
Towards a Software Toolkit for Specifying and Monitoring
Smart Contracts in the Application Integration Domain*

Mailson Teles-Borges1 , Eldair F. Dornelles1 , Fabricia Roos-Frantz1 ,
Antonia M. Reina-Quintero2 , Sandro Sawicki1 ,

José Bocanegra3 , Rafael Z. Frantz1

1Unijuı́ University – Ijuı́/RS – Brazil

mailson.borges@sou.unijui.edu.br

{eldair.dornelles, frfrantz, sawicki, rzfrantz}@unijui.edu.br
2University of Seville – Seville – Spain

reinaqu@us.es

3Universidad Distrital Francisco José de Caldas – Bogotá – Colombia

jjbocanegrag@udistrital.edu.co

1. Introduction
This paper contributes a toolkit that we have developed to ease the implementa-

tion of smart contracts. It is an ongoing project, yet, we have already implemented four
of its core components: Jabuti DSL, Jabuti CE, the Transformation Engine, and the Mon-
itoring System. Jabuti DSL is a domain-specific language for writing smart contracts
for Enterprise Application Integrations [Dornelles et al. 2022]. It includes constructs for
encoding operations frequently found in smart contracts for the application integrations.
Our toolkit is aimed at developers of Jabuti DSL smart contracts. It provides a compre-
hensive programming environment that should encourage the adoption of the language.
In the following sections, we will discuss only the last three components.

2. Software Toolkit

Jabuti CE1 is an editor for writing contracts in Jabuti DSL. It includes a VSCode
Plug-in and a Language Server. The VSCode Plug-in connects to the VSCode Editor and
integrates with both the Language Server and the Transformation Engine. The Language
Server provides editor features such as code formatting, syntax and semantic validation,
auto-completion, colour highlighting, and code transformation.

The Transformation Engine transforms contracts written in Jabuti DSL into ex-
ecutable smart contracts. It consists of five components: Grammar Parser, Validators,
Canonical Parser, Code Generator, and Code Formatter. The Jabuti DSL grammar is
based on ANTLR, so the Grammar Parser also uses ANTLR to generate the Abstract

*Research funded by the Co-ordination for the Brazilian Improvement of Higher Education Person-
nel (CAPES) and the Brazilian National Council for Scientific and Technological Development (CNPq)
under grants 311011/2022-5, 309425/2023-9, 402915/2023-2. Antonia M. Reina has been funded by
projects PID2020-112540RB-C44 and TED2021-130355B-C32. Thanks to Carlos Molina-Jimenez from
Cambridge University for his valuable feedback in early versions of this work.

1The source code of Jabuti DSL, Jabuti CE, the Transformation Engine, and the Monitoring System is
available on GitHub: https://github.com/gca-research-group/smart-contract-execution-monitoring-system?
tab=readme-ov-file#project-repositories

https://orcid.org/0000-0001-7674-854X
https://orcid.org/0000-0001-6585-3432
https://orcid.org/0000-0001-9514-6560
https://orcid.org/0000-0003-3698-6302
https://orcid.org/0000-0002-7960-0775
https://orcid.org/0000-0002-8342-7346
https://orcid.org/0000-0003-3740-7560
https://github.com/gca-research-group/smart-contract-execution-monitoring-system?tab=readme-ov-file#project-repositories
https://github.com/gca-research-group/smart-contract-execution-monitoring-system?tab=readme-ov-file#project-repositories


Syntax Tree (AST) of the smart contract. The AST is a structured data format that links
each token value in a hierarchical sequence of relationships. Validators, also implemented
using ANTLR, perform syntactic and semantic checks. The Canonical Parser converts the
generated AST into the format required by the Code Generator. The Code Generator uses
a template rendering library, currently ejs2, to transform the Jabuti DSL smart contract
into the format of target platform. Finally, the Code Formatter corrects formatting errors.

The Monitoring System mediates between integrated applications and blockchain
platforms. It manages blockchain connections and smart contract execution. It captures
execution events and detects clause violations. The system forwards contractual events to
integrated applications. Monitoring System is event driven and is activated on demand. It
consists of three main components: Event Handler, Contract Invoker, and Event Updater.
The Event Handler polls and prepares events awaiting processing. The Contract Invoker
connects to the target blockchain, executes the smart contract, and captures execution
events. Lastly, the Event Updater evaluates the Contract Invoker’s response and makes
the results available to the integrated application.

3. Usage of the toolkit in a case study
Imagine a contract with a single rule between a shop-owner and a supplier that dic-

tates that delivery trucks are expected only from 6:00 pm to 11:59 pm. Next, imagine that
Alice (a developer) proceeds to implement it using our toolkit. (1) Alice uses Jabuti CE to
encode the rule in Jabuti DSL. The result is a Jabuti DSL smart contract stored in a .jabuti
file. (2) In this example, she wishes to deploy the smart contract in Hyperledger Fab-
ric, thus she uses the Transformation Engine to transform it into Golang (Solidity would
be another alternative). (3) She deploys the Golang smart contract into the Monitoring
System to finish her task. (4) When a delivery is completed, the shop-owner generates
an event reporting the truck’s arrival and departure times and sends it to the Monitoring
System. (5) The Monitoring System launches the smart contract into execution. (6) If the
smart contract detects a rule breach, it sends a violation event to the shop-owner and the
supplier to enable compensatory actions.

The main advantages of this approach are: firstly, Jabuti DSL can encode rules
directly and intuitively, Jabuti CE automates code specification and transformation; sec-
ondly, the Monitoring System simplifies the connection and management of the interac-
tion between the integration and the blockchain; it lowers the adoption barrier; finally, the
blockchain serves as an immutable storage of transaction records.

4. Future Work
The adoption of AI to automate the transformation process that runs into the Trans-

formation Engine is in our plans. Managing and deploying a Hyperledger Fabric network
can be cumbersome, even for testing purposes. Therefore, we would like to implement
a tool to automate the deployment of local Hyperledger Fabric networks. We plan to
evaluate the performance of the Monitoring System under stressful conditions.

References
Dornelles, E. F., Parahyba, F., Frantz, R. Z., Roos-Frantz, F., Reina-Quintero, A. M.,

Molina-Jiménez, C., Bocanegra, J., and Sawicki, S. (2022). Advances in a DSL to
specify smart contracts for application integration processes. In Ibero-American Con-
ference on Software Engineering (CIbSE), pages 46–60.
2https://ejs.co/

https://ejs.co/

	Introduction
	Software Toolkit
	Usage of the toolkit in a case study
	Future Work

