Impactos do Paradigma da Programacao Orientada a Objetos no
Desenvolvimento de Sistemas: Uma Analise de seus Pontos
Positivos e Negativos

Esp. Deyvison Samuel Gomes do Nascimento', Renan Juc4 da Silva!, Esp. Marcos Ramon
Paulino Resende !

nstituto Federal do Piauf (IFPI)
Caixa Postal 64.260-000 — Piripiri — PI — Brasil

{deyvisonnascimento2025, renanjuca2004, marcosramon.profl0}@gmail.com

Abstract. This article analyzes the impacts of the Object-Oriented Programming
(OOP) paradigm on software development, highlighting its influence on code struc-
turing, reuse, and maintenance. The approach demonstrates how OOP principles
contribute to system modularity and readability, promoting more organized and
scalable development practices. To support this analysis, data collected through
surveys with professionals in the field are presented, along with a comparative table
of programming paradigms. The study also encourages critical reflection on the
advantages and limitations of this paradigm, considering the technical, operational,
and contextual aspects involved in its adoption.

Resumo. Este artigo analisa os impactos do paradigma da Programagdo Orientada
a Objetos (POO) no desenvolvimento de software, destacando sua influéncia na
estruturagdo, reutilizagdo e manutengdo do codigo. A abordagem evidencia como
os principios da POO contribuem para a modularidade e legibilidade dos sistemas,
favorecendo prdticas de desenvolvimento mais organizadas e escaldveis. Para isso,
sdo apresentados dados coletados por meio de pesquisa com profissionais formados
na drea, além de uma tabela comparativa entre paradigmas de programagdo. O
trabalho também promove uma reflexdo critica sobre as vantagens e limitacoes desse
paradigma, considerando aspectos técnicos, operacionais e contextuais envolvidos
em sua adogdo.

1. Introducao

Com o crescimento continuo da complexidade dos sistemas computacionais € a necessidade
de solu¢des mais eficientes, reutilizaveis e faceis de manter, a forma como o software é es-
truturado tem ganhado destaque entre profissionais e pesquisadores da drea (Caputo 2006).
Nesse contexto, a Programacdo Orientada a Objetos (POO) consolida-se como uma das
abordagens mais adotadas no desenvolvimento de sistemas modernos, oferecendo um mo-
delo que busca aproximar a légica da programacao das estruturas e relacdes do mundo real
(Afonso 2013; DAvila and Giraffa 2023).

Embora os fundamentos da POO, como encapsulamento, abstragdo, heranca e polimor-
fismo, sejam amplamente ensinados e promovam vantagens como modularidade e reutilizagdo
de codigo, sua aplicacdo pratica nem sempre € isenta de dificuldades.A dificuldade de mui-
tos desenvolvedores em aplicar corretamente os conceitos da Programacao Orientada a Objetos
pode comprometer a efici€éncia dos projetos ou desvid-los dos principios fundamentais do para-
digma. Essa discrepancia entre o que se aprende na teoria € o que se pratica no desenvolvimento
real levanta reflexdes relevantes sobre a eficicia da POO em diferentes contextos profissionais.
(Cardoso 2023; Costa 2011).

Além disso, a POO € apenas uma entre diversas abordagens existentes no campo
da programacdo. Paradigmas como o estruturado, funcional, 16gico e imperativo apresen-
tam diferentes formas de organizar o pensamento computacional e solucionar problemas por
meio de codigo. Entender as caracteristicas e aplicacdes desses modelos € essencial para
escolher, de maneira critica e contextualizada, a estratégia mais adequada para cada projeto
(Santos 2013; Silva 2015).

Para compreender melhor a relevancia e os impactos reais da Programagdo Orientada
a Objetos na pratica profissional, € necessario considerar ndo apenas os aspectos tedricos, mas
também as percepcdes e experiéncias daqueles que atuam diretamente no desenvolvimento de
software. Muitas vezes, a forma como a POO ¢ utilizada em ambientes corporativos e académi-
cos revela adaptagdes, simplificagdes ou até mesmo distor¢des em relacdo ao modelo idealizado
(Reis et al. 2015; Zanetti et al. 2023).

Em sintese, o presente artigo tem como objetivo apresentar uma andlise sobre a impor-
tancia do uso da Programacdo Orientada a Objetos (POO) no desenvolvimento de sistemas,
evidenciando suas principais caracteristicas, vantagens e limita¢des. A proposta é oferecer uma
reflexdo critica sobre como esse paradigma contribui para a organizacdo, manutenc¢do e escala-
bilidade do cédigo, considerando critérios como integracdo com novas tecnologias, facilidade
de entendimento, suporte a colaboracdo e adaptacdo a diferentes plataformas. A partir dessa
abordagem, busca-se fornecer subsidios tedricos e praticos que ajudem profissionais e estu-
dantes a compreenderem os impactos positivos e os desafios da ado¢do da POO, promovendo
escolhas mais conscientes e eficazes no processo de desenvolvimento de software.

O restante deste artigo estd estruturado da seguinte forma: a Secdo 2 apresenta o re-
ferencial tedrico, abordando os principais paradigmas de programacdo, incluindo o Paradigma
de Programacdo Imperativo, o Paradigma de Programacdo Orientado a Objetos, a Programacao
Funcional e a Programacio Ldgica; a Secdo 3 descreve a metodologia adotada, bem como os
materiais e métodos utilizados na andlise; a Secdo 4 discute os principais resultados obtidos
com base na comparacdo entre as ferramentas estudadas; por fim, a Sec@o 5 apresenta a con-
clusdo do estudo e as consideragdes finais acerca das contribui¢des e possiveis desdobramentos
futuros.

2. Fundamentacao Tedrica

A fundamentagdo tedrica apresenta uma breve revisao dos principais paradigmas de programa-
¢do, com o intuito de construir uma base conceitual para a andlise proposta. Sdo abordados os
paradigmas imperativo, orientado a objetos, funcional e l6gica, destacando suas caracteristicas,
aplicagdes e contribui¢gdes para o desenvolvimento de sistemas.

2.1. Paradigma de Programacao Imperativo

O paradigma de programacdo imperativo baseia-se na execucdo sequencial de instru¢des € no
uso explicito de varidveis para representar e modificar o estado do programa ao longo do tempo.
Caracteriza-se por comandos de atribuicdo, estruturas de controle de fluxo como condicionais e
lagos de repeticdo, e pelo detalhamento minucioso das etapas de processamento. A reutilizagdao
de cddigo € frequentemente feita por meio de sub-rotinas e fungdes. (Ferreira 2014).

2.2. Paradigma de Programacao Orientada a Objetos

Historicamente, o paradigma orientado a objetos surgiu na década de 1970, antecedendo até
mesmo a criacdo da linguagem Java . No entanto, foi a partir da ampla adocao do Java que essa
abordagem passou a ganhar maior visibilidade e reconhecimento no campo da programacdo
(Mendes 2009).

O paradigma orientado a objetos foi desenvolvido com o intuito de aproximar as lin-
guagens de programacdo da maneira como os seres humanos compreendem e interagem com o
mundo. Nesse modelo, utiliza-se o conceito de "objetos"para representar entidades do mundo
real, como uma mesa, um livro ou uma pessoa, permitindo uma organizacdo do cédigo mais
intuitiva e baseada em abstracdes (Oberleitner and Masiero 2021).

Atualmente, a orientacao a objetos também € utilizada em contextos educacionais, espe-
cialmente no ensino de programacao, sendo aplicada por meio de recursos didéticos e interati-
vos, que contribui para tornar o aprendizado mais acessivel e envolvente (Camargo et al. 2020;
Zanetti and Borges 2021).

2.3. Paradigma de Programacio Funcional

O paradigma de programacdo funcional destaca-se pela €énfase na avaliagdo de expressdes € na
aplicacdo de fun¢des matemadticas puras, cujo resultado depende exclusivamente dos valores
de entrada, sem causar efeitos colaterais, além de valorizar a imutabilidade, ou seja, a ndo
modificacdo de varidveis externas. Essa abordagem € ideal para algoritmos de busca, ordenagao
e processamento de eventos. (Cardoso 2023).

2.4. Paradigma de Programacao Logica

A programacao l6gica € um paradigma declarativo que se fundamenta na l6gica matemaética para
a construcao de programas, sendo amplamente utilizada em sistemas de banco de dados. Nessa
abordagem, definem-se fatos e regras que permitem ao sistema realizar inferéncias automaéticas,
chegando a conclusdes a partir das informacdes fornecidas (Costa 2011).

3. Metodologia, Materiais e Métodos

Nesta secdo, apresenta a metodologia utilizada na andlise do uso do paradigma da POO, des-
creve os materiais e os métodos adotados para fundamentar e evidenciar o conteido proposto.

3.1. Metodologia

A pesquisa teve inicio com uma revisao bibliografica centrada na Programacao Orientada a Ob-
jetos (POO), considerada um dos paradigmas mais amplamente utilizados no desenvolvimento

de software. Essa etapa teve como objetivo compreender os fundamentos essenciais da POO e
analisar como seus conceitos sao abordados em livros técnicos, publicagdes cientificas e materi-
ais académicos. A intencao foi construir uma base tedrica sélida sobre o paradigma, a0 mesmo
tempo em que se buscou identificar possiveis lacunas entre o contetido ensinado em ambientes
educacionais e sua aplica¢do pratica no contexto profissional. Essa andlise critica permitiu ob-
servar nao apenas os beneficios atribuidos a POO pela literatura, mas também as limitacdes e
desafios enfrentados pelos desenvolvedores em sua adog¢do no cotidiano.

Com base nos conhecimentos obtidos na revisao tedrica, foi elaborado um questionério
voltado a profissionais atuantes no desenvolvimento de software, com diferentes niveis de ex-
periéncia. O instrumento foi estruturado com perguntas objetivas que buscavam explorar desde
a compreensdo tedrica dos conceitos da POO até relatos de experiéncias préticas, incluindo
dificuldades enfrentadas na aplica¢do de principios como heranga, encapsulamento e polimor-
fismo em projetos reais. A escolha pelo uso de questiondrios teve como propdsito permitir uma
andlise comparativa entre o aprendizado formal e a vivéncia préatica, contribuindo para uma
compreensao mais ampla do impacto da formacdo académica no preparo dos profissionais. Os
dados obtidos servirdo como base para refletir sobre como o paradigma orientado a objetos €
utilizado na pratica e de que forma influencia aspectos como qualidade, manutencao e evolugao
dos sistemas desenvolvidos.

3.2. Materiais

A pesquisa contou com a utiliza¢ao de dois computadores com acesso a internet, os quais permi-
tiram a realizac@o de buscas por referencial tedrico em plataformas como o Google Académico.
Além disso, foi utilizado um formulério eletronico desenvolvido no Google Forms, destinado a
coleta de dados relacionados ao uso da Programacdo Orientada a Objetos (POO).

3.3. Métodos

O método adotado nesta pesquisa caracteriza-se como uma abordagem exploratdria de natureza
quali-quantitativa, envolvendo revisdo bibliogréfica e aplicacdo de questiondrio, com foco na
andlise comparativa entre a Programacgdo Orientada a Objetos (POO) e outros paradigmas de
programacdo. Para isso, foram seguidos os seguintes passos:

1. Foi realizada uma pesquisa bibliografica sobre os fundamentos e aplicacdes da POO,
com base em fontes do Google Académico;

2. Em seguida, elaborou-se um questiondrio para programadores, com foco em suas per-
cepcoes sobre a POO. Duas perguntas foram selecionadas para andlise;

3. Os dados foram organizados e analisados qualitativamente, buscando padrdes nas res-
postas;

4. Por fim, elaborou-se uma sintese critica relacionando os resultados com a teoria, com-
parando a POO a outros paradigmas.

4. Resultados

Na préxima secdo, serdo apresentados os resultados da pesquisa, incluindo a anélise dos para-
digmas de programacdo e a interpretacdo das respostas obtidas nas entrevistas com profissionais
da drea. O objetivo é complementar a revisao tedrica com dados praticos, ampliando a compre-
ensdo sobre a aplicacdo dos diferentes paradigmas no desenvolvimento de software.

4.1. Analise dos Paradigmas de Programacao

Ao serem analisados os paradigmas de programacao, € possivel sintetizar algumas de suas prin-
cipais caracteristicas, observando que cada um possui modelos de execucdo, mecanismos de
reutilizagdo de cddigo e usos especificos, conforme demonstrado na Tabela 1. Essa tabela atua
COmo um recurso comparativo que organiza e evidencia as diferencas entre os paradigmas abor-
dados na fundamentacdo tedrica, facilitando a compreensao dos contextos mais apropriados
para aplicacdo de cada abordagem. A comparacdo refor¢a a Programacdo Orientada a Objetos
como uma alternativa robusta, especialmente em cendrios que exigem manuten¢do, escalabili-
dade e estrutura modular, a0 mesmo tempo em que destaca a importancia de se considerar as
necessidades especificas de cada projeto na escolha do paradigma mais adequado.

Comparativo dos Paradigmas de Programacgao

sequenciais e
variaveis

atributos e
métodos

imutabilidade

Caracteristica Imperativo Orientado a Funcional Légico
Objetos (POO)
Conceito central Comandos Objetos com Funcdes puras e Regras e

inferéncia logica

Modelo de execucdo

Passos sequenciais

Comunicagio

Avaliagdo de

Inferéncia a partir

entre objetos funcdes de fatos
Reutilizagdo de Sub-rotinas, loops Heranga, Composicao de Regras
codigo polimorfismo funcdes reutilizdveis
Exemplos de C, Pascal, Fortran Java, C#, Python Haskell, Scheme, Prolog

linguagens (POO) Elixir

Uso comum Sistemas Grandes sistemas, Aplicacdes IA, sistemas
operacionais, softwares matematicas, especialistas
jogos complexos paralelas

Tabela 1. Fonte: Proprio autor.

4.2. Analise de Entrevista

Os resultados da pesquisa, apresentados na Figura 1, revelam as situacdes em que os profis-
sionais consideram a Programacgdo Orientada a Objetos (POO) mais apropriada. Aproximada-
mente 42,86% dos participantes destacaram que a POO € a melhor escolha em sistemas comple-
X0s que exigem manutencio a longo prazo. Outros 28,57% indicaram que ela € particularmente
util em projetos com equipes grandes e cddigo colaborativo, enquanto uma propor¢do equiva-
lente (28,57%) mencionou sua aplicabilidade quando hé a necessidade de uma modelagem mais
proxima da realidade. Esses resultados evidenciam a importancia e a versatilidade da POO nos
sistemas modernos.

28,57%

28,57%

Il Em sistemas complexos que exigem
42 86% manuteng&o a longo prazo
’ [Em projetos com equipes grandes e
caédigo colaborativo
Il Quando ha necessidade de modelagem
proxima da realidade
Raramente é a melhor escolha
Il Depende muito do contexto

Figura 1. Fonte: Préprio autor.

Observa-se a Figura 2 que aproximadamente 57,14% dos entrevistados identificaram
que a principal melhoria proporcionada pela utilizacdo da Programacao Orientada a Objetos
ocorreu na organizacao e legibilidade do cddigo. Esse dado sugere que, na prética, a orientagdo
a objetos tem contribuido significativamente para uma maior clareza estrutural, o que facilita o
entendimento, a manutencao e a evolugdo dos projetos desenvolvidos.

28,57%
57,14%

14,29%

| Manuteng&o do cddigo

Il Organizacao e legibilidade

I Nunca trabalhei com POO na pratica
Expanséo e escalabilidade
N&o percebi impacto significativo

Figura 2. Fonte: Préprio autor.

Ademais, todos os entrevistados afirmaram ja ter utilizado POO em diversos projetos,
demonstrando seguranca e familiaridade com o paradigma. Quando questionados sobre os prin-
cipais beneficios percebidos, os aspectos mais mencionados foram: melhor organizacio do co-
digo, facilidade na manutencio e escalabilidade dos sistemas, além de uma modelagem mais
clara e alinhada a problemas do mundo real. Esses resultados reforcam a importancia da Pro-
gramacdo Orientada a Objetos no desenvolvimento de solugdes robustas, modulares e de facil
manutengao.

5. Conclusao e Consideracoes Finais

A Programacdo Orientada a Objetos (POO) mostrou-se eficaz para organizar sistemas de soft-
ware de maneira clara e estruturada. Ao agrupar dados e comportamentos relacionados, o pa-
radigma facilita a representacdo de sistemas complexos, aproximando o c6digo dos conceitos
do dominio aplicado. Essa abordagem melhora a legibilidade e a organizacdo dos projetos,
especialmente quando hd necessidade de manutenc¢ao e crescimento do sistema.

Os resultados indicam que a POO contribui para a criagdo de sistemas mais flexiveis e
faceis de adaptar. A independéncia entre os componentes permite que modificagdes sejam feitas
com menor impacto no restante do programa. Além disso, a reutilizacdo de partes do cédigo
reduz o tempo de desenvolvimento e diminui a ocorréncia de erros, o que é fundamental para
garantir a qualidade do software.

Para futuras pesquisas, pretende-se ampliar o nimero de participantes, visando aumen-
tar a diversidade de experiéncias analisadas. Também pretende-se investigar a aplicacdo da

POO em diferentes contextos, como sistemas moveis, distribuidos e em nuvem. Essas investi-
gacdes tém o potencial de fornecer insights mais aprofundados sobre as vantagens e desafios do
paradigma em ambientes variados.

Referéncias

[Afonso 2013] Afonso, N. M. M. (2013). Da tarefa ao projeto: uma visdo construtivista do
ensino da programacao orientada a objetos. Master’s thesis, Universidade do Minho (Portu-
gal).

[Camargo et al. 2020] Camargo, R. G., Ribeiro, C. E., Sordi Junior, F., Anastécio, P. R., and
Merlin, J. R. (2020). Utilizacdo de pygame para ensino e aprendizado de orientacio a objetos.
Revista Brasileira de Informdtica na Educacdo, 28(1):227-252.

[Caputo 2006] Caputo, G. M. (2006). Sistema computacional para o processamento textual de
patentes industriais. Universidade Federal do Rio de Janeiro, pages 1-142.

[Cardoso 2023] Cardoso, R. (2023). Programacio funcional e poo: veja as diferencas dos
paradigmas. Blog Locaweb.

[Costa 2011] Costa, H. (2011). Programagao légica.

[DAvila and Giraffa 2023] DAvila, W. and Giraffa, L. (2023). Ensino de programacgao orien-
tada a objetos para iniciantes: Uma metodologia para programacao criativa. In Simpdsio
Brasileiro de Informdtica na Educagdo (SBIE), pages 335-344. SBC.

[Ferreira 2014] Ferreira, T. A. d. C. (2014). Um estudo sobre a correspondéncia entre pro-
gramacgdo funcional com continuacdes e programagcdo imperativa Single assignment. PhD
thesis.

[Mendes 2009] Mendes, D. R. (2009). Programagdo Java com énfase em orientagdo a objetos.
Novatec, Sao Paulo.

[Oberleitner and Masiero 2021] Oberleitner, A. and Masiero, A. A. (2021). Programagcdo ori-
entada a objetos: da teoria a prdtica. Editora Senac Sao Paulo, Sao Paulo.

[Reis et al. 2015] Reis, J. N., Vale, G., and Costa, H. (2015). Manutenibilidade de tecnologias
para programacao de linhas de produtos de software: um estudo comparativo. In Simpdsio
Brasileiro de Qualidade de Software, Salvador. SBC.

[Santos 2013] Santos, R. (2013). Introducdo a programacgdo orientada a objetos usando Java.
Elsevier, Rio de Janeiro, 2 edition.

[Silva 2015] Silva, M. C. (2015). Programacdo orientada a objetos versus programacao estru-
turada: comparativo de paradigmas.

[Zanetti and Borges 2021] Zanetti, H. A. and Borges, M. A. (2021). Por que estimular a apren-
dizagem significativa no ensino de programacao orientada a objetos? In Simpdsio Brasileiro
de Educagcdo em Computacdo (EDUCOMP), pages 290-295. SBC.

[Zanetti et al. 2023] Zanetti, H. A. P., Borges, M. A. F, and Ricarte, I. L. M. (2023). Com-
fapoo: Método de ensino de programacdo orientada a objetos baseado em aprendizagem
significativa e computacao fisica. Revista Brasileira de Informdtica na Educacdo, 31:01-30.

