
Generación de Pruebas Unitarias con LLMs en Entornos
Industriales: Desafı́os, Evolución y Lecciones Prácticas

Eneko Pizarro1, Maider Azanza2, Beatriz Pérez Lamancha1

1LKS Next
Goiru, 7

Arrasate-Mondragón, España

2Universidad del Paı́s Vasco (EHU/UPV)
Facultad de Informática

Donostia-San Sebastian, España

{epizarro,bperez}@lksnext.com, maider.azanza@ehu.eus

Abstract. Large Language Models (LLMs) show potential for automatically ge-
nerating unit tests, but their industrial application presents challenges. We pre-
sent a longitudinal case study on the implementation and evaluation of LLMs
for test generation at LKS Next, integrating standard tools such as SonarQu-
be. Our approach reveals findings on the temporal evolution of these technolo-
gies in production environments and provides learned lessons. The results offer
evidence-based industrial guidance for organizations considering adopting the-
se solutions, highlighting practical integration and maintainability considera-
tions often absent in theoretical studies.

Resumen. Los Modelos de Lenguaje de Gran Escala (LLMs) muestran poten-
cial para generar pruebas unitarias automáticamente, pero su aplicación indus-
trial genera desafı́os. Presentamos un caso de estudio longitudinal sobre la im-
plementación y evaluación de LLMs para generación de pruebas en la empresa
LKS Next, integrando herramientas estándar como SonarQube. Nuestro enfo-
que revela hallazgos sobre la evolución temporal de estas tecnologı́as en entor-
nos de producción y proporciona lecciones aprendidas. Los resultados ofrecen
una guı́a industrial basada en evidencia para organizaciones que consideran
adoptar estas soluciones, destacando consideraciones prácticas de integración
y mantenibilidad a menudo ausentes en estudios teóricos.

1. Introducción
Las pruebas unitarias continúan siendo un aspecto crı́tico y a la vez costoso en recursos
dentro del desarrollo de software. Las prácticas modernas de desarrollo como DevSecOps
[Prates and Pereira 2025] demandan tanto velocidad como fiabilidad en la entrega conti-
nua del software. Esto implica contar con un conjunto completo de pruebas unitarias que
asegure la calidad del código. Sin embargo, estudios recientes revelan que la escritura de
pruebas unitarias es una de las tareas que los desarrolladores disfrutan menos y que prefe-
rirı́an delegar a la inteligencia artificial [Sergeyuk et al. 2025], siendo además un proceso
costoso para la organización.

Debido a esto, con la emergencia de la Inteligencia Artificial Generativa (IAGen)
o, más concretamente Modelos de Lenguaje de Gran Escala (LLMs por sus siglas en



inglés), las empresas están explorando su potencial para automatizar la generación de
pruebas unitarias y reducir la carga de trabajo de los desarrolladores. Si bien investiga-
ciones recientes han estudiado extensamente las capacidades de generación de pruebas
mediante LLMs [Wang et al. 2024b], su adopción industrial genera desafı́os que van más
allá de los abordados en estudios académicos.

Un reto clave para las empresas que adoptan estas herramientas radica en su rápi-
da evolución: lo que era cierto sobre las capacidades de una herramienta hace seis meses
puede no reflejar su rendimiento actual. Esto es particularmente desafiante para organi-
zaciones que implementan pipelines de integración/entrega continua (CI/CD), donde la
generación de pruebas unitarias debe integrarse perfectamente con los flujos de trabajo
existentes y mantener estándares de calidad consistentes, sin estar a expensas de la evolu-
ción de las capacidades de los LLM subyacentes.

Este trabajo presenta un marco práctico para la evaluación continua de generado-
res de pruebas unitarias basados en LLMs en entornos industriales, ilustrado mediante un
estudio longitudinal de las capacidades de GitHub Copilot en LKS Next.

Las contribuciones principales de este trabajo son:

1. Un marco práctico de medición aplicado en un entorno industrial para la evalua-
ción continua de LLMs en la generación de pruebas unitarias.

2. Un análisis longitudinal que muestra la evolución temporal de las capacidades de
los LLMs en la generación de pruebas en un contexto productivo.

3. Lecciones aprendidas para otras organizaciones que estén considerando la adop-
ción de los LLMs para la automatización de pruebas unitarias.

2. Motivación: el Caso de LKS Next

LKS Next1, la organización donde se realiza esta investigación, es una empresa de con-
sultorı́a tecnológica que ofrece soluciones personalizadas utilizando diversas tecnologı́as
y lenguajes de programación. La empresa sigue metodologı́as ágiles y prácticas DevSe-
cOps [Prates and Pereira 2025] para desarrollar software seguro y de alta calidad que sea
mantenible durante todo su ciclo de vida. En este contexto, las pruebas representan un
desafı́o crı́tico. La empresa debe generar suficientes pruebas para garantizar la calidad
de sus proyectos, equilibrando la rigurosidad con la eficiencia en costos y tiempo, para
optimizar su salida al mercado.

Las pruebas automatizadas en entornos DevSecOps proporcionan ventajas es-
tratégicas y operativas significativas, garantizando la verificación consistente y repetible
de la funcionalidad del software. Este enfoque sistemático minimiza los tiempos de eje-
cución, mide la cobertura de código y facilita la integración continua, proporcionando
retroalimentación inmediata sobre los cambios. La infraestructura DevSecOps utiliza en
los proyectos de la empresa, ejecuta automáticamente con cada commit una serie de pasos
(pipeline de desarrollo) que incluyen: compilación, ejecución de pruebas unitarias y de
integración, análisis de la calidad y seguridad del código y verificación de la seguridad
de sus dependencias. A continuación, se despliega la nueva versión al entorno correspon-
diente (desarrollo, pruebas, etc.).

1https://www.lksnext.com/es/

https://www.lksnext.com/es/


La irrupción de herramientas de IA, particularmente los LLM, promete soluciones
que parecen mejorar mucho la productividad en todas las áreas del desarrollo del software,
incluyendo el testing. Las empresas sienten la presión de adoptar herramientas de IA
generativa en los desarrollos, pero requieren garantı́as de sus resultados antes de utilizarlas
en entornos productivos. Hasta ahora, el código generado por la IA requerı́a una revisión
y modificación significativas para cumplir con los estándares de la organización, pero esto
ha ido cambiando a medida que aparecen nuevas herramientas o nuevas versiones de las
mismas.

A esto se suma la proliferación de herramientas de IA generativa, que implica de-
cidir qué herramienta es la más adecuada. El modelo de pago por token introduce costes
variables que escalan con el uso, por lo que las organizaciones deben equilibrar produc-
tividad, los gastos en IA y la confiabilidad en la solución resultante. Es por ello que las
empresas requieren mecanismos para validar y revisar el código generado por IA. En el
caso del presente trabajo, el objetivo es la generación de pruebas unitarias, ya que juegan
un papel crucial en los procesos DevSecOps.

Establecer un marco de referencia para poder comparar los LLMs y sus versiones
en el tiempo resulta crucial para las empresas. Este marco de referencia debe tener en
cuenta las técnicas de generación de casos de prueba, tanto estructurales como basadas
en conocimiento de expertos, midiendo la cobertura de las pruebas generadas, el grado de
parametrización y el grado de aislamiento de las pruebas unitarias mediante técnicas de
dobles de pruebas (mocks).

Para abordar estos desafı́os en un contexto industrial real, desarrollamos y aplica-
mos un marco sistemático de evaluación que presentamos a continuación.

3. Estructura del Marco: Métricas y Categorı́as de Evaluación

El acelerado desarrollo de las capacidades de los LLMs requiere un marco sólido, repro-
ducible y longitudinal para evaluar la calidad de las pruebas generadas. Nuestro enfoque
responde a los desafı́os especı́ficos de las pruebas generadas por inteligencia artificial a
través de un sistema de evaluación que prioriza la reproducibilidad, la integración con
herramientas industriales estándar y facilita la evaluación continua a lo largo del tiempo.

Para analizar la capacidad de los LLMs en la generación de pruebas unitarias,
hemos desarrollado un conjunto de métricas organizadas en tres categorı́as: (1) métricas
de calidad de código, (2) métricas estructurales y (3) métricas basadas en el conocimiento
de expertos. Estas métricas se integran mediante un modelo de ponderación que permite
calcular una valoración cuantitativa para cada LLM, facilitando la comparación objetiva
entre diferentes modelos y sus versiones a lo largo del tiempo.

3.1. Métricas de Calidad de Código

Las métricas de calidad del código se centran en dos aspectos: la compilación y el análi-
sis estático de las pruebas IAGen. La compilación representa el nivel más básico de eva-
luación y, aunque seguramente se elimine del marco de evaluación en el futuro dada la
mejora en las pruebas IAGen (véase el apartado Resultados), resulta relevante ya que nos
permite apreciar el progreso que los distintos LLM han tenido a lo largo de la toma de las
mediciones. En nuestras pruebas iniciales observamos que los LLM introducı́an frecuen-



Tabla 1. Métricas de calidad de código

Métrica Definición Medición
Incidencias
de compila-
ción

Mide problemas en el uso de bibliotecas ex-
ternas y declaraciones de importación, uso in-
correcto de elementos especı́ficos del proyec-
to (clases, métodos, constructores), problemas
de corrección sintáctica y estructural básica del
código de prueba generado y cantidad de erro-
res de compilación encontrados en las pruebas
IAGen.

Cantidad de errores de compilación
encontrados en las pruebas IAGen

Incidencias
de análisis
estático de
código

Mide incidencias encontradas con la herra-
mienta Sonarqube, siguiendo el perfil Sonar-
Way [Campbell and Papapetrou 2013]. Calcula
la mantenibilidad, confiabilidad y seguridad del
código de las pruebas IAGen.

Cantidad de incidencias encontradas
en el análisis de código estático de las
pruebas IAGen

temente fallos de compilación en las clases de las pruebas, evitando poder tomar métricas
de ejecución.

Por otro lado, es importante evaluar la calidad del código generado, para lo cual
utilizamos la herramienta de análisis estático de código Sonarqube2, que proporciona re-
glas especı́ficas para analizar la mantenibilidad, confiabilidad y seguridad del código ge-
nerado. Herramientas como Sonarqube son especialmente importantes en entornos indus-
triales, ya que permiten hacer un seguimiento de la calidad del código previo a la puesta
en producción como parte integral de los desarrollos DevSecOps.

La Tabla 1 describe las métricas incidencias de compilación e incidencias de
análisis estático de código y cómo se miden. Consideramos que esta categorı́a de métricas
es objetiva, ya que los resultados serán los mismos, sin depender de un juicio experto que
los valide. Además, consideramos que las métricas en esta categorı́a penalizan al resulta-
do final del LLM siendo evaluado, ya que a mayor cantidad de errores de compilación o
mayor cantidad de incidencias de calidad de código, peores son las pruebas IAGen.

3.2. Métricas Estructurales

Las métricas estructurales evalúan el grado en que las pruebas IAGen ejercitan el código
bajo prueba. Estas métricas miden aspectos de cobertura del código siguiendo distintas
técnicas. Además, hemos incorporado una métrica para determinar el grado de aislamien-
to en pruebas unitarias que alcanzan las pruebas IAGen.

La Tabla 2 muestra las cuatro métricas que utilizamos en este apartado. Las tres
primeras tienen que ver con la cobertura de código, partiendo de la más simple, la cober-
tura de lı́neas, que indica las lı́neas de código que han sido ejecutadas con las pruebas
IAGen. Este criterio es necesario pero no suficiente, por lo que además hemos incluido la
cobertura de condiciones, donde se evalúa que cada condición haya sido evaluada como
verdadera y falsa. Un criterio aún más restrictivo es el de cobertura de condición/decisión,
donde se pide que todas las decisiones dentro de una condición sean probadas al ejecutar
las pruebas [H. Washizaki 2024].

2https://www.sonarsource.com/products/sonarqube

https://www.sonarsource.com/products/sonarqube


Tabla 2. Métricas estructurales

Métrica Definición Medición
Cobertura de
lı́neas

Porcentaje de lı́neas de código que se han eje-
cutado con las pruebas IAGen [ISO 2021]

(Cantidad de lı́neas ejecutadas por los
test IAGen / Total de lı́neas ejecuta-
bles) × 100

Cobertura de
condiciones

Pocentaje de condiciones que se han ejecutado
con las pruebas IAGen. Prueba que cada condi-
ción del código sea ejecutada al menos una vez
[ISO 2021]

(Cantidad de condiciones evaluadas
por las pruebas IAGen/ Total de con-
diciones) × 100

Cobertura
de condi-
cion/decisión

Pocentaje de condiciones y decisiones que se
han ejecutado con las pruebas IAGen. Prue-
ba cada decisión dentro de una condición.
[ISO 2021]

(Cantidad de condiciones y decisio-
nes ejecutadas por las pruebas IAGen
/ Total de condiciones y decisiones) ×
100

Aislamiento
de las prue-
bas

Evalúa cuan bien las pruebas IAGen crean ob-
jetos simulados (mocks, stubs, etc.) que al eje-
cutarse cuenten con todo lo que necesita de su
entorno. [Freeman et al. 2004]

(Cantidad de pruebas IAGen aisladas
/ Cantidad de pruebas aisladas que se
esperaban) × 100

Para la evaluación de estas métricas de cobertura, existen herramientas que fa-
cilitan su cómputo automático. En nuestro caso, para el lenguaje Java, hemos empleado
Jacoco 3, que proporciona reportes detallados sobre la cobertura alcanzada por las pruebas
IAGen en cada una de estas dimensiones.

Además de la cobertura, es esencial considerar el aislamiento en las pruebas unita-
rias. Por definición, estas se centran en probar clases individuales y garantizar su correc-
to funcionamiento, controlando todos los aspectos del contexto en el cual la clase bajo
prueba es ejecutada. Para lograr este aislamiento, se reemplazan los colaboradores reales
por dobles de pruebas (”test doubles”), implementaciones simuladas que separan el códi-
go bajo prueba de dependencias externas como capas de servicios, sistemas y recursos
[Kaczanowski 2013].

En este contexto, hemos definido la métrica Aislamiento de las pruebas para eva-
luar si las pruebas IAGen manejan apropiadamente estas dependencias, aislando el código
de distracciones introducidas por servicios web, sistemas de archivos, bases de datos o
software de terceros, mientras validan que el código aislado funciona según lo esperado.
Esta métrica también tiene carácter objetivo, puesto que las pruebas unitarias sin un aisla-
miento adecuado no podrán ejecutarse correctamente en entornos de integración continua,
donde frecuentemente no se dispone del entorno completo de ejecución.

3.3. Métricas Basadas en el Conocimiento de Expertos

Estas métricas se fundamentan en los requisitos y especificaciones del sistema, utilizando
técnicas de caja negra. Su objetivo principal es determinar en qué medida las pruebas
IAGen consideran los aspectos funcionales del código bajo prueba. A diferencia de las
categorı́as anteriores, que se basan en criterios objetivos, la categorı́a de métricas basadas
en el conocimiento de expertos incorpora elementos subjetivos que requieren validación
especializada.

3https://github.com/jacoco/jacoco



Tabla 3. Métricas basadas en el conocimiento de expertos

Métrica Definición Medición
Cobertura de
Partición de
Equivalencia

Una clase de equivalencia es un subconjunto de
los datos que se consideran iguales por el sis-
tema bajo prueba [ISO 2021]. Evalúa qué por-
centaje de la clases de equivalencia identifi-
cadas por expertos han sido cubiertas por las
pruebas IAGen

(Cantidad de particiones de equi-
valencia identificadas por las prue-
bas IAGen / Total de clases de
equivalencia identificadas por ex-
pertos)x100

Cobertura de
Valores Lı́mites

El análisis de valor lı́mite se centra en los lı́mi-
tes de las clases de equivalencia. Se prueban va-
lores por debajo y por encima de dichos lı́mites
[ISO 2021]. Evalúa qué porcentaje de los valo-
res lı́mites identificados por expertos han sido
cubiertos por las pruebas IAGen

(Cantidad de valores lı́mites encon-
trados por las pruebas IAGen / To-
tal de valores lı́mites identificados
por expertos) × 100

Parametrización
de las pruebas

La parametrización de las pruebas uni-
tarias y de integración permite reutilizar
pruebas con distintos conjuntos de datos
[Tillmann and Schulte 2005]. Evalúa que por-
centaje de parametrizaciones han sido realiza-
das correctamente por las pruebas IAGen

(Cantidad de prueba IAGen que se
han parametrizado correctamente /
Cantidad de pruebas que se espera-
ba parametrizar) × 100

Cobertura de
Pruebas de
Referencia

Porcentaje de pruebas unitarias generadas por
IAGen que replican pruebas manuales de ex-
pertos, las cuales cumplen con los estándares
mı́nimos de calidad de la empresa. Evalúa la
capacidad del LLM para igualar el enfoque y
rigor de desarrolladores en un entorno indus-
trial.

(Cantidad de pruebas replicadas
por la IA Gen / Cantidad de prue-
bas manuales generadas por exper-
tos) x 100

Para establecer una base de comparación o ground truth, hemos desarrollado prue-
bas manuales de referencia por cada caso analizado, avaladas por expertos de la empresa.
Este enfoque nos permite contrastar las pruebas generadas por IAGen con aquellas que se
obtendrı́an mediante un desarrollo manual en el mismo entorno empresarial. Si bien estas
métricas incluyen juicios subjetivos utilizando técnicas de caja negra—que pueden con-
siderar distintos valores de prueba según el criterio del tester—ofrecen una perspectiva
valiosa sobre la calidad práctica de las pruebas automatizadas.

La Tabla 3 describe las métricas que utilizamos en este apartado. La técnica de
Partición de Equivalencia divide los datos de entrada en clases que el sistema bajo prue-
ba procesa de la misma manera. Complementariamente, la técnica de Análisis de Valores
Lı́mites se centra en examinar los bordes de estas clases de equivalencia, evaluando valo-
res cercanos a los lı́mites donde suelen ocurrir más errores [ISO 2021]. La efectividad de
ambas técnicas depende fundamentalmente de la correcta identificación de las clases de
equivalencia, tarea que requiere el juicio experto de profesionales en pruebas.

Particularmente importante en entornos industriales resulta la Parametrización de
las pruebas, que permite reutilizar las pruebas con diferentes conjuntos de datos para
verificar su funcionamiento bajo diversas condiciones. Las pruebas unitarias parametri-
zadas mejoran la reutilización, mantenibilidad y documentación del proceso de pruebas
[Tillmann and Schulte 2005], aspectos cruciales para la sostenibilidad a largo plazo de los
juegos de pruebas.



Figura 1. Modelo de ponderación para valorar cada LLM

Finalmente, la Cobertura de Pruebas de Referencia establece una comparación di-
recta entre las pruebas generadas automáticamente y aquellas desarrolladas manualmente
por los expertos, las cuales cumplen con los estándares mı́nimos de calidad estableci-
dos por la empresa. Esta métrica evalúa la capacidad del LLM para replicar patrones,
escenarios y enfoques considerados fundamentales por desarrolladores experimentados
en un entorno industrial. Además, permite identificar discrepancias entre los enfoques
automatizados y manuales [Kracht et al. 2014], señalando posibles áreas de mejora en la
generación de pruebas mediante LLM.

3.4. Modelo de Ponderación de Métricas de Prueba

Para evaluar de manera integral la calidad de las pruebas generadas por LLMs, hemos
desarrollado un modelo de ponderación que combina las métricas previamente descritas
en una valoración cuantitativa consolidada. Este modelo equilibra factores objetivos y
subjetivos, permitiendo comparaciones sistemáticas entre diferentes modelos LLM y sus
evoluciones temporales.

El modelo estructura las métricas en las tres categorı́as fundamentales ya presen-
tadas:

Métricas de calidad de código: Evalúan aspectos técnicos básicos como la com-
pilabilidad y la calidad estructural del código generado.
Métricas estructurales: Miden la efectividad de las pruebas para ejercitar el código
bajo análisis y su capacidad de aislamiento.
Métricas basadas en el conocimiento de expertos: Valoran aspectos funcionales y
de diseño que requieren juicio especializado.

Para reflejar tanto criterios objetivos como subjetivos, asignamos una ponderación
equitativa del 50 % a las métricas objetivas (combinando calidad de código y estructura-
les) y 50 % a las métricas subjetivas (basadas en conocimiento experto). Esta distribución
equilibrada reconoce la importancia complementaria de ambas dimensiones en la evalua-
ción de pruebas unitarias en entornos industriales.



Un aspecto distintivo de nuestro modelo es el tratamiento de las Métricas de ca-
lidad de código como factores de penalización. Dado que los errores de compilación
imposibilitan la ejecución de pruebas, la métrica incidencias de compilación reduce un
20 % del puntaje total. Similarmente, la métrica incidencias del análisis estático de códi-
go penaliza un 5 % adicional, reflejando su impacto en la mantenibilidad a largo plazo.

La Figura 1 muestra el modelo completo con las ponderaciones asignadas a cada
métrica y las fórmulas utilizadas para los cálculos. Para las métricas de penalización (IC
e IAC), se realiza la sumatoria de incidencias detectadas en todos los ejemplos evaluados.
Para las demás métricas, se calcula la puntuación promedio de los valores obtenidos en
los ejemplos.

Es importante destacar que los pesos especı́ficos reflejan las prioridades de LKS
Next, y el marco está diseñado para ser adaptable. Otras empresas pueden ajustar estas
ponderaciones según sus propios criterios de calidad y objetivos estratégicos, mantenien-
do la estructura general del modelo como base para evaluaciones comparativas coherentes.

4. Aplicación Práctica: Procedimiento y Herramientas

Para abordar los desafı́os de evaluación de pruebas unitarias generadas por LLMs en un
contexto industrial real, hemos definido una metodologı́a sistemática que permite tanto la
evaluación objetiva como la mejora progresiva de los resultados. Nuestro enfoque se ca-
racteriza por su naturaleza iterativa, su integración con herramientas industriales estándar
y su capacidad para adaptarse a la rápida evolución de las capacidades de los LLMs. A
continuación, detallamos este proceso, comenzando por la estructura general del flujo de
trabajo de evaluación.

4.1. Proceso y Entorno Iterativo de Evaluación

El proceso inicia con una fase de preparación donde configuramos el entorno de desarro-
llo, establecemos las dependencias y herramientas de compilación e implementamos la
infraestructura de recopilación de datos para el seguimiento de métricas.

Un componente crucial de esta fase preparatoria es el desarrollo de pruebas de
referencia por parte de expertos. Estas pruebas sirven como estándar de comparación
(ground truth) y se crean siguiendo las mejores prácticas de la organización, como se ha
detallado en secciones anteriores.

Una vez completada la preparación, iniciamos un ciclo iterativo estructurado que
consta de cuatro pasos principales:

1. Generación de Pruebas: Utilizamos el LLM con el prompt actual (inicial o refi-
nado) para generar pruebas unitarias para el código objetivo.

2. Análisis Multidimensional: Evaluamos las pruebas generadas mediante todas las
métricas definidas en nuestro marco, contrastándolas directamente con las pruebas
de referencia para las métricas basadas en conocimiento experto.

3. Identificación de Deficiencias: Determinamos qué aspectos especı́ficos de las
pruebas generadas difieren de las pruebas de referencia, como la falta de cobertura
en ciertas condiciones, la ausencia de particiones de equivalencia relevantes, o
deficiencias en el aislamiento.



4. Refinamiento del Prompt: Modificamos el prompt para abordar explı́citamente
las deficiencias identificadas. Por ejemplo, si las pruebas de referencia utilizan
dobles de prueba para aislar componentes externos mientras las pruebas IAGen
no lo hacen, refinamos el prompt para enfatizar esta técnica.

Este ciclo se repite hasta que: (1) las pruebas generadas se aproximan suficiente-
mente a la calidad de las pruebas de referencia según nuestro modelo de ponderación, o
(2) se alcanza un punto donde refinamientos adicionales no producen mejoras significati-
vas.

Las pruebas de referencia cumplen ası́ una doble función: como parámetro de eva-
luación contra el cual se mide el rendimiento de las pruebas generadas, y como guı́a para
el refinamiento especı́fico de los prompts. Esta estrategia nos permite abordar sistemáti-
camente las brechas de calidad y mejorar progresivamente la capacidad de los LLMs para
generar pruebas que sean aplicables en entornos industriales.

4.2. Selección de Ejemplos a Probar y Pruebas de Referencia

Para garantizar una evaluación robusta y significativa, hemos aplicado criterios especı́fi-
cos en la selección de los ejemplos de prueba. Primero, seleccionamos código que no
contara con pruebas preexistentes, ya que nuestras evaluaciones exploratorias iniciales
revelaron un fenómeno de ”fuga de datos”(data leakage) donde los LLMs, al estar en-
trenados con repositorios públicos, reproducı́an pruebas existentes en lugar de generar
nuevas [López et al. 2025, Wu et al. 2024]. Esto habrı́a distorsionado nuestra evaluación,
ofreciendo una visión artificialmente optimista de sus capacidades reales.

Adicionalmente, dado que nuestro estudio se centra en la aplicación industrial
práctica, priorizamos funciones y clases representativas de escenarios reales de desarrollo
corporativo. Estos ejemplos debı́an reflejar patrones comunes y desafı́os habituales en-
contrados en proyectos empresariales, asegurando ası́ la relevancia de nuestros hallazgos.

Considerando estos requisitos y las limitaciones prácticas asociadas a la evalua-
ción experta manual, seleccionamos siete funciones que representan diversos desafı́os de
prueba frecuentes en entornos industriales:

Ensamblador de Alquileres (assemble): Método complejo que involucra
múltiples objetos de dominio y requiere simulación (mocking) de bases de datos.
Comprobador de Números Primos (isPrime): Función con alta complejidad
ciclomática y manejo de excepciones.
Gestión de Usuarios (addUser): Manejo de condiciones nulas (null) y simula-
ción de acceso a bases de datos.
Calculadora de Bonificaciones (getBonus): Lógica condicional compleja con
dependencias externas.
Validador de IPV4 (isIPV4Valid): Requiere pruebas de integración mediante
funciones auxiliares.
Número Estrobogramático (isStrobogrammic): Manipulación de estructu-
ras de datos.
Detector de Palı́ndromos (palindrome): Integración de múltiples funciones.

Para cada una de estas funciones, expertos en pruebas de la empresa desarrollaron
pruebas de referencia siguiendo las mejores prácticas y estándares de calidad establecidos.



Estas pruebas de referencia constituyeron nuestro ground truth contra el cual evaluamos
las pruebas generadas por los LLMs.

4.3. Metodologı́a de Ingenierı́a del Prompt

Nuestro enfoque de ingenierı́a de prompts se fundamenta en una estrategia de Prompt
Chaining [Wu et al. 2022], diseñada para guiar a los LLMs en la generación de prue-
bas unitarias que cumplan con los estándares de calidad industrial. Esta técnica divide el
proceso de generación en componentes secuenciales que abordan diferentes aspectos de
las pruebas, permitiendo un control más preciso sobre los resultados. El desarrollo del
prompt siguió un proceso iterativo alineado con nuestro marco de evaluación, refinándo-
lo progresivamente según los hallazgos cuantitativos de cada iteración. Nuestro análisis
reveló que el uso del inglés mejoraba significativamente los resultados en comparación
con el español, lo que es consistente con otros estudios sobre el impacto del idioma en la
generación de código mediante LLMs [Jiang et al. 2024, Wang et al. 2024a]. El prompt
final optimizado, disponible en nuestro paquete de replicación, se estructura en cuatro
componentes principales:

1. Calidad de código y análisis estático: Instrucciones especı́ficas para evitar inci-
dencias detectables por SonarQube, incluyendo directivas como: ”When creating
the test class, do not generate any line of code that could create any Issue, nor
Bug nor Code Smell.”

2. Cobertura estructural: Requisitos explı́citos para maximizar la cobertura, por
ejemplo: ”You must use the White Box method using Condition/Decision cove-
rage, so use the truth tables to cover all the cases of the composed condition
statements” y Ï need a 100 % of line, condition and condition/decision coverage.”

3. Técnicas de caja negra: Instrucciones para implementar partición de equivalen-
cias y análisis de valores lı́mite: ”You must do the Black Box testing using equiva-
lence partitioning and boundary value analysis. If you find redundancy with any
of the other methods, remove the redundant tests.”

4. Buenas prácticas de ingenierı́a de pruebas: Directrices sobre estructura, no-
menclatura y técnicas de refactorización: Üse proper naming conventions for the
tests and structure them correctly. If there is repeated code you must use @Befo-
reAll, @BeforeEach @AfterAll and @AfterEach statements.”

Este enfoque estructurado nos permitió mejorar progresivamente la calidad de las
pruebas generadas, abordando sistemáticamente las debilidades identificadas en cada ite-
ración del proceso evaluativo.

4.4. Infraestructura y Herramientas

Nuestro marco de evaluación emplea herramientas estándar de la industria para garantizar
la robustez y reproducibilidad del análisis. Para la ejecución y parametrización de pruebas
utilizamos JUnit, mientras que el análisis estático se realiza mediante Sonarqube Cloud y
Sonarqube IDE, herramientas que proporcionan las métricas de calidad del código. La co-
bertura se analiza con JaCoCo, que ofrece informes detallados sobre lı́neas, condiciones
y decisiones ejecutadas. Todo el proceso se integra en un flujo de trabajo automatizado
utilizando GitHub y GitHub Actions como plataformas de control de versiones y CI/CD,
respectivamente. La gestión de dependencias se centraliza mediante Maven, asegurando



ası́ la reproducibilidad de las compilaciones y la coherencia en las versiones de las he-
rramientas a lo largo de todas las evaluaciones. Esta infraestructura, además de facilitar
la evaluación sistemática, refleja el entorno real de desarrollo industrial, aumentando la
validez externa de nuestros resultados.

5. Resultados
Nuestro análisis abarca la evolución de GitHub Copilot entre marzo y diciembre de 2024,
ofreciendo una perspectiva longitudinal sobre cómo esta herramienta de generación auto-
matizada ha mejorado sus capacidades para crear pruebas unitarias en entornos industria-
les.

Figura 2. Resumen de los resultados obtenidos (marzo 2024 - diciembre 2024)

La Figura 2 presenta un resumen completo de los resultados obtenidos. Es impor-
tante destacar que GitHub Copilot ha ido evolucionando en el periodo analizado, incorpo-
rando diferentes modelos LLM subyacentes. En nuestra primera evaluación (marzo 2024),
Copilot utilizaba ChatGPT-4 como modelo base. En evaluaciones posteriores, Copilot in-
corporó nuevos modelos como GPT-4-turbo (mayo 2024), o1-Mini (octubre 2024), GPT-o
y o1-Preview (diciembre 2024), lo que nos ha permitido observar cómo la herramienta ha
mejorado sus capacidades a medida que integra modelos más avanzados.

Respecto a las métricas de calidad de código, observamos una mejora notable y
consistente. El total de incidencias de compilación muestra una clara tendencia descen-
dente, comenzando con 31 incidencias en la primera evaluación con ChatGPT-4 (marzo
2024) y reduciéndose a 0 con o1-Preview (diciembre 2024). De manera similar, las in-
cidencias de análisis de código disminuyeron desde 45 hasta 15 en la configuración más
reciente, evidenciando una mejora sustancial en la calidad estructural del código genera-
do.

En el ámbito de las métricas estructurales, los avances son igualmente significati-
vos. La cobertura de lı́neas aumentó desde un modesto 39,14 % inicial hasta un notable
98 % con o1-Preview. La cobertura de condiciones y la cobertura de condición/decisión
siguieron una progresión similar, alcanzando ambas un 95,71 % en la configuración más
reciente. Particularmente destacable es el aislamiento de las pruebas, que alcanzó y man-
tuvo un rendimiento óptimo del 100 % en las tres últimas evaluaciones.

Las métricas basadas en conocimiento de expertos también reflejan mejoras sus-
tanciales. La cobertura de partición de equivalencia mejoró desde un 71,19 % hasta al-



canzar un 84,52 % con o1-Preview. Especialmente notable es el progreso en la parametri-
zación de las pruebas, que evolucionó desde un modesto 12,70 % hasta un sobresaliente
91,84 %. La cobertura de valores lı́mite y la cobertura de pruebas de referencia también
experimentaron mejoras significativas, alcanzando 81,53 % y 97,94 % respectivamente en
la configuración más reciente.

La evaluación del peso total, calculada según nuestro modelo de ponderación, re-
fleja esta tendencia positiva, evolucionando desde un 27,45 % inicial hasta un 91,49 %
con o1-Preview. Esta progresión evidencia cómo GitHub Copilot ha mejorado consisten-
temente su capacidad para generar pruebas de calidad industrial a medida que integra
modelos LLM más avanzados..

6. Lecciones Aprendidas
Este trabajo nos ha permitido extraer lecciones aprendidas que son susceptibles de ser
generalizadas a otras organizaciones. En primer lugar, el marco ha tenido un impacto
directo en la toma de decisiones de la organización. En marzo de 2024, cuando GitHub
Copilot generaba pruebas que apenas compilaban y requerı́an considerable intervención
manual, la inversión en esta tecnologı́a probablemente hubiera aumentado el esfuerzo
de pruebas en lugar de reducirlo. Sin embargo, las mejoras observadas en diciembre de
2024 (ver sección anterior) han llevado a la organización a revaluar su postura, ya que los
últimos resultados sugieren potenciales ganancias en productividad con su uso.

Además, ha quedado de manifiesto la necesidad de realizar una evaluación longi-
tudinal continua. La rápida evolución de las capacidades de los LLMs significa que las
evaluaciones se desactualizan rápidamente. Lo que era cierto sobre hace seis meses pue-
de no reflejar el rendimiento actual. Las organizaciones necesitan mantener procesos de
evaluación continuos en lugar de basarse en evaluaciones puntuales.

En tercer lugar, se reafirma la necesidad de la supervisión por expertos. A pesar
de las altas puntuaciones alcanzadas en nuestras métricas, ésta sigue siendo esencial. Las
métricas basadas en conocimiento experto muestran que, si bien los LLMs han mejorado
en la aplicación de técnicas de prueba, aún no igualan la experiencia humana en decisiones
de diseño de pruebas. Cabe recalcar que los ejemplos utilizados son básicos, pero por la
tendencia que vemos, dichos ejemplos deberán ser escalados a ejemplos más complejos.

Estos hallazgos sugieren que, aunque las herramientas de generación de pruebas
basadas en LLMs son cada vez más viables para uso industrial, su adopción exitosa re-
quiere tanto marcos de evaluación sistemáticos como expectativas realistas. Las empresas
deberı́an ver estas herramientas como ayudas para aumentar la productividad del desarro-
llador, no como reemplazos del conocimiento experto.

7. Limitaciones y Amenazas a la Validez
Nuestro estudio presenta ciertas limitaciones que deben considerarse al interpretar los
resultados:

Validez de Constructo: Aunque nuestro marco es exhaustivo, podrı́a no captar
todos los aspectos relevantes del valor real de las pruebas generadas por LLMs. Para
mitigar esto, combinamos métricas automatizadas con evaluaciones expertas validadas
por profesionales de QA experimentados.



Validez Interna: La mejora observada podrı́a atribuirse tanto a la evolución natu-
ral de los LLMs como al refinamiento de nuestras estrategias de prompt. Hemos documen-
tado rigurosamente los cambios metodológicos y validado mediante múltiples ejecuciones
para aislar estos factores.

Validez Externa: Los resultados provienen principalmente de una organización y
tipos especı́ficos de proyectos. El marco se diseñó para ser adaptable a diferentes contex-
tos organizacionales, centrándose en herramientas y prácticas estándar de la industria.

Fiabilidad: Para abordar la subjetividad inherente a las evaluaciones expertas,
establecimos criterios de evaluación claros y documentados, manteniendo registros deta-
llados de todos los procedimientos y criterios de decisión.

A pesar de estas limitaciones, consideramos que nuestras estrategias de mitigación
proporcionan un nivel razonable de confianza en los hallazgos presentados.

8. Trabajo Relacionado

Desde la emergencia de los LLMs en el desarrollo de software, la investigación sobre su
aplicación en pruebas ha avanzado rápidamente. Wang et al. [Wang et al. 2024b] analiza-
ron 102 artı́culos sobre LLMs en pruebas de software, identificando su uso principal en
generación de pruebas unitarias, oráculos y entradas para pruebas del sistema, señalando
también limitaciones en cobertura y confiabilidad. Complementando este análisis, nuestro
trabajo aporta evidencia empı́rica longitudinal sobre cómo estas limitaciones han evolu-
cionado en un entorno industrial real.

En cuanto a frameworks especı́ficos, Liu et al. [Liu et al. 2024] presentaron
AutoTestGPT con prompts estructurados y refinamiento iterativo, reduciendo el tiem-
po de generación en más del 70 % comparado con métodos manuales. Chen et al.
[Chen et al. 2024] desarrollaron ChatUniTest incorporando mecanismos de generación-
validación-reparación. Mientras estos enfoques se centran en la optimización técnica del
proceso de generación, nuestro marco evalúa además la integración con herramientas
estándar de la industria (SonarQube, JaCoCo) y considera métricas basadas en conoci-
miento experto, aspectos crı́ticos para la adopción empresarial.

En evaluaciones empı́ricas, Siddiq et al. [Siddiq et al. 2024] analizaron varios
LLMs usando benchmarks HumanEval y EvoSuite SF110, revelando desafı́os en cober-
tura y compilabilidad. Schäfer et al. [Schäfer et al. 2024] evaluaron sistemáticamente la
generación de pruebas unitarias con LLMs en JavaScript. Estos estudios ofrecen evalua-
ciones puntuales valiosas, pero carecen de la perspectiva longitudinal de nuestro trabajo,
que permite observar cómo las capacidades de los LLMs han evolucionado a lo largo de
nueve meses en aplicaciones industriales reales.

La principal contribución de nuestro trabajo respecto a la literatura existente ra-
dica en tres aspectos diferenciadores: (1) un marco práctico para evaluación continua en
entornos industriales reales con métricas ponderadas adaptables a diferentes contextos
organizacionales, (2) evidencia empı́rica sobre la evolución temporal de las capacidades
de LLM en generación de pruebas, y (3) lecciones prácticas derivadas de la implementa-
ción real en una empresa de desarrollo de software. Esta combinación ofrece orientación
concreta para organizaciones que consideran adoptar estas tecnologı́as.



9. Conclusiones y Trabajo Futuro
Este estudio presenta un marco sistemático para la evaluación continua de las capacidades
de generación de pruebas unitarias mediante LLMs en entornos industriales. Los resulta-
dos obtenidos durante el perı́odo de marzo 2024 a diciembre 2024 demuestran una mejora
significativa en las capacidades de los LLMs, con modelos recientes como o1-Preview al-
canzando valoraciones superiores al 90 % en nuestras métricas ponderadas.

Las principales contribuciones incluyen: (1) la validación de un marco de evalua-
ción que integra métricas objetivas y subjetivas, permitiendo una evaluación holı́stica de
las pruebas generadas, (2) la demostración empı́rica de la evolución de las capacidades
de generación de pruebas de los LLMs en un entorno industrial y (3) la identificación de
lecciones aprendidas relevantes para organizaciones que buscan adoptar estas tecnologı́as.
Sin embargo, nuestros hallazgos también sugieren que, si bien las herramientas basadas
en LLMs han alcanzado un nivel de madurez prometedor, aún deben considerarse como
complementos al conocimiento experto más que como reemplazos. Las métricas basadas
en el conocimiento de expertos indican que los LLMs, aunque han mejorado significati-
vamente en la aplicación de técnicas de prueba, todavı́a no igualan la experiencia humana
en aspectos crı́ticos del diseño de pruebas.

El trabajo futuro se centrará en la evaluación de casos más complejos, incluyendo
pruebas combinatorias, y en la realización de una nueva replicación del estudio en seis
meses para continuar monitoreando la evolución de estas tecnologı́as. Además, planeamos
expandir el marco para incluir evaluaciones de eficiencia en términos de tiempo y recursos
necesarios para la generación y mantenimiento de pruebas.

Disponibilidad de Artefactos
Tanto las funciones como los resultados están disponibles en https://doi.org/10.
5281/zenodo.15076786 para facilitar la reproducibilidad de este estudio.

Agradecimientos

Este trabajo ha sido financiado por MCIN/AEI/10.13039/501100011033, el European
Union NextGeneration EU/PRTR con la referencia PID2021-125438OB-I00, Universi-
dad del Paı́s Vasco dentro del programa Universidad-Empresa-Sociedad (US24/10).

Referencias
Campbell, A. and Papapetrou, P. (2013). SonarQube in action. Manning Publications Co.

Chen, Y., Hu, Z., Zhi, C., Han, J., Deng, S., and Yin, J. (2024). Chatunitest: A framework
for llm-based test generation. In Companion Proceedings of the 32nd ACM Internatio-
nal Conference on the Foundations of Software Engineering (FSE). ACM.

Freeman, S., Mackinnon, T., Pryce, N., and Walnes, J. (2004). jMock: supporting
responsibility-based design with mock objects. In Companion to the 19th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA. ACM.

H. Washizaki, e. (2024). Guide to the Software Engineering Body of Knowledge (SWE-
BOK Guide). IEEE Computer Society.

https://doi.org/10.5281/zenodo.15076786
https://doi.org/10.5281/zenodo.15076786


ISO (2021). IEEE/ISO/IEC international standard - software and systems engineering–
software testing–part 4: Test techniques. ISO/IEC/IEEE 29119-4:2021(E).

Jiang, W., Gao, X., Zhai, J., Ma, S., Zhang, X., and Shen, C. (2024). From effective-
ness to efficiency: Comparative evaluation of code generated by lcgms for bilingual
programming questions.

Kaczanowski, T. (2013). Practical Unit Testing with JUnit and Mockito. Tomasz Kacza-
nowski, POL.

Kracht, J. S., Petrovic, J. Z., and Walcott-Justice, K. R. (2014). Empirically evaluating the
quality of automatically generated and manually written test suites. 14th International
Conference on Quality Software, pages 256–265.

Liu, H., Liu, L., Yue, C., Wang, Y., and Deng, B. (2024). Autotestgpt: A system for the
automated generation of software test cases based on chatgpt. Journal of Software,
19(4).

López, J. A. H., Chen, B., Saad, M., Sharma, T., and Varró, D. (2025). On inter-dataset
code duplication and data leakage in large language models. IEEE Transactions on
Software Engineering, 51(1).

Prates, L. and Pereira, R. (2025). Devsecops practices and tools. International Journal of
Information Security, 24(1):1–25.

Schäfer, M., Nadi, S., Eghbali, A., and Tip, F. (2024). An empirical evaluation of using
large language models for automated unit test generation. IEEE Transactions on Soft-
ware Engineering, 50(1):85–105.

Sergeyuk, A., Golubev, Y., Bryksin, T., and Ahmed, I. (2025). Using ai-based coding
assistants in practice: State of affairs, perceptions, and ways forward. Information and
Software Technology, 178.

Siddiq, M., Da Silva, J., Tanvir, R., Ulfat, N., Al Rifat, F., and Carvalho, V. (2024). Using
large language models to generate junit tests: An empirical study. In Proceedings of the
28th International Conference on Evaluation and Assessment in Software Engineering
(EASE). ACM.

Tillmann, N. and Schulte, W. (2005). Parameterized unit tests. In Proceedings of the 10th
European Software Engineering Conference. ACM.

Wang, C., Li, Z., Gao, C., Wang, W., Peng, T., Huang, H., Deng, Y., Wang, S., and Lyu,
M. (2024a). Exploring multi-lingual bias of large code models in code generation.

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., and Wang, Q. (2024b). Software testing
with large language models: Survey, landscape, and vision. IEEE Transactions on
Software Engineering, 50(4):911–936.

Wu, T., Terry, M., and Cai, C. (2022). Ai chains: Transparent and controllable human-ai
interaction by chaining large language model prompts. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems. ACM.

Wu, Y., Li, Z., Zhang, J. M., and Liu, Y. (2024). Condefects: A complementary dataset
to address the data leakage concern for llm-based fault localization and program re-
pair. In Companion Proceedings of the 32nd ACM International Conference on the
Foundations of Software Engineering (FSE). ACM.


	Introducción
	Motivación: el Caso de LKS Next
	Estructura del Marco: Métricas y Categorías de Evaluación
	Métricas de Calidad de Código
	Métricas Estructurales
	Métricas Basadas en el Conocimiento de Expertos
	Modelo de Ponderación de Métricas de Prueba

	Aplicación Práctica: Procedimiento y Herramientas
	Proceso y Entorno Iterativo de Evaluación
	Selección de Ejemplos a Probar y Pruebas de Referencia
	Metodología de Ingeniería del Prompt
	Infraestructura y Herramientas

	Resultados
	Lecciones Aprendidas
	Limitaciones y Amenazas a la Validez
	Trabajo Relacionado
	Conclusiones y Trabajo Futuro

