
Unraveling Software Antipatterns and Smells Definitions
Richard Rivera1, Pamela Flores1, Carlos E. Anchundia1, Marcela Mosquera1,

Alejandro Jiménez1, Xavier Carpio1

1Departamento de Informática y Ciencias de la Computación.
Escuela Politécnica Nacional. Quito, Ecuador

{richard.rivera01, pamela.flores, carlos.anchundia
evelyn.mosquerae, alejandro.jimenez, xavier.carpio}@epn.edu.ec

Abstract. Software technical debt may persist if the root cause is misidentified.
We argue that this stems from misconceptions about antipatterns and smells.
This article reviews the literature to clarify their similarities and differences.
Findings suggest that both terms are used interchangeably, with “smell” being
more common, though this ambiguity may affect optimal solutions in software
projects.

1. Introduction and Methodology
Antipatterns and smells concepts have become essential for identifying and mitigating
design and implementation flaws. “Antipattern” was introduced by [Brown et al. 1998]
to define recurring poor solutions to common software problems. On the other
hand, “smells” serve as heuristics to identify potential issues in source code
[Fowler et al. 2018]. Although the terms could confuse academic and industry contexts
when reviewing publications, forums, and books. This research examines the current use
of these terms and their practical implications through the questions: RQ1: Are antipat-
terns and smells the same? RQ2: What are the implications of confusing these terms?

An exploratory review of the literature was carried out, taking Fowler and Brown
as references, given their proposal of concepts and classifications. In addition, the explo-
ration included articles related to classification proposals and taxonomies of antipatterns
and smells, among which Neil, Laplante, Wakem Jerzyks, and Madeysky stand out. We
gather information such as definitions, classification, structure, and impact on projects.

2. Key Results
Similarities. In software project management, the terms are used as synonyms to denote
technical debt issues. Also, researchers and practitioners prioritize problem-solving over
conceptual distinctions [Tahir et al. 2018]. Additionally, there are antipatterns, such as
“Spaghetti Code,” which can be addressed based on their impact on the project. Struc-
turally, researchers organize antipatterns and smells into catalogs, which exhibit striking
similarities, potentially confusing for an inexperienced observer (Fig. 1).
Differences. We have grouped different classification schemes into “collections”. At first
glance, it can be seen that antipatterns focus on high-level context, while smells focus on
low-level aspects of implementation (Fig. 1). It is a finding that smells such as “Blob” or
“Functional Decomposition” were first classified as antipatterns by [Brown et al. 1998].
Conversely, the presence of antipatterns can be revealed through the manifestation of
smells, necessitating a potential restructuring. However, a smell can be identified through
various technological tools associated with basic refactoring, such as clean code princi-
ples [Sabir et al. 2019].



Figure 1. Antipattern and Smell relationship and analogy

3. Discussion
RQ1, antipatterns and smells are different, though both negatively impact software main-
tainability. Their definitions should not be overlapped, obscuring their true significance.
Antipatterns and smells are related to different levels of software project issues.
RQ2, smells are like visible moisture on a wall, signaling underlying issues, whereas
antipatterns resemble hidden plumbing leaks that require deeper investigation. While
smells can be quickly addressed, antipatterns demand extensive structural changes and a
thorough understanding of the development environment (Fig. 2).

Figure 2. Antipattern and Smell relationship and analogy

4. Conclusions and Future Work
It has been examined how the terms antipattern and smell are often interpreted as similar.
However, this can be a mistake when dealing with technical debt due to possible impli-
cations for treating causes within a software project. With this knowledge, future work
will explore the traceability between antipatterns and smells to distinguish these concepts
better.

References
Brown, W. H., Malveau, R. C., McCormick, H. W. S., and Mowbray, T. J. (1998). An-

tiPatterns: refactoring software, architectures, and projects in crisis.

Fowler, M., Beck, K., Brant, J., and Opdyke, W. (2018). Refactoring: improving the
design of existing code. Addison-Wesley.

Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y.-G., and Moha, N. (2019). A systematic
literature review on the detection of smells and their evolution in object-oriented and
service-oriented systems. Software: Practice and Experience, 49(1):3–39.

Tahir, A., Yamashita, A., Licorish, S., Dietrich, J., and Counsell, S. (2018). Can you tell
me if it smells? a study on how developers discuss code smells and anti-patterns in
stack overflow. In Proceedings of the 22nd International Conference on Evaluation
and Assessment in Software Engineering 2018, EASE ’18, page 68–78. ACM.


