Generacion de Pruebas Unitarias con LLMs en Entornos
Industriales: Desafios, Evolucion y Lecciones Practicas

Eneko Pizarro!, Maider Azanza?, Beatriz Pérez Lamancha'

'LKS Next
Goiru, 7
Arrasate-Mondragén, Espaiia

2Universidad del Pais Vasco (EHU/UPV)
Facultad de Informatica
Donostia-San Sebastian, Espafia

{epizarro,bperez}@lksnext.com, maider.azanza@ehu.eus

Abstract. Large Language Models (LLMs) show potential for automatically ge-
nerating unit tests, but their industrial application presents challenges. We pre-
sent a longitudinal case study on the implementation and evaluation of LLMs
for test generation at LKS Next, integrating standard tools such as SonarQu-
be. Our approach reveals findings on the temporal evolution of these technolo-
gies in production environments and provides learned lessons. The results offer
evidence-based industrial guidance for organizations considering adopting the-
se solutions, highlighting practical integration and maintainability considera-
tions often absent in theoretical studies.

Resumen. Los Modelos de Lenguaje de Gran Escala (LLMs) muestran poten-
cial para generar pruebas unitarias automdticamente, pero su aplicacion indus-
trial genera desafios. Presentamos un caso de estudio longitudinal sobre la im-
plementacion y evaluacion de LLMs para generacion de pruebas en la empresa
LKS Next, integrando herramientas estandar como SonarQube. Nuestro enfo-
que revela hallazgos sobre la evolucion temporal de estas tecnologias en entor-
nos de produccion y proporciona lecciones aprendidas. Los resultados ofrecen
una guia industrial basada en evidencia para organizaciones que consideran
adoptar estas soluciones, destacando consideraciones prdcticas de integracion
y mantenibilidad a menudo ausentes en estudios teoricos.

1. Introduccion

Las pruebas unitarias contindan siendo un aspecto critico y a la vez costoso en recursos
dentro del desarrollo de software. Las practicas modernas de desarrollo como DevSecOps
[Prates and Pereira 2025] demandan tanto velocidad como fiabilidad en la entrega conti-
nua del software. Esto implica contar con un conjunto completo de pruebas unitarias que
asegure la calidad del cédigo. Sin embargo, estudios recientes revelan que la escritura de
pruebas unitarias es una de las tareas que los desarrolladores disfrutan menos y que prefe-
ririan delegar a la inteligencia artificial [Sergeyuk et al. 2025], siendo ademds un proceso
costoso para la organizacion.

Debido a esto, con la emergencia de la Inteligencia Artificial Generativa (IAGen)
0, mds concretamente Modelos de Lenguaje de Gran Escala (LLMs por sus siglas en

inglés), las empresas estdn explorando su potencial para automatizar la generacioén de
pruebas unitarias y reducir la carga de trabajo de los desarrolladores. Si bien investiga-
ciones recientes han estudiado extensamente las capacidades de generacion de pruebas
mediante LLMs [Wang et al. 2024b], su adopcion industrial genera desafios que van mas
alla de los abordados en estudios académicos.

Un reto clave para las empresas que adoptan estas herramientas radica en su rapi-
da evolucioén: lo que era cierto sobre las capacidades de una herramienta hace seis meses
puede no reflejar su rendimiento actual. Esto es particularmente desafiante para organi-
zaciones que implementan pipelines de integracién/entrega continua (CI/CD), donde la
generacion de pruebas unitarias debe integrarse perfectamente con los flujos de trabajo
existentes y mantener estindares de calidad consistentes, sin estar a expensas de la evolu-
cion de las capacidades de los LLLM subyacentes.

Este trabajo presenta un marco practico para la evaluacion continua de generado-
res de pruebas unitarias basados en LLMs en entornos industriales, ilustrado mediante un
estudio longitudinal de las capacidades de GitHub Copilot en LKS Next.

Las contribuciones principales de este trabajo son:

1. Un marco practico de medicién aplicado en un entorno industrial para la evalua-
cién continua de LLMs en la generacion de pruebas unitarias.

2. Un andlisis longitudinal que muestra la evolucion temporal de las capacidades de
los LLMs en la generacién de pruebas en un contexto productivo.

3. Lecciones aprendidas para otras organizaciones que estén considerando la adop-
cion de los LLMs para la automatizacion de pruebas unitarias.

2. Motivacion: el Caso de LKS Next

LKS Next!, la organizacién donde se realiza esta investigacion, es una empresa de con-
sultoria tecnoldgica que ofrece soluciones personalizadas utilizando diversas tecnologias
y lenguajes de programacion. La empresa sigue metodologias dgiles y practicas DevSe-
cOps [Prates and Pereira 2025] para desarrollar software seguro y de alta calidad que sea
mantenible durante todo su ciclo de vida. En este contexto, las pruebas representan un
desafio critico. La empresa debe generar suficientes pruebas para garantizar la calidad
de sus proyectos, equilibrando la rigurosidad con la eficiencia en costos y tiempo, para
optimizar su salida al mercado.

Las pruebas automatizadas en entornos DevSecOps proporcionan ventajas es-
tratégicas y operativas significativas, garantizando la verificacion consistente y repetible
de la funcionalidad del software. Este enfoque sistemdtico minimiza los tiempos de eje-
cucion, mide la cobertura de codigo y facilita la integracion continua, proporcionando
retroalimentaciéon inmediata sobre los cambios. La infraestructura DevSecOps utiliza en
los proyectos de la empresa, ejecuta automdticamente con cada commit una serie de pasos
(pipeline de desarrollo) que incluyen: compilacion, ejecucion de pruebas unitarias y de
integracion, andlisis de la calidad y seguridad del cddigo y verificacion de la seguridad
de sus dependencias. A continuacién, se despliega la nueva version al entorno correspon-
diente (desarrollo, pruebas, etc.).

'"https://www.lksnext.com/es/

https://www.lksnext.com/es/

La irrupcién de herramientas de IA, particularmente los LLM, promete soluciones
que parecen mejorar mucho la productividad en todas las areas del desarrollo del software,
incluyendo el testing. Las empresas sienten la presion de adoptar herramientas de 1A
generativa en los desarrollos, pero requieren garantias de sus resultados antes de utilizarlas
en entornos productivos. Hasta ahora, el cddigo generado por la IA requeria una revision
y modificacion significativas para cumplir con los estdndares de la organizacion, pero esto
ha ido cambiando a medida que aparecen nuevas herramientas o nuevas versiones de las
mismas.

A esto se suma la proliferacion de herramientas de IA generativa, que implica de-
cidir qué herramienta es la mds adecuada. El modelo de pago por token introduce costes
variables que escalan con el uso, por lo que las organizaciones deben equilibrar produc-
tividad, los gastos en IA y la confiabilidad en la solucion resultante. Es por ello que las
empresas requieren mecanismos para validar y revisar el cédigo generado por IA. En el
caso del presente trabajo, el objetivo es la generacion de pruebas unitarias, ya que juegan
un papel crucial en los procesos DevSecOps.

Establecer un marco de referencia para poder comparar los LLMs y sus versiones
en el tiempo resulta crucial para las empresas. Este marco de referencia debe tener en
cuenta las técnicas de generacion de casos de prueba, tanto estructurales como basadas
en conocimiento de expertos, midiendo la cobertura de las pruebas generadas, el grado de
parametrizacion y el grado de aislamiento de las pruebas unitarias mediante técnicas de
dobles de pruebas (mocks).

Para abordar estos desafios en un contexto industrial real, desarrollamos y aplica-
mos un marco sistematico de evaluacion que presentamos a continuacion.

3. Estructura del Marco: Métricas y Categorias de Evaluacion

El acelerado desarrollo de las capacidades de los LLMs requiere un marco sélido, repro-
ducible y longitudinal para evaluar la calidad de las pruebas generadas. Nuestro enfoque
responde a los desafios especificos de las pruebas generadas por inteligencia artificial a
través de un sistema de evaluacion que prioriza la reproducibilidad, la integracion con
herramientas industriales estandar y facilita la evaluacién continua a lo largo del tiempo.

Para analizar la capacidad de los LLMs en la generacién de pruebas unitarias,
hemos desarrollado un conjunto de métricas organizadas en tres categorias: (1) métricas
de calidad de cédigo, (2) métricas estructurales y (3) métricas basadas en el conocimiento
de expertos. Estas métricas se integran mediante un modelo de ponderaciéon que permite
calcular una valoracién cuantitativa para cada LLLM, facilitando la comparacién objetiva
entre diferentes modelos y sus versiones a lo largo del tiempo.

3.1. Meétricas de Calidad de Codigo

Las métricas de calidad del codigo se centran en dos aspectos: la compilacién y el anéli-
sis estatico de las pruebas IAGen. La compilacion representa el nivel mas bésico de eva-
luacién y, aunque seguramente se elimine del marco de evaluacion en el futuro dada la
mejora en las pruebas IAGen (véase el apartado Resultados), resulta relevante ya que nos
permite apreciar el progreso que los distintos LLLM han tenido a lo largo de la toma de las
mediciones. En nuestras pruebas iniciales observamos que los LLM introducian frecuen-

Tabla 1. Métricas de calidad de codigo

Métrica Definicion Medicion

Incidencias Mide problemas en el uso de bibliotecas ex- Cantidad de errores de compilacién
de compila- ternas y declaraciones de importacion, uso in- encontrados en las pruebas IAGen
cién correcto de elementos especificos del proyec-

to (clases, métodos, constructores), problemas

de correccidn sintdctica y estructural basica del

codigo de prueba generado y cantidad de erro-

res de compilacion encontrados en las pruebas

IAGen.

Incidencias Mide incidencias encontradas con la herra- Cantidad de incidencias encontradas
de andlisis mienta Sonarqube, siguiendo el perfil Sonar- en el andlisis de c6digo estatico de las
estitico de Way [Campbell and Papapetrou 2013]. Calcula pruebas [AGen
codigo la mantenibilidad, confiabilidad y seguridad del

codigo de las pruebas TAGen.

temente fallos de compilacion en las clases de las pruebas, evitando poder tomar métricas
de ejecucion.

Por otro lado, es importante evaluar la calidad del c6digo generado, para lo cual
utilizamos la herramienta de andlisis estético de cédigo Sonarqube?, que proporciona re-
glas especificas para analizar la mantenibilidad, confiabilidad y seguridad del codigo ge-
nerado. Herramientas como Sonarqube son especialmente importantes en entornos indus-
triales, ya que permiten hacer un seguimiento de la calidad del cédigo previo a la puesta
en produccién como parte integral de los desarrollos DevSecOps.

La Tabla 1 describe las métricas incidencias de compilacion e incidencias de
andlisis estdtico de codigo y codmo se miden. Consideramos que esta categoria de métricas
es objetiva, ya que los resultados serdn los mismos, sin depender de un juicio experto que
los valide. Ademas, consideramos que las métricas en esta categoria penalizan al resulta-
do final del LLM siendo evaluado, ya que a mayor cantidad de errores de compilacion o
mayor cantidad de incidencias de calidad de c6digo, peores son las pruebas IAGen.

3.2. Meétricas Estructurales

Las métricas estructurales evaltian el grado en que las pruebas IAGen ejercitan el codigo
bajo prueba. Estas métricas miden aspectos de cobertura del cédigo siguiendo distintas
técnicas. Ademds, hemos incorporado una métrica para determinar el grado de aislamien-
to en pruebas unitarias que alcanzan las pruebas IAGen.

La Tabla 2 muestra las cuatro métricas que utilizamos en este apartado. Las tres
primeras tienen que ver con la cobertura de cddigo, partiendo de la mas simple, la cober-
tura de lineas, que indica las lineas de cddigo que han sido ejecutadas con las pruebas
IAGen. Este criterio es necesario pero no suficiente, por lo que ademdas hemos incluido la
cobertura de condiciones, donde se evalda que cada condicion haya sido evaluada como
verdadera y falsa. Un criterio atin més restrictivo es el de cobertura de condicion/decision,
donde se pide que todas las decisiones dentro de una condicion sean probadas al ejecutar
las pruebas [H. Washizaki 2024].

https://www.sonarsource.com/products/sonarqube

https://www.sonarsource.com/products/sonarqube

Tabla 2. Métricas estructurales

Métrica

Definicion

Medicion

Cobertura de
lineas

Porcentaje de lineas de cddigo que se han eje-
cutado con las pruebas IAGen [ISO 2021]

(Cantidad de lineas ejecutadas por los
test [AGen / Total de lineas ejecuta-
bles) x 100

Cobertura de
condiciones

Pocentaje de condiciones que se han ejecutado
con las pruebas IAGen. Prueba que cada condi-
cion del codigo sea ejecutada al menos una vez
[ISO 2021]

(Cantidad de condiciones evaluadas
por las pruebas IAGen/ Total de con-
diciones) x 100

Cobertura
de condi-
cion/decision

Pocentaje de condiciones y decisiones que se
han ejecutado con las pruebas IAGen. Prue-
ba cada decisién dentro de una condicidn.
[ISO 2021]

(Cantidad de condiciones y decisio-
nes ejecutadas por las pruebas IAGen
/ Total de condiciones y decisiones) x
100

Aislamiento
de las prue-
bas

Evalda cuan bien las pruebas IAGen crean ob-
jetos simulados (mocks, stubs, etc.) que al eje-
cutarse cuenten con todo lo que necesita de su

(Cantidad de pruebas IAGen aisladas
/ Cantidad de pruebas aisladas que se
esperaban) x 100

entorno. [Freeman et al. 2004]

Para la evaluacién de estas métricas de cobertura, existen herramientas que fa-
cilitan su computo automadtico. En nuestro caso, para el lenguaje Java, hemos empleado
Jacoco 3, que proporciona reportes detallados sobre la cobertura alcanzada por las pruebas
IAGen en cada una de estas dimensiones.

Ademads de la cobertura, es esencial considerar el aislamiento en las pruebas unita-
rias. Por definicion, estas se centran en probar clases individuales y garantizar su correc-
to funcionamiento, controlando todos los aspectos del contexto en el cual la clase bajo
prueba es ejecutada. Para lograr este aislamiento, se reemplazan los colaboradores reales
por dobles de pruebas ("test doubles”), implementaciones simuladas que separan el codi-
go bajo prueba de dependencias externas como capas de servicios, sistemas y recursos
[Kaczanowski 2013].

En este contexto, hemos definido la métrica Aislamiento de las pruebas para eva-
luar si las pruebas IAGen manejan apropiadamente estas dependencias, aislando el codigo
de distracciones introducidas por servicios web, sistemas de archivos, bases de datos o
software de terceros, mientras validan que el cédigo aislado funciona segtn lo esperado.
Esta métrica también tiene caricter objetivo, puesto que las pruebas unitarias sin un aisla-
miento adecuado no podran ejecutarse correctamente en entornos de integracion continua,
donde frecuentemente no se dispone del entorno completo de ejecucion.

3.3. Métricas Basadas en el Conocimiento de Expertos

Estas métricas se fundamentan en los requisitos y especificaciones del sistema, utilizando
técnicas de caja negra. Su objetivo principal es determinar en qué medida las pruebas
IAGen consideran los aspectos funcionales del cédigo bajo prueba. A diferencia de las
categorias anteriores, que se basan en criterios objetivos, la categoria de métricas basadas
en el conocimiento de expertos incorpora elementos subjetivos que requieren validacion
especializada.

3https://github.com/jacoco/jacoco

Tabla 3. Métricas basadas en el conocimiento de expertos

Métrica Definicién Medicién
Cobertura de Una clase de equivalencia es un subconjunto de (Cantidad de particiones de equi-
Particion de los datos que se consideran iguales por el sis- valencia identificadas por las prue-
Equivalencia tema bajo prueba [ISO 2021]. Evalda qué por- bas IAGen / Total de clases de
centaje de la clases de equivalencia identifi- equivalencia identificadas por ex-
cadas por expertos han sido cubiertas por las pertos)x100
pruebas IAGen
Cobertura de El andlisis de valor limite se centra en los limi- (Cantidad de valores limites encon-

Valores Limites

tes de las clases de equivalencia. Se prueban va-
lores por debajo y por encima de dichos limites
[ISO 2021]. Evalda qué porcentaje de los valo-
res limites identificados por expertos han sido
cubiertos por las pruebas IAGen

trados por las pruebas IAGen / To-
tal de valores limites identificados
por expertos) x 100

Parametrizacion
de las pruebas

La parametrizaciéon de las pruebas uni-
tarias y de integraciéon permite reutilizar
pruebas con distintos conjuntos de datos
[Tillmann and Schulte 2005]. Evalia que por-
centaje de parametrizaciones han sido realiza-
das correctamente por las pruebas IAGen

(Cantidad de prueba IAGen que se
han parametrizado correctamente /
Cantidad de pruebas que se espera-
ba parametrizar) x 100

Cobertura de Porcentaje de pruebas unitarias generadas por (Cantidad de pruebas replicadas
Pruebas de IAGen que replican pruebas manuales de ex- por la IA Gen / Cantidad de prue-
Referencia pertos, las cuales cumplen con los estandares bas manuales generadas por exper-

minimos de calidad de la empresa. Evalia la

tos) x 100

capacidad del LLM para igualar el enfoque y
rigor de desarrolladores en un entorno indus-
trial.

Para establecer una base de comparacion o ground truth, hemos desarrollado prue-
bas manuales de referencia por cada caso analizado, avaladas por expertos de la empresa.
Este enfoque nos permite contrastar las pruebas generadas por IAGen con aquellas que se
obtendrian mediante un desarrollo manual en el mismo entorno empresarial. Si bien estas
métricas incluyen juicios subjetivos utilizando técnicas de caja negra—que pueden con-
siderar distintos valores de prueba segtin el criterio del tester—ofrecen una perspectiva
valiosa sobre la calidad practica de las pruebas automatizadas.

La Tabla 3 describe las métricas que utilizamos en este apartado. La técnica de
Farticion de Equivalencia divide los datos de entrada en clases que el sistema bajo prue-
ba procesa de la misma manera. Complementariamente, la técnica de Andlisis de Valores
Limites se centra en examinar los bordes de estas clases de equivalencia, evaluando valo-
res cercanos a los limites donde suelen ocurrir mas errores [ISO 2021]. La efectividad de
ambas técnicas depende fundamentalmente de la correcta identificacion de las clases de
equivalencia, tarea que requiere el juicio experto de profesionales en pruebas.

Particularmente importante en entornos industriales resulta la Parametrizacion de
las pruebas, que permite reutilizar las pruebas con diferentes conjuntos de datos para
verificar su funcionamiento bajo diversas condiciones. Las pruebas unitarias parametri-
zadas mejoran la reutilizacion, mantenibilidad y documentacién del proceso de pruebas
[Tillmann and Schulte 2005], aspectos cruciales para la sostenibilidad a largo plazo de los
juegos de pruebas.

Férmula para evaluar cada ejemplo Valoracién del LLM

Categoria Métrica Final para valorar el LLM del LLM
_ . Valoracién IC para el LLM = -{IC para
. Total de Incidencias de compilacion (IC)* -20% IC para el LLM = E(ILCLaara cada ejemplo del el LLM / MAXIMQ{IC para todos los
“g:}ﬁzs‘ie) LLMs))x20%
codiao o i . _ - Valoracién IAC para el LLM = {IAC
E g Total de Inmdenaalggfmallsm de Codigo 5 IAC para el LLM d}jl(ﬁ%?ara cada ejemplo para el LLM / MAXIMO(IAC para todos
g € los LLMs))x5%
) . CL para el LLM = 3(CL para cada ejemplo
& Cobertura de Lineas (CL) del LLM) / Total de ejemplos
o -
= Cobertura de Condiciones (CC) CC para el LLM = 3 (CC para cada ejemplo | yglgracion de Métricas Estruciurales
E Métricas s0% del LLM) / Total de ejemplos para el LLM = PROMEDIO(CL para el
Estructurales L L CCD para el LLM = ¥(CCD para cada LLM, CC para el LLM, CCD para el
Cobertura de Condicion/ Decision (CCD) ejemplo del LLM) / Total de ejemplos LLM, AP para el LLM)x50%
r r AP para el LLM = (AP para cada ejemplo
Aislamiento de las Pruebas (AP) del LLM) / Total de ejemplos
Cobertura de Particion de Equivalencia CPE para el LLM = ¥(CPE para cada
§ T (CPE) ejemplo del LLM) / Total de ejemplos
- 0
55 = a cvL = Valoracion de Métricas basadas en la
= Métricas o para el LLM = 3(CVL para cada . e
ER basadas enel ol e O ejemplo del LLM) / Total de ejemplos Especificacion para el LLM =
8 conocimiento de 50% PROMEDIO(CFPE para el LLM, CVL
§ o expertos PP para el LLM = 3(PP para cada ejemplo | Para el LLM, PP parael LLM, CPR
o = i i0 - "
5 A OB R iR (i del LLM) { Tatal de ejemplos para el LLM)x50%
‘5 35
| . CPR para el LLM = ¥(CPR para cada
Cobertura de Pruebas de Referencia (CPR) ejemplo del LLM) / Total de ejemplos

Figura 1. Modelo de ponderacion para valorar cada LLM

Finalmente, la Cobertura de Pruebas de Referencia establece una comparacion di-
recta entre las pruebas generadas automaticamente y aquellas desarrolladas manualmente
por los expertos, las cuales cumplen con los estindares minimos de calidad estableci-
dos por la empresa. Esta métrica evalua la capacidad del LLM para replicar patrones,
escenarios y enfoques considerados fundamentales por desarrolladores experimentados
en un entorno industrial. Ademads, permite identificar discrepancias entre los enfoques
automatizados y manuales [Kracht et al. 2014], sefalando posibles dreas de mejora en la
generacion de pruebas mediante LLM.

3.4. Modelo de Ponderacion de Métricas de Prueba

Para evaluar de manera integral la calidad de las pruebas generadas por LLMs, hemos
desarrollado un modelo de ponderacion que combina las métricas previamente descritas
en una valoracién cuantitativa consolidada. Este modelo equilibra factores objetivos y
subjetivos, permitiendo comparaciones sistematicas entre diferentes modelos LLM y sus
evoluciones temporales.

El modelo estructura las métricas en las tres categorias fundamentales ya presen-
tadas:

= Métricas de calidad de codigo: Evalian aspectos técnicos basicos como la com-
pilabilidad y la calidad estructural del c6digo generado.

» Métricas estructurales: Miden la efectividad de las pruebas para ejercitar el cédigo
bajo andlisis y su capacidad de aislamiento.

» Métricas basadas en el conocimiento de expertos: Valoran aspectos funcionales y
de disefio que requieren juicio especializado.

Para reflejar tanto criterios objetivos como subjetivos, asignamos una ponderacion
equitativa del 50 % a las métricas objetivas (combinando calidad de cédigo y estructura-
les) y 50 % a las métricas subjetivas (basadas en conocimiento experto). Esta distribucién
equilibrada reconoce la importancia complementaria de ambas dimensiones en la evalua-
cion de pruebas unitarias en entornos industriales.

Un aspecto distintivo de nuestro modelo es el tratamiento de las Métricas de ca-
lidad de cddigo como factores de penalizacion. Dado que los errores de compilacion
imposibilitan la ejecucion de pruebas, la métrica incidencias de compilacion reduce un
20 % del puntaje total. Similarmente, la métrica incidencias del andlisis estdtico de codi-
go penaliza un 5 % adicional, reflejando su impacto en la mantenibilidad a largo plazo.

La Figura 1 muestra el modelo completo con las ponderaciones asignadas a cada
métrica y las formulas utilizadas para los calculos. Para las métricas de penalizacion (IC
e [AC), se realiza la sumatoria de incidencias detectadas en todos los ejemplos evaluados.
Para las demds métricas, se calcula la puntuaciéon promedio de los valores obtenidos en
los ejemplos.

Es importante destacar que los pesos especificos reflejan las prioridades de LKS
Next, y el marco estd disenado para ser adaptable. Otras empresas pueden ajustar estas
ponderaciones segun sus propios criterios de calidad y objetivos estratégicos, mantenien-
do la estructura general del modelo como base para evaluaciones comparativas coherentes.

4. Aplicacion Practica: Procedimiento y Herramientas

Para abordar los desafios de evaluacion de pruebas unitarias generadas por LLMs en un
contexto industrial real, hemos definido una metodologia sistemética que permite tanto la
evaluacién objetiva como la mejora progresiva de los resultados. Nuestro enfoque se ca-
racteriza por su naturaleza iterativa, su integracion con herramientas industriales estandar
y su capacidad para adaptarse a la rdpida evolucion de las capacidades de los LLMs. A
continuacion, detallamos este proceso, comenzando por la estructura general del flujo de
trabajo de evaluacion.

4.1. Proceso y Entorno Iterativo de Evaluacion

El proceso inicia con una fase de preparacion donde configuramos el entorno de desarro-
llo, establecemos las dependencias y herramientas de compilacién e implementamos la
infraestructura de recopilacion de datos para el seguimiento de métricas.

Un componente crucial de esta fase preparatoria es el desarrollo de pruebas de
referencia por parte de expertos. Estas pruebas sirven como estidndar de comparacion
(ground truth) y se crean siguiendo las mejores practicas de la organizacién, como se ha
detallado en secciones anteriores.

Una vez completada la preparacion, iniciamos un ciclo iterativo estructurado que
consta de cuatro pasos principales:

1. Generacion de Pruebas: Utilizamos el LLM con el prompt actual (inicial o refi-
nado) para generar pruebas unitarias para el c6digo objetivo.

2. Analisis Multidimensional: Evaluamos las pruebas generadas mediante todas las
métricas definidas en nuestro marco, contrastidndolas directamente con las pruebas
de referencia para las métricas basadas en conocimiento experto.

3. Identificacion de Deficiencias: Determinamos qué aspectos especificos de las
pruebas generadas difieren de las pruebas de referencia, como la falta de cobertura
en ciertas condiciones, la ausencia de particiones de equivalencia relevantes, o
deficiencias en el aislamiento.

4. Refinamiento del Prompt: Modificamos el prompt para abordar explicitamente
las deficiencias identificadas. Por ejemplo, si las pruebas de referencia utilizan
dobles de prueba para aislar componentes externos mientras las pruebas IAGen
no lo hacen, refinamos el prompt para enfatizar esta técnica.

Este ciclo se repite hasta que: (1) las pruebas generadas se aproximan suficiente-
mente a la calidad de las pruebas de referencia segin nuestro modelo de ponderacién, o
(2) se alcanza un punto donde refinamientos adicionales no producen mejoras significati-
vas.

Las pruebas de referencia cumplen asi una doble funcién: como parametro de eva-
luacién contra el cual se mide el rendimiento de las pruebas generadas, y como guia para
el refinamiento especifico de los prompts. Esta estrategia nos permite abordar sistemati-
camente las brechas de calidad y mejorar progresivamente la capacidad de los LLMs para
generar pruebas que sean aplicables en entornos industriales.

4.2. Seleccion de Ejemplos a Probar y Pruebas de Referencia

Para garantizar una evaluacion robusta y significativa, hemos aplicado criterios especifi-
cos en la seleccion de los ejemplos de prueba. Primero, seleccionamos cédigo que no
contara con pruebas preexistentes, ya que nuestras evaluaciones exploratorias iniciales
revelaron un fendmeno de “fuga de datos”(data leakage) donde los LLMs, al estar en-
trenados con repositorios publicos, reproducian pruebas existentes en lugar de generar
nuevas [Lopez et al. 2025, Wu et al. 2024]. Esto habria distorsionado nuestra evaluacion,
ofreciendo una vision artificialmente optimista de sus capacidades reales.

Adicionalmente, dado que nuestro estudio se centra en la aplicacién industrial
practica, priorizamos funciones y clases representativas de escenarios reales de desarrollo
corporativo. Estos ejemplos debian reflejar patrones comunes y desafios habituales en-
contrados en proyectos empresariales, asegurando asi la relevancia de nuestros hallazgos.

Considerando estos requisitos y las limitaciones practicas asociadas a la evalua-
cion experta manual, seleccionamos siete funciones que representan diversos desafios de
prueba frecuentes en entornos industriales:

= Ensamblador de Alquileres (assemble): Método complejo que involucra
multiples objetos de dominio y requiere simulacién (mocking) de bases de datos.

= Comprobador de Nimeros Primos (i sPrime): Funcién con alta complejidad
ciclomdtica y manejo de excepciones.

= Gestion de Usuarios (addUser): Manejo de condiciones nulas (null) y simula-
cion de acceso a bases de datos.

= Calculadora de Bonificaciones (get Bonus): Logica condicional compleja con
dependencias externas.

= Validador de IPV4 (i sIPV4Valid): Requiere pruebas de integracion mediante
funciones auxiliares.

= Numero Estrobogramatico (i sSt robogrammic): Manipulacién de estructu-
ras de datos.

= Detector de Palindromos (palindrome): Integracion de miltiples funciones.

Para cada una de estas funciones, expertos en pruebas de la empresa desarrollaron
pruebas de referencia siguiendo las mejores practicas y estandares de calidad establecidos.

Estas pruebas de referencia constituyeron nuestro ground truth contra el cual evaluamos
las pruebas generadas por los LLMs.

4.3. Metodologia de Ingenieria del Prompt

Nuestro enfoque de ingenieria de prompts se fundamenta en una estrategia de Prompt
Chaining [Wu et al. 2022], disefiada para guiar a los LLMs en la generacién de prue-
bas unitarias que cumplan con los estdndares de calidad industrial. Esta técnica divide el
proceso de generacion en componentes secuenciales que abordan diferentes aspectos de
las pruebas, permitiendo un control mas preciso sobre los resultados. El desarrollo del
prompt siguié un proceso iterativo alineado con nuestro marco de evaluacion, refindndo-
lo progresivamente segun los hallazgos cuantitativos de cada iteracion. Nuestro anélisis
revel6 que el uso del inglés mejoraba significativamente los resultados en comparacién
con el espanol, lo que es consistente con otros estudios sobre el impacto del idioma en la
generacion de cddigo mediante LLMs [Jiang et al. 2024, Wang et al. 2024a]. El prompt
final optimizado, disponible en nuestro paquete de replicacion, se estructura en cuatro
componentes principales:

1. Calidad de cédigo y analisis estatico: Instrucciones especificas para evitar inci-
dencias detectables por SonarQube, incluyendo directivas como: "When creating
the test class, do not generate any line of code that could create any Issue, nor
Bug nor Code Smell.”

2. Cobertura estructural: Requisitos explicitos para maximizar la cobertura, por
ejemplo: “You must use the White Box method using Condition/Decision cove-
rage, so use the truth tables to cover all the cases of the composed condition
statements” y I need a 100 % of line, condition and condition/decision coverage.”

3. Técnicas de caja negra: Instrucciones para implementar particion de equivalen-
cias y andlisis de valores limite: ”You must do the Black Box testing using equiva-
lence partitioning and boundary value analysis. If you find redundancy with any
of the other methods, remove the redundant tests.”

4. Buenas practicas de ingenieria de pruebas: Directrices sobre estructura, no-
menclatura y técnicas de refactorizacién: Use proper naming conventions for the
tests and structure them correctly. If there is repeated code you must use @ Befo-
reAll, @BeforeEach @AfterAll and @AfterEach statements.”

Este enfoque estructurado nos permitié mejorar progresivamente la calidad de las
pruebas generadas, abordando sistematicamente las debilidades identificadas en cada ite-
racion del proceso evaluativo.

4.4. Infraestructura y Herramientas

Nuestro marco de evaluacion emplea herramientas estdndar de la industria para garantizar
la robustez y reproducibilidad del andlisis. Para la ejecucion y parametrizacion de pruebas
utilizamos JUnit, mientras que el anélisis estatico se realiza mediante Sonarqube Cloud y
Sonarqube IDE, herramientas que proporcionan las métricas de calidad del cédigo. La co-
bertura se analiza con JaCoCo, que ofrece informes detallados sobre lineas, condiciones
y decisiones ejecutadas. Todo el proceso se integra en un flujo de trabajo automatizado
utilizando GitHub y GitHub Actions como plataformas de control de versiones y CI/CD,
respectivamente. La gestion de dependencias se centraliza mediante Maven, asegurando

asi la reproducibilidad de las compilaciones y la coherencia en las versiones de las he-
rramientas a lo largo de todas las evaluaciones. Esta infraestructura, ademas de facilitar
la evaluacion sistematica, refleja el entorno real de desarrollo industrial, aumentando la
validez externa de nuestros resultados.

5. Resultados

Nuestro anélisis abarca la evolucion de GitHub Copilot entre marzo y diciembre de 2024,
ofreciendo una perspectiva longitudinal sobre como esta herramienta de generacion auto-
matizada ha mejorado sus capacidades para crear pruebas unitarias en entornos industria-

les.

Categoria

Métricas de
Calidad de
Caodigo

Nombre de Métrica

Total de Incidencias de
e

Peso

-20%

ChatGPT-4-1° Vez
(Marzo 2024)

31

ChatGPT-4 -
Iterativo (Mayo
2024)

o1-Mini (Dic.2024) GPT-o (Dic.2024)

2

o1-Preview (Dic.
2024)

6n (IC)*

Total de Incidencia de Analisis de
Cédigo (IAC)*

-5%

45

18

10

29

15

Métricas
Estructurales

Métricas Objectivas

Cobertura de Lineas (CL)

39,14%

65,57%

28,57%

70,14%

98,00%

Cobertura de Condiciones (CC)

39,14%

65,567%

28,57%

71,29%

95,71%

Cobertura de Condicion/Decisiéon

CD)

50%

36,57%

61,57%

28,57%

68,29%

95,71%

Aislamineto de las Pruebas (AP)

85,71%

100,00%

100,00%

100,00%

100,00%

Métricas

Cobertura de Particion de
Equivalencia (CPE)

71,19%

75,00%

85,12%

79,88%

84,52%

Cobertura de Valores Limite (CVL)

69,39%

71,77%

83,67%

78,20%

81,63%

enel
Conocimiento
de Expertos

Métricas Subjetivas
(Juicio de
Expertos)

Parametrizacion de las Pruebas

50%

12,70%

38,89%

88,10%

83,81%

91,84%

Cobertura de Pruebas de
Referencia (CPR)

65,77%

75,36%

81,57%

66,23%

97,94%

Evaluacion del Peso Total

*Errores de compilacion sobre el valor maximo de las iteraciones

Figura 2. Resumen de los resultados obtenidos (marzo 2024 - diciembre 2024)

La Figura 2 presenta un resumen completo de los resultados obtenidos. Es impor-
tante destacar que GitHub Copilot ha ido evolucionando en el periodo analizado, incorpo-
rando diferentes modelos LLM subyacentes. En nuestra primera evaluacion (marzo 2024),
Copilot utilizaba ChatGPT-4 como modelo base. En evaluaciones posteriores, Copilot in-
corpor6 nuevos modelos como GPT-4-turbo (mayo 2024), o1-Mini (octubre 2024), GPT-o
y ol-Preview (diciembre 2024), lo que nos ha permitido observar cémo la herramienta ha
mejorado sus capacidades a medida que integra modelos mas avanzados.

Respecto a las métricas de calidad de cddigo, observamos una mejora notable y
consistente. El total de incidencias de compilacion muestra una clara tendencia descen-
dente, comenzando con 31 incidencias en la primera evaluacién con ChatGPT-4 (marzo
2024) y reduciéndose a 0 con ol-Preview (diciembre 2024). De manera similar, las in-
cidencias de andlisis de cddigo disminuyeron desde 45 hasta 15 en la configuracion mas
reciente, evidenciando una mejora sustancial en la calidad estructural del codigo genera-
do.

En el ambito de las métricas estructurales, los avances son igualmente significati-
vos. La cobertura de lineas aumentd desde un modesto 39,14 % inicial hasta un notable
98 % con ol-Preview. La cobertura de condiciones y la cobertura de condicion/decision
siguieron una progresion similar, alcanzando ambas un 95,71 % en la configuracion mas
reciente. Particularmente destacable es el aislamiento de las pruebas, que alcanzé y man-
tuvo un rendimiento 6ptimo del 100 % en las tres dltimas evaluaciones.

Las métricas basadas en conocimiento de expertos también reflejan mejoras sus-
tanciales. La cobertura de particion de equivalencia mejor6 desde un 71,19 % hasta al-

canzar un 84,52 % con ol-Preview. Especialmente notable es el progreso en la parametri-
zacion de las pruebas, que evolucion6 desde un modesto 12,70 % hasta un sobresaliente
91,84 %. La cobertura de valores limite y la cobertura de pruebas de referencia también
experimentaron mejoras significativas, alcanzando 81,53 % y 97,94 % respectivamente en
la configuracién mads reciente.

La evaluacion del peso total, calculada segtin nuestro modelo de ponderacion, re-
fleja esta tendencia positiva, evolucionando desde un 27,45 % inicial hasta un 91,49 %
con ol-Preview. Esta progresion evidencia como GitHub Copilot ha mejorado consisten-
temente su capacidad para generar pruebas de calidad industrial a medida que integra
modelos LLM mas avanzados..

6. Lecciones Aprendidas

Este trabajo nos ha permitido extraer lecciones aprendidas que son susceptibles de ser
generalizadas a otras organizaciones. En primer lugar, el marco ha tenido un impacto
directo en la toma de decisiones de la organizaciéon. En marzo de 2024, cuando GitHub
Copilot generaba pruebas que apenas compilaban y requerian considerable intervencion
manual, la inversién en esta tecnologia probablemente hubiera aumentado el esfuerzo
de pruebas en lugar de reducirlo. Sin embargo, las mejoras observadas en diciembre de
2024 (ver seccidn anterior) han llevado a la organizacién a revaluar su postura, ya que los
ultimos resultados sugieren potenciales ganancias en productividad con su uso.

Ademas, ha quedado de manifiesto la necesidad de realizar una evaluacién longi-
tudinal continua. La rdpida evolucién de las capacidades de los LLMs significa que las
evaluaciones se desactualizan rdpidamente. Lo que era cierto sobre hace seis meses pue-
de no reflejar el rendimiento actual. Las organizaciones necesitan mantener procesos de
evaluacion continuos en lugar de basarse en evaluaciones puntuales.

En tercer lugar, se reafirma la necesidad de la supervision por expertos. A pesar
de las altas puntuaciones alcanzadas en nuestras métricas, ésta sigue siendo esencial. Las
métricas basadas en conocimiento experto muestran que, si bien los LLMs han mejorado
en la aplicacion de técnicas de prueba, atin no igualan la experiencia humana en decisiones
de disefio de pruebas. Cabe recalcar que los ejemplos utilizados son basicos, pero por la
tendencia que vemos, dichos ejemplos deberan ser escalados a ejemplos mas complejos.

Estos hallazgos sugieren que, aunque las herramientas de generacion de pruebas
basadas en LLLMs son cada vez mds viables para uso industrial, su adopcion exitosa re-
quiere tanto marcos de evaluacion sistematicos como expectativas realistas. Las empresas
deberian ver estas herramientas como ayudas para aumentar la productividad del desarro-
llador, no como reemplazos del conocimiento experto.

7. Limitaciones y Amenazas a la Validez

Nuestro estudio presenta ciertas limitaciones que deben considerarse al interpretar los
resultados:

Validez de Constructo: Aunque nuestro marco es exhaustivo, podria no captar
todos los aspectos relevantes del valor real de las pruebas generadas por LLMs. Para
mitigar esto, combinamos métricas automatizadas con evaluaciones expertas validadas
por profesionales de QA experimentados.

Validez Interna: La mejora observada podria atribuirse tanto a la evolucién natu-
ral de los LLMs como al refinamiento de nuestras estrategias de prompt. Hemos documen-
tado rigurosamente los cambios metodoldgicos y validado mediante multiples ejecuciones
para aislar estos factores.

Validez Externa: Los resultados provienen principalmente de una organizacién y
tipos especificos de proyectos. El marco se disefi¢ para ser adaptable a diferentes contex-
tos organizacionales, centrandose en herramientas y précticas estdndar de la industria.

Fiabilidad: Para abordar la subjetividad inherente a las evaluaciones expertas,
establecimos criterios de evaluacién claros y documentados, manteniendo registros deta-
llados de todos los procedimientos y criterios de decision.

A pesar de estas limitaciones, consideramos que nuestras estrategias de mitigacion
proporcionan un nivel razonable de confianza en los hallazgos presentados.

8. Trabajo Relacionado

Desde la emergencia de los LLMs en el desarrollo de software, la investigacion sobre su
aplicacion en pruebas ha avanzado rapidamente. Wang et al. [Wang et al. 2024b] analiza-
ron 102 articulos sobre LLMs en pruebas de software, identificando su uso principal en
generacion de pruebas unitarias, oraculos y entradas para pruebas del sistema, sefialando
también limitaciones en cobertura y confiabilidad. Complementando este andlisis, nuestro
trabajo aporta evidencia empirica longitudinal sobre cdmo estas limitaciones han evolu-
cionado en un entorno industrial real.

En cuanto a frameworks especificos, Liu et al. [Liu et al. 2024] presentaron
AutoTestGPT con prompts estructurados y refinamiento iterativo, reduciendo el tiem-
po de generacion en mds del 70 % comparado con métodos manuales. Chen et al.
[Chen et al. 2024] desarrollaron ChatUniTest incorporando mecanismos de generacion-
validacion-reparacion. Mientras estos enfoques se centran en la optimizacion técnica del
proceso de generacidn, nuestro marco evalia ademds la integracion con herramientas
estandar de la industria (SonarQube, JaCoCo) y considera métricas basadas en conoci-
miento experto, aspectos criticos para la adopcion empresarial.

En evaluaciones empiricas, Siddiq et al. [Siddiq et al. 2024] analizaron varios
LLMs usando benchmarks HumanEval y EvoSuite SF110, revelando desafios en cober-
tura y compilabilidad. Schifer et al. [Schifer et al. 2024] evaluaron sistemdticamente la
generacion de pruebas unitarias con LLMs en JavaScript. Estos estudios ofrecen evalua-
ciones puntuales valiosas, pero carecen de la perspectiva longitudinal de nuestro trabajo,
que permite observar cémo las capacidades de los LLMs han evolucionado a lo largo de
nueve meses en aplicaciones industriales reales.

La principal contribucién de nuestro trabajo respecto a la literatura existente ra-
dica en tres aspectos diferenciadores: (1) un marco préctico para evaluacion continua en
entornos industriales reales con métricas ponderadas adaptables a diferentes contextos
organizacionales, (2) evidencia empirica sobre la evolucién temporal de las capacidades
de LLM en generacion de pruebas, y (3) lecciones practicas derivadas de la implementa-
cion real en una empresa de desarrollo de software. Esta combinacion ofrece orientacion
concreta para organizaciones que consideran adoptar estas tecnologias.

9. Conclusiones y Trabajo Futuro

Este estudio presenta un marco sistematico para la evaluacion continua de las capacidades
de generacion de pruebas unitarias mediante LLMs en entornos industriales. Los resulta-
dos obtenidos durante el periodo de marzo 2024 a diciembre 2024 demuestran una mejora
significativa en las capacidades de los LLMs, con modelos recientes como ol-Preview al-
canzando valoraciones superiores al 90 % en nuestras métricas ponderadas.

Las principales contribuciones incluyen: (1) la validaciéon de un marco de evalua-
cién que integra métricas objetivas y subjetivas, permitiendo una evaluacién holistica de
las pruebas generadas, (2) la demostraciéon empirica de la evolucion de las capacidades
de generacion de pruebas de los LLMs en un entorno industrial y (3) la identificacion de
lecciones aprendidas relevantes para organizaciones que buscan adoptar estas tecnologias.
Sin embargo, nuestros hallazgos también sugieren que, si bien las herramientas basadas
en LLMs han alcanzado un nivel de madurez prometedor, ain deben considerarse como
complementos al conocimiento experto mas que como reemplazos. Las métricas basadas
en el conocimiento de expertos indican que los LLMs, aunque han mejorado significati-
vamente en la aplicacién de técnicas de prueba, todavia no igualan la experiencia humana
en aspectos criticos del disefio de pruebas.

El trabajo futuro se centrard en la evaluacion de casos mas complejos, incluyendo
pruebas combinatorias, y en la realizaciéon de una nueva replicacion del estudio en seis
meses para continuar monitoreando la evolucion de estas tecnologias. Ademds, planeamos
expandir el marco para incluir evaluaciones de eficiencia en términos de tiempo y recursos
necesarios para la generacion y mantenimiento de pruebas.

Disponibilidad de Artefactos

Tanto las funciones como los resultados estan disponibles en https://doi.org/10.
5281 /zenodo.15076786 para facilitar la reproducibilidad de este estudio.

Agradecimientos

Este trabajo ha sido financiado por MCIN/AEI/10.13039/501100011033, el European
Union NextGeneration EU/PRTR con la referencia PID2021-1254380B-100, Universi-
dad del Pais Vasco dentro del programa Universidad-Empresa-Sociedad (US24/10).

Referencias
Campbell, A. and Papapetrou, P. (2013). SonarQube in action. Manning Publications Co.

Chen, Y., Hu, Z., Zhi, C., Han, J., Deng, S., and Yin, J. (2024). Chatunitest: A framework
for llm-based test generation. In Companion Proceedings of the 32nd ACM Internatio-
nal Conference on the Foundations of Software Engineering (FSE). ACM.

Freeman, S., Mackinnon, T., Pryce, N., and Walnes, J. (2004). jMock: supporting
responsibility-based design with mock objects. In Companion to the 19th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA. ACM.

H. Washizaki, e. (2024). Guide to the Software Engineering Body of Knowledge (SWE-
BOK Guide). IEEE Computer Society.

https://doi.org/10.5281/zenodo.15076786
https://doi.org/10.5281/zenodo.15076786

ISO (2021). IEEE/ISO/IEC international standard - software and systems engineering—
software testing—part 4: Test techniques. ISO/IEC/IEEE 29119-4:2021(E).

Jiang, W., Gao, X., Zhai, J., Ma, S., Zhang, X., and Shen, C. (2024). From effective-
ness to efficiency: Comparative evaluation of code generated by lcgms for bilingual
programming questions.

Kaczanowski, T. (2013). Practical Unit Testing with JUnit and Mockito. Tomasz Kacza-
nowski, POL.

Kracht, J. S., Petrovic, J. Z., and Walcott-Justice, K. R. (2014). Empirically evaluating the
quality of automatically generated and manually written test suites. /4th International
Conference on Quality Software, pages 256-265.

Liu, H., Liu, L., Yue, C., Wang, Y., and Deng, B. (2024). Autotestgpt: A system for the
automated generation of software test cases based on chatgpt. Journal of Software,
19(4).

Lopez, J. A. H., Chen, B., Saad, M., Sharma, T., and Varré, D. (2025). On inter-dataset
code duplication and data leakage in large language models. IEEE Transactions on
Software Engineering, 51(1).

Prates, L. and Pereira, R. (2025). Devsecops practices and tools. International Journal of
Information Security, 24(1):1-25.

Schifer, M., Nadi, S., Eghbali, A., and Tip, F. (2024). An empirical evaluation of using
large language models for automated unit test generation. /IEEE Transactions on Soft-
ware Engineering, 50(1):85-105.

Sergeyuk, A., Golubev, Y., Bryksin, T., and Ahmed, 1. (2025). Using ai-based coding
assistants in practice: State of affairs, perceptions, and ways forward. Information and
Software Technology, 178.

Siddig, M., Da Silva, J., Tanvir, R., Ulfat, N., Al Rifat, F., and Carvalho, V. (2024). Using
large language models to generate junit tests: An empirical study. In Proceedings of the
28th International Conference on Evaluation and Assessment in Software Engineering
(EASE). ACM.

Tillmann, N. and Schulte, W. (2005). Parameterized unit tests. In Proceedings of the 10th
European Software Engineering Conference. ACM.

Wang, C., Li, Z., Gao, C., Wang, W., Peng, T., Huang, H., Deng, Y., Wang, S., and Lyu,
M. (2024a). Exploring multi-lingual bias of large code models in code generation.

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., and Wang, Q. (2024b). Software testing
with large language models: Survey, landscape, and vision. [EEE Transactions on
Software Engineering, 50(4):911-936.

Wu, T., Terry, M., and Cai, C. (2022). Ai chains: Transparent and controllable human-ai
interaction by chaining large language model prompts. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems. ACM.

Wu, Y., Li, Z., Zhang, J. M., and Liu, Y. (2024). Condefects: A complementary dataset
to address the data leakage concern for llm-based fault localization and program re-

pair. In Companion Proceedings of the 32nd ACM International Conference on the
Foundations of Software Engineering (FSE). ACM.

	Introducción
	Motivación: el Caso de LKS Next
	Estructura del Marco: Métricas y Categorías de Evaluación
	Métricas de Calidad de Código
	Métricas Estructurales
	Métricas Basadas en el Conocimiento de Expertos
	Modelo de Ponderación de Métricas de Prueba

	Aplicación Práctica: Procedimiento y Herramientas
	Proceso y Entorno Iterativo de Evaluación
	Selección de Ejemplos a Probar y Pruebas de Referencia
	Metodología de Ingeniería del Prompt
	Infraestructura y Herramientas

	Resultados
	Lecciones Aprendidas
	Limitaciones y Amenazas a la Validez
	Trabajo Relacionado
	Conclusiones y Trabajo Futuro

