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Abstract. In this paper, we propose a method for prioritizing regression test
cases based on the probability of detecting software execution failures without
source code analysis. To achieve this, our method employs the SentenceBERT
model to extract embeddings from textual information of development commits
and test scripts. These embeddings are then used by machine learning models
to predict the probability of detecting a failure. Our experiments show that
the proposed method achieves results equal to or better than those of human
experts in 92.52% to 94.24% of scenarios when evaluating the APFD (Average
Percentage Faults Detected) metric, an overall gain of 10% in APFD mean and
a potential gain of up to 6.03% in test plan prioritization counting cases.

1. Introduction

During the software development process, various testing routines are executed to ensure
the quality of the product being developed. Among these routines, regression testing aims
to verify whether changes made to components introduce new defects into the product by
re-executing existing test cases to verify that previously working functionalities remain
unaffected. Regression testing can be divided into the following stages: analysis of mo-
dified components, selection of suitable test cases, ordering of test case execution, and
generation of documentation for the test results. [Rizwan et al. 2022].

In the first stage, the testing team analyzes information about product changes and
scales plans to cover functional modifications executed in the new version of a product,
as well as dependencies between these components [Zhang et al. 2022]. After identifying
potentially affected components by the product change comes the selection of test cases



to be executed. As test cases typically possess some form of tagging and cataloging,
information about existing test case scopes is crossed with scope information for affected
components during the selection stage. Consequently, test cases are selected based on
defined criteria, such as covering affected components and generating a set of test cases
capable of identifying the highest number of errors in the product [Pan et al. 2020].

This process affects the effectiveness of the testing plan in finding existing pro-
duct failures. Usually, this procedure is executed by a group of testers where different
levels of expertise among team members complement each other, often ensuring good
performance.

Once the test case set has been defined, the subsequent stage involves determi-
ning their order of execution. In this stage, despite the numerous possible approaches
to define their execution sequence, a common objective exists: to execute tests that are
likely to uncover existing failures first. Typically, this ordering is performed based on
the experience of the tester or historical information about the execution of test cases
[Pan et al. 2020], which in turn affects the efficiency of the plan, given its direct impact
on the speed at which failures will be discovered. Finally, after determining the ordering
strategy, the tests are executed, and their results are recorded. These results may lead to
the implementation of further changes in the software, which will subsequently enter the
cycle and repeat until the product is delivered with all necessary corrections to ensure
proper functioning.

In this context, test cases serve as units of execution for testing plans and can be
categorized based on two characteristics: their level of automation [Tahvili et al. 2018]
and functional or structural observation [Mafra et al. 2009]. Considering automation,
tests are divided into automated and non-automated tests. Automated tests are execu-
ted by a computer in a controlled environment, without human intervention. In con-
trast, non-automated tests rely on a human tester for their full or partial execution
[Tahvili et al. 2018].

In terms of functional characteristics, test cases are categorized as black-box or
structural (white-box) based on distinct product features that they observe. While white-
box testing is entirely dependent on the implementation of source code and examines
the correctness of implementation aspects such as logical decisions, data structures, and
loop structures, black-box testing verifies the product’s functional capabilities without
directly observing the source code [Mafra et al. 2009]. This allows black-box testing to be
produced before the functionality is implemented, provided that only the test specification
is based on the proposed product features.

In the specific context of automation characteristics, there is a significant interest
in automating test case execution due to various reasons. These reasons include attempts
to exclude human error during execution and the possibility of increasing the test scale
with reduced costs [Rizwan et al. 2022]. However, the automation process can have a
very high cost, both in terms of resources [Mafra et al. 2009] and time frames, or may
even be impossible to implement. Due to this scenario, many companies still perform
manual testing, even though, despite following an execution routine, the tester’s interpre-
tation may lead to divergent results [Mafra et al. 2009].

Regression testing cycles are justified by ensuring product quality with respect



to execution correctness, which is an indispensable step in various product develop-
ment scenarios. Due to this necessity, reducing its execution cost, whether financi-
ally or temporally, confirms the interest in optimizing resource allocation for the test
task [Al-Sabbagh et al. 2021][Mehta et al. 2021][Ramirez et al. 2023]. However, human
analysis can be inefficient when seeking the best possible resource utilization, either due
to selecting redundant tests (unnecessarily increasing testing effort) or a biased execution
order (resulting in potential defect correction delays).

In this perspective, machine learning techniques can be adopted to ensure con-
fidence in the quality of the proposed test order for the execution of regression tests
[Palma et al. 2018], [Wu et al. 2019]. This approach reduces the cost of generating tes-
ting plans and allows for the rapid analysis of massive data sources [Mehta et al. 2021].
According to [Rizwan et al. 2022], the use of machine learning techniques (ML) has been
suitable and successful in automating many testing steps, such as product change identi-
fication, test case selection, and ordering. Moreover, advances in natural language pro-
cessing (NLP) research have shown that these techniques have achieved improved perfor-
mance in extracting information as well as in categorizing natural language texts, which
may be difficult for machines to interpret due to their ambiguity and lack of structure
[Tahvili et al. 2018].

Considering this context, this work proposes a framework for ordering regression
testing plans, observing non-automated and black-box test cases. The proposed ordering
is based on the probability of classification of a test case execution as a failure in a spe-
cific product. Therefore, the higher its probability of failure, the higher the priority of
executing a test. An important feature of the method is that we use textual information
without requiring access to the source code of the tested product. This enables suggesting
an ordering of a testing plan according to the probabilities of failure of a specific test case.

The framework obtains the probability of a test execution resulting in a failure
by deploying ML techniques, as follows: a classification model is trained to observe the
information from a test case and a product change record, associating this tuple with
a failure or not. The association is learned from the historical registry of executions,
whose data allow us to associate a past execution of a test case with a specific product
and its corresponding result. Finally, due to the textual nature of test cases and available
product change records, it is necessary to use ML and NLP techniques to obtain codified
information useful for the classification model.

The remainder of this work is structured as follows: Section 2 describes some re-
lated work relevant to our research problem. Section 3 details the proposed framework.
In Section 4, we present the results achieved, along with an explanation of the data em-
ployed. Finally, in Section 5, a general summary of the results achieved is presented, as
well as future works to be carried out.

2. Related Work

The ordering of test cases is a crucial step in the software testing process, allowing testers
to focus on the most important tests based on predefined criteria. Consequently, testing
time and resources are utilized more efficiently, increasing the probability of detecting
critical failures in the software as quickly as possible. Various techniques for prioritizing
test cases have been proposed in the literature, each with its own strengths and weaknes-



ses. This section presents a review on this subject, focusing on approaches most relevant
to the work developed here.

In [Mafra et al. 2009], the author proposed a tool that selects a set of ordered
test cases according to their relevance. The selection is based on metrics obtained from
previous execution results and metrics obtained from analyzing the content of each test
case against the product scope. These metrics determine a relevance score for each test
case, making it possible to identify the most relevant tests within a testing plan.

The authors in [Zhang et al. 2022] highlight that regression testing selection
(RTS) optimizes testing by executing only the subset of tests that can be affected by
changes. In this context, they showed that RTS based on ML works well in large code
repositories. They developed a combination of RTS based on analysis and RTS based on
ML to learn the impact of code changes on test results. Experiments were conducted on a
training dataset obtained through mutation analysis. Compared to RTS based on analysis,
this study showed that the combination with RTS based on ML selects about 25% fewer
test cases, improving the task of prioritizing test cases to be evaluated.

In addition to selecting sets of test cases (TCs), another approach used in the
literature is defining the order of execution for TCs to improve test execution time. In this
sense, [Palma et al. 2018] developed an evaluative study of TCs from a dataset of open-
source projects developed in Java, which compose the defects4j dataset. The authors
proposed a logistic regression model for predicting TC priority, with results submitted to
traditional quality metrics such as: Traditional Historical Fault Detection Metric (TM),
Method Coverage (MC), Changed Method Coverage (CMC), and Size of Tests (ST); and
quality metrics based on similarity, such as: Basic Counting (BC), Edit Distance (ED),
Hamming Distance (HD), and Improved Basic Counting (IBC). The results indicated that
the predictive model suggested by the authors can perform test case prioritization.

The work presented in [Spieker et al. 2017] proposes the RETECS method, focu-
sing on automatically selecting and prioritizing TCs in the context of continuous software
integration. The authors emphasize the relevance and difficulty of selecting TCs with
higher probability of generating errors due to uncertainty generated by commit informa-
tion regarding the impact of code changes. RETECS selects and prioritizes TCs using
reinforcement learning and neural networks. To evaluate the performance of this method,
the authors implemented a normalized APFD metric and identified an agent-based neural
network as the best predictor for prioritizing TCs.

In [An and Yoo 2022], the authors also focused on selecting and prioritizing TCs.
The Fault Localization (FL) technique was used, which measures the impact of each TC
on the test plan suite (TP). In this work, it is reinforced that it is essential that FL perfor-
mance be directly related to TP-tested test quality. To expand the TCs that comprise each
TP, the authors developed the Fault Diagnosability Gain metric, which explores continu-
ous FL results to emphasize parts of the program requiring more information.

Reinforcement learning techniques were also employed in [Omri and Sinz 2022].
In this work, the challenge of prioritizing TCs was approached as an online ranking
problem to mitigate the scalability impact in continuous integration environments. The
authors validated the proposed method in a case study industrial setting, showing that
more than 95% of test failures were reported to software engineers, while only 40% of



available TCs were executed.

Finally, in [Shankar and Sridhar 2024] it is highlighted that information loss is
the biggest difficulty in prioritizing TCs in continuous integration environments. This
loss significantly impacts the regression task performed by tools already produced in the
literature. To resolve this problem, the authors developed DeepRP, a Q-learning-based
reinforcement learning model that better understands features extracted from source code,
version control, and code coverage.

It is worth mentioning that most of the work described in this section refers to the
prioritization or selection of TCs related to continuous integration cycles through software
versioning. In each cycle, metadata about the tests is generated through logs, test case
execution time, instructions that guide the test cases, as well as coding of the version
control system. In almost all observed methods, the use of the developed source code is
used in the approaches proposed by the other solutions. On the other hand, in this work,
the ordering of TCs is defined based on metadata contained in test scripts, commits and
historical data related to the tested product, without observing the product’s source code
itself. In this way, our tool seeks to understand what was modified in the product from the
textual artifacts mentioned above. This type of ordering, called black box, demonstrated
compatibility and reliability through the APFD metric.

3. Proposed Method

In this work, we propose a framework that aims to optimize the order of execution of test
cases to efficiently identify existing failures in product functionality, thereby ensuring a
wider time margin for correcting these failures. To achieve this objective, it is necessary
to prioritize the execution of test cases within a testing plan related to the changes made in
the product. Therefore, there is an implicit interest in executing test cases that will reject
the product as early as possible. Consequently, we seek to define an execution order that
contains failure situations at the top positions.

To select the execution order, ML models are used to identify the probability of
the product failing a test: a characteristic we call failure probability. Once the failure
probability is calculated, the ordering of test cases is entirely based on this new characte-
ristic. To calculate the failure probability, we provide the ML model with a feature vector
composed of information about both the test case and the tested product version. This is
done by concatenating two separately extracted feature vectors, one containing features
extracted from the test case and another containing features representing the product. To
characterize the product, we used commit texts from changes made to that version of the
product, while for test case characteristics, we used the test script text. We did so since
we believe that NLP ML models can extract characteristics from both to identify possible
product failures, since the commits contain information regarding product changes and
the test scripts of the tested characteristics.

It is important to note that both product and test case data are natural language
texts, making it very challenging to extract computable information efficiently to cha-
racterize this textual information. To obtain a feature vector that can represent both
sets of textual information, we employ neural networks based on transformer architec-
ture SBERT [Reimers 2019], where the network provides a feature vector expressing the
information existing in a text sentence. Therefore, given a product and a testing plan, we



are able to establish a sequence of steps (illustrated in Figure 1) capable of ordering test
cases based on failure probability. These steps are detailed in the next subsections.

=
%]
3 o S =
E'_;C_, '§3w
Eﬁa > c 5 - C%E %
c
£ £g§2 g zEL B s c E S50¢g 3J_% <c§
s 2. 25 o =2 T 295w T = oF » 05
> 26 E£D £ 8 F o = w= 0 EETs5Z S0 mE
@ S =0 69 & °n 829 38EL 3 = Q0 o
s azfa NS5 Se 2 8<3 83538 8328 g3
£ = =% = = c £ > X o 2
'g’“,'%% §u<a OnMhEES oWas 0O
a ©
=58 n 0O B o >
a
o —
(7] = 2 c CSo B
= = % > = L o
I ] o3 o= 2B 5 253
o Sag = 25 5 ° I =23
= = — o
= O£ g 2R > =9 = 9 [ 882
3 30 5 22 B e 3 e 3 St
(0] o =0 = a
= AN S w w (8] 2E®
S = £
o 0 Q5=
\ L \ n
o \\
< = & 8
£ > = @
2 = 3= ,425 273 ) 53
S € @ c £Eg5 Sl = =]
BE > E8 " 8E s E 3 £ 3 5 g3
= o K] =
ge (S=1 o E 8§ 8 E Qb
1S h4 >
o (@]

Figura 1. Flowchart of the Ordering Framework

3.1. Product Information and Test Case Preprocessing

The product and testing plan information are abstractions for the entire set of relevant
information related to the problem used in our framework. As mentioned earlier, the
product information is extracted from commit texts generated during the development of
the referred product version. On the other hand, the information in the test plan is the
test cases that make it up, each test case has a script of action instructions (test script) to
be applied to the product. Both types of information possess textual characteristics close
to natural language texts. Therefore, the first step for the proper use of this information
involves text preprocessing.

Given the similarity in text type between both data sources, the preprocessing
step in both cases consists of filtering out very common or very rare terms and removing
known irrelevant texts. For example, during this stage, attention warnings, multiple blank
spaces, special characters such as brackets, numbers, HTML tags, among others were
removed. In our work, the filters used were essentially based on regular expression sear-
ches (REGEX). However, due to the specificities of each textual input (commits and test
scripts), it was necessary to develop specific filters for each type of input. Once prepro-
cessing is completed, the next step involves text encoding, in which texts are converted
into numerical representation vectors.

3.2. Product Information and Test Case Encoding

The encoding models are responsible for observing textual content and transforming its
representation into a numerical vector. The information contained in the vectors generated
by the encoding models enables differentiation between texts based on the original textual
content, representing it in a numerical form. The encoding model employed in our work
was SBERT (Sentence Bidirectional Encoder Representations for Transformers).



3.3. SBERT

The Bidirectional Encoder Representations for Transformers (BERT) encoder is based on
a transformer network, where the textual input is encoded into a 768-dimensional vector
representation when the standard version of the architecture is used. This representation
takes into account not only the content of existing terms in the text but also the arrange-
ment of these terms within the text, as illustrated in Figure 2. SBERT is an extension of
BERT, designed specifically for generating sentence representations. The key distinction
between them is that SBERT trains BERT on a specific task of sentence encoding—rather
than predicting words in a sentence. As a result, SBERT produces full-sentence repre-
sentations, making them useful for tasks such as text-based information retrieval and text
clustering [Reimers 2019].
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Figura 2. Flowchart of the SBERT Process.

In this work, we employed SBERT to encode the two textual entities: test case
scripts and commit messages. The preprocessed texts were then submitted to the pre-
trained SBERT model, which transformed the test steps and commits into embeddings.
Our goal is that these embeddings condense the semantic content of the texts in a compact
yet informative manner. Additionally, the vectorial representation of textual data enables
various ML methods to perform tasks with the features extracted by the SBERT network.
The next stage of our framework focuses on using some ML methods for the task of test
case classification.

3.4. Classification of Test Cases Applied to a Product

As previously mentioned, the ordering of test cases is performed based on the probability
of failure for each test case. This probability is calculated at this stage as follows: The
encoding step of test case scripts and products generates a 1536-position vector (768 to
represent the product and 768 to represent the test case) for each instance of test cases.
These vectors are used as input for classification algorithms. Subsequently, the classifi-
cation algorithm analyzes the received vector and returns the probability that this vector
represents an accepted or failed test case, using the class probability output of the model.

Various ML techniques can be employed at this stage, since the objective of the
algorithm is to learn to correlate the input vectors with the failure probability of the
test case. In this work, the investigated methods were as follows: KNN (K-nearest
neighbors) [Batista et al. 2009], Logistic Regressor [Brzezinski and Knafl 1999], MLP
(Multi-Layer Perceptron) [Murtagh 1991], Xgboost [Friedman 2001], and random forest
[Breiman 2001]. Once the failure probability of test cases is calculated, these can be
ordered considering their failure probabilities.



3.5. Test Case Ordering

The failure probability generated by the classification model for each test case is aggre-
gated with the identifiers of the test cases. In the final stage of the proposed framework,
the test cases are ordered to prioritize those with higher failure probabilities. Therefore,
the framework returns the sequence of execution identifiers for the test cases.

To verify the performance of our framework, an experimental protocol was de-
signed to replicate a scenario of executing test plans. In these experiments, 5 different
versions of the framework were tested using 5 classification techniques. The experimen-
tal protocol and the obtained results are presented in the next section.

4. Experiments

In this section, we describe the experimental protocol, evaluation metrics, and results
obtained in the experiments. First, however, we present details about the dataset used.

4.1. Dataset

The dataset used in our experiments was provided by a large multinational corporation.
The content of the dataset meets the requirements of the proposed scenario and allows
us to validate the results of the framework and compare them with those obtained by the
strategy adopted by this company. The dataset is originally divided into three sets, each
serving a purpose of information representation.

The first is the fest case set, which has 13,890 instances, containing labeled infor-
mation regarding the functionalities under test by each individual test case and the actual
text of the test script. The second set is the product set, which contains codification of
943,469 commit messages from 9052 products, distributed across approximately 240 clas-
ses corresponding to the type of component altered in the product. Due to the confidential
nature of the commit messages, the company provided a sample of over 50,000 commits,
which served to explore techniques for filtering and encoding that could be candidates for
execution on the dataset by the company itself. With the filters and codification model de-
fined, the company executed the processing of text from commits and provided a dataset
containing the encoded vectors of commits. Finally, the third set is the execution record
set, which contains information about the application of test cases to real products and the
results of their executions. This set consists of 142,401 test case execution records.

4.2. Experimental Protocol

The experiments were conducted using the Hold-Out protocol and taking into account a
temporal separation, i.e., by considering the time at which the products available in the
dataset had their tests initiated. The proportion used was 70% of the products (necessarily
the oldest) for training and the remaining 30% for testing (the most recent ones). The
dataset was divided in this way since it is the procedure that most resembles the real pro-
cess in production. In the training partition, 89.6% of the instances (test case executions)
are from the non-failure class, while executions labeled as failure correspond to 1.9% of
the set. On the other hand, in the testing partition, instances corresponding to the non-
failure class represent 87.3%, while failures correspond to 2.2%. In both partitions, the
remaining instances belong to classes such as postponed execution, conditional pass, and



others that regard specific situations of the testing stage and were not considered in this
experiment.

Given the two sets obtained after splitting the dataset, the training set and test set,
all classification models were submitted to the same experimental protocol. Using the
training partition, we manually set the hyperparameters of the models to optimize our
classification metrics. After defining the hyperparameters of the models, we executed the
final training and evaluated the models on the testing partition.

4.2.1. Comparison Protocol

In order to better evaluate the models’ performance considering the ordering task, we
employ three additional approaches as baselines: Real Order, Random Order, and Optimal
Order of execution. The first considers the sequence used by the testing team of the partner
company. Therefore, this method reflects the behavior of human Q&A analysts at the task
of ordering the execution of test cases.

The remaining two methods are automatic methods for ordering the execution of
test cases. The Random Order is a method that randomly guesses the order of the execu-
tion. It was designed by randomly generating 100 sequences for each test plan and pre-
senting the mean result from these sequences. The sequences disregard any information
about the product content or the test cases during their generation. Finally, the Optimal
Order is an upper bound of ordering strategies, where it always generates the perfect exe-
cution sequence for any test plan, consistently achieving the best possible result under the
observed metric.

4.3. Metrics
4.3.1. Classification

The metrics evaluated for the classification models are: accuracy, precision, recall, and
F1 score. The values presented in the experiments section are the means of the observed
test plan values.

4.3.2. Ordering

To evaluate the ordering, we use the APFD (Average Percentage Faults Detected)
metric[Pradeepa and VimalDevi 2013], which is usual for test case priorization tasks.
This metric measures the ordering of a test case based on the time at which existing
faults are found. Its equation is as follows:

TF1+TF2+ ... +TFm 1

APFD =1 — + — (D)
nm 2n

where T'F'm indicates how many failures were found by the m!* executed test, m repre-
sents the total number of failures and n represents the number of test cases used.

Similarly to the classification metrics, APFD will also be reported considering the
average of the values achieved by the orderings for test plans.



4.4. Results

Initially, we evaluated the five ML models investigated in terms of classification of test
cases into classes failure and non-failure. For this purpose, we considered the classifi-
cation metrics accuracy, precision, recall, and F1-score. As shown in Figure 3, although
four metrics have been used, all indicate the following order of decreasing performance:
Xgboost, Knn, Logistic Regression, Random Forest, and MLP. However, it is important
to note that Logistic Regression, Random Forest, and MLP exhibit very similar results.
Xgboost, on the other hand, achieved inferior results.

Classification Metrics Evaluation

1.00

1 01 1
m i
Ik Ik Ik

Accuracy Precision Recall F1-Score

Metric Value
o o
® ©
& S

Models
. Knn Logistic Regression = Mip B Random Forest ~ W Xgboost

Figura 3. Comparing Machine Learning Algorithms for Classifying Test Cases
into Failure and Non-Failure Classes.

As previously mentioned, the objective of our framework is to prioritize the test
cases that will result in failures. Therefore, classification is only one necessary step
towards ordering. The APFD metric is used to allow us to evaluate the actual ordering
results. Here, two APFD values were calculated: one from the real-world data ordering
(Real Order) and another from the ordering provided by our framework (Proposed Order).
Consequently, for each test plan, we have access to two orderings: Real Order and Propo-
sed Order, whose APFD values were calculated and compared to obtain information on
the quality of the orderings for each test plan.

The five classification models were used individually to provide the probability
of failure for the ordering step, enabling the testing of five different versions of the fra-
mework. Considering these five versions, we observed three possible scenarios for analy-
zing the ordering quality: (1) Better - scenario where the APFD calculated for the Propo-
sed Order is higher than the APFD calculated for the Real Order; (2) Equal - where both
values are similar; and (3) Worse - where the APFD calculated for the Proposed Order is
lower than the APFD calculated for the Real Order.

Figure 4 illustrates the behavior of the five framework versions across the three
scenarios. For all methods, the test plans are ordered from worse to best APFD results in
comparison with its performance in the Real Order. Thus, in the left side are the worst
results and on the right side the best results, and the relative improvement (or not) in
APFD of the methods can be more easily compared.



Considering the models and scenarios, it is possible to observe the following order
of results from worst to best: Knn, Xgboost, Logistic Regression, MLP, with Random
Forest obtaining the best results, with 11,79% of the test plans having APFD results above
the real order and only 5,76% of them having worse results. It is important to note that,
in Figure 4, the width of the areas represents the number of cases where each scenario
occurs, while the height of the bars indicates the difference observed in the quality of the
ordering.
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Figura 4. Comparison of the proposed framework using different machine lear-
ning algorithms in terms of Actual Percentage of Fault Detection (APFD)
against Real APFD. Test plans are ordered from worst to best APFD diffe-
rence in comparison to to the real order.

To further analyze the impact of our framework in the ordering, Figure 5 presents
Violin plots of the APFD differences for test cases with better (a) and worse (b) results
when compared to the Real Order, respectively. As can be seen, the worse results of
KNN were more frequent and presented larger drops in APFD compared to the other
classifiers, which had similar results in that regard. When analyzing the test cases with
better APFD, surprisingly KNN had a higher mean APFD difference, but had a smaller
number of test cases and highest values compared to all other methods evaluated, which
also obtained similar results in comparison with each other, with Random Forest and
Logistic Regression having more test cases with higher differences.

4.5. Discussions

Considering the various proposed orderings based on the five versions of the classification
models, we can observe that despite the fact that a significant portion of the test plan orde-
rings do not present real gains (Equal), the number of test plans with improved ordering
(Better) exceeds the number of worse orderings in all scenarios, as shown in Figure 4.

Therefore, when considering the benefit provided by the framework as the number
of plans evaluated as Better minus the number of plans with Worse outcomes, we observe
that the framework demonstrates an improvement of 3.17% in its worst-performing clas-
sifier version (KNN 10.65% - 7,48%) and 6.03% in its best-performing classifier version
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Figura 5. Distribution of differences between predicted and Real APFD for test
cases where the framework obtained superior (a) and inferior (b) results in
comparison to the Real Order.

(Random Forest 11,79% - 5,76%). Furthermore, our framework attained results superior
to or equal to the manual method in between 92.52% and 94.24% of cases, depending on
the machine learning algorithm used.

Based on these results, we can affirm that using the test case script and commit
logs from a product submitted to this testing succeeded in providing sufficient information
to the classification models to achieve a gain of up to 6.03% in the ordering of test plans,
using the probability of failure as the ordering criterion.

Furthermore, as can be seen in Figure 4, there is a large number of test plans with
APFD value tied between the real order and the order given by our framework. Most of
these ties can be explained by the fact that 82.08% of test plans executed in the test set
there were no test cases that ended in failure, hence having an APFD value of 1 irregar-
dless of the test case ordering. Due to these cases being the majority, eventual improve-
ments made from our framework may get diluted when analyzing ordering metrics.

Thus, to better visualize the impact of our Framework in the test plans where it
can make any difference, Figure 6 presents the mean APFD for the different classifica-
tion methods of our Framework, as well as the Real, Random and Optimal Order APFD
results, considering only test plan executions where at least one failure was found. In
these cases, the proposed ranking strategy once again demonstrated superior performance,
achieving improvements of nearly 10% over the manually performed ordering. However,
despite the gains obtained compared to the Real Order and Random Order, there remains
a significant gap when contrasted with the Optimal Order. Even in the best scenario (Ran-
dom Forest), the difference still stands at approximately 30% indicating that there is still
room for improvements in the framework.

5. Conclusions

In this work, we propose a framework for ordering regression test plans considering non-
automated and black-box testing cases. The ordering is performed based on the probabi-
lity of classification of a test case execution on a specific product as a failure, which is
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Figura 6. Proposed framework compared to Real, Random and Optimal Order.

calculated by machine learning models. The information used to represent each test case
includes textual natural language information from the test case and a product change log
to associate this pair with a failure or not.

We evaluated five different versions of the framework by varying the machine le-
arning method used to classify the test cases. The results of the framework were compared
to the performance of the sorting made by an expert team from the company owning the
data, as well as random and optimal orderings of test case execution. The experiment
results showed that the adopted ordering strategy achieved positive gain-loss ratios in all
scenarios. Although there was similar performance between automatic and manual orde-
ring in many cases, this scenario only reinforces the good performance of the framework,
as our solution was able to equal or outperform the expert team with previously acquired
experience in this function.

Another noteworthy point is that the information from commits and test case
scripts proved capable of providing indications of a probable failure in the tested pro-
duct, given that no source code was used.

The threats to the validity of this experiment reside in its use of proprietary data,
making it difficult to generalize its performance to other data scenarios. Another point is
the impossibility of validating the obtained results by disregarding the intrinsic characte-
ristics of the test set, due to the necessary Hold-Out design feature of the problem.

Finally, new approaches are still needed for the investigated problem, such as ex-
panding the framework’s information sources and testing new machine learning model
approaches like neural networks with higher learning capacity and techniques like rein-
forcement learning, where it would also be worthwhile to explore the use of the APFD
metric as a reward for the model.



Artifact Availability

Due to our partner industrial compliance, we cannot provide any software developed du-
ring this research. Some parts contain sensitive content attached or industrial secrets that
can be retrieved into our framework source code. Hence, since this research was conduc-
ted on texts extracted from commits and tests scripts from real data, it contains employee
information or secrets about products functions. Consequently, even coded, the data and
trained models are not allowed to being provided. Moreover, simulated versions of sensi-
tive functions or content would turn the data useless and compromise results, as artificial
generated data could not reproduce real-world data. Considering this context, we are una-
ble to elaborate software or data artifacts that can be followed, comprehended, or executed
to really reproduce results without compromising the expected confidentially.
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