 Integration & Discussion 

We discuss in this section: i) how to integrate effectively the two knowledge 
dimensions that we have introduced before (predictive and explainable) in a software 
platform intended to manage valuable genomic data, and ii) what is our starting 



 
experience in developing such a software platform, called the “DELFOS Genome 
Oracle” [León Palacio et al. 2024](DELFOS in short from now on).  

 Making a reliable prediction and being able to explain it is the result of the 
proposed combination. AI-based software platforms that deal with sensitive data as 
the clinical ones must achieve the needed integration. Reusing the “coin” image for 
such a software platform, one side of it will provide the ML-based trained models that 
make accurate predictions, while a CM-based XAI process will articulate the other 
side of the coin.  

 Looking at a genome data management software platform from a holistic point 
of view, three steps conform its design process: 

1. Selection of the phenotype (disease) 
2. Development of an associated ML-based training model (predictive knowledge 

dimension) 
3. Analysis of the relevant genomic data whose effects have been reported in a 

genomic data source with a concrete clinical significance (explainable 
knowledge dimension). 

This what we are doing with our DELFOS platform in our Research Center 
(PROS@Vrain). For an initial set of phenotypes that include cardiopathies and 
pediatric oncology, with the support of clinical experts of three hospitals of the 
Valencian Community in Spain -Hospital La Fe and Hospital Clinic in Valencia, 
Hospital General in Alicante- and one local biotech company, we have developed the 
DELFOS software platform prototype, under the OGMIOS ResearchProject.  

 Reusing the DELFOS Oracle Greek mythology metaphor, we envision 
DELFOS as a platform that includes all the known genomic data for the phenotypes 
under study. Once a particular disease is selected from an initial set of available 
diseases, an individual user can enter DELFOS with her relevant information that can 
include two different types of genomic information:  

i) the set of features required by a ML prediction process, that should for instance 
include gene expression or DNA methylation, and  

ii) the information associated to the user’ sequenced genome, normally using 
standard file formats as VCF.  

This set of information has a twofold use:  

• The first one is used as input for the ML-based model that will give the 
predictive result, answering the question of “is the user affected by the 
disease?”. 

• The second one is used to explain why that prediction is provided. The 
explanation is based on the information included in the CMHG, whose 



 
concepts and relationships among concepts determine what effects explain 
why the reported health problem appears. 

An initial prototype of DELFOS is being designed to diagnose (using the predictive 
perspective) and explain (using the explainable perspective) if an individual is affected 
by a given disease and why. The explanation generates a clinical report that, for the 
selected disease, states which relevant genomic variants have been identified with 
which clinical significance.  

 Several challenges must be addressed as immediate next steps. Firstly, the 
platform must evolve according to how new genomic knowledge is generated. As the 
genome understanding is a scientific field which is in continuous development, new 
information can lead to new knowledge that should automatically update previous 
clinical reports. Under the explainable dimension, this happens for instance when one 
new combination of variants is reported to be associated with a particular disease: 
having the source patient sequence with these variants whose connection was initially 
unknown, the former clinical report can be timely corrected/updated. Under the 
predictive dimension, the ML-based model training strategy can lead to datasets that 
update the set of selected features depending on that new genomic information. 

 Secondly, under the predictive knowledge dimension the idea is to design a 
generic, phenotype-independent method for the ML-based training model process. It 
should provide a template including the steps to be followed when a new predictive 
genome service (for a new disease) is incorporated in DELFOS, together with the 
methodological guidance needed to assist in the selection of the right ML technique 
by characterizing different possible working contexts.  

 Thirdly, under the explainable knowledge dimension, a XAI-based process is 
also to be defined. Strictly based on the CMHG, this process is intended to characterize 
where to search for the right genomic information for a selected phenotype, how to 
identify the relevant information from the selected data sources, how to make all that 
relevant information persistent in a DB engine, and what interaction mechanisms 
have to be provided for access and querying. We have initial results focused on a 
subset of the CMHG concerning the genomic variation information. A method called 
SILE (for Search, Identification, Load and Exploitation) [Palacio and López 2018] has 
been designed in our Research Center, and it has been initially used under a set of 
practical projects with our clinical partners obtaining positive results [Costa et al. 
2022] [Costa et al. 2023]. 

 Finally, coming back to our Grand Challenge of deciphering the language of 
life, we keep a long-term objective with our proposal: the more data we accumulate 
in our DELFOS Oracle, the more information can be discovered about those 
programming patterns that are hidden in the data. Connections among data which is 



 
associated to different phenotypes can provide clues to understanding what are those 
programming language of life’ instructions. 

6 Conclusions 

Modern AI-based data management platforms must combine two essential knowledge 
dimensions:  

• a predictive one, that is databased, and uses ML techniques to infer valid 
knowledge from data without being able to semantically explain with a precise 
conceptual ground why a given prediction is provided. 

• an explainable one, that getting a shared understanding of a domain with a 
Conceptual Model, provides a symbolic knowledge with a precise semantics 
from where concrete explanations can be obtained.  

We have shown in this position paper how Life Engineering can be a discipline 
conceptually equivalent to Software Engineering, where from a reverse engineering 
perspective we have huge amounts data that need to be understood. To accomplish 
this challenge, these two knowledges’ dimensions (predictive and explainable) must 
be combined in a holistic software platform, as we are doing with our DELFOS 
approach. Our further work is oriented to extend our initial results to accumulating 
more data and generating more and more knowledge from that twofold knowledge 
integration strategy, having in mind the long-term Grand Challenge of deciphering 
the language of life with from our AI-based approach. 
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