
Impactos do Paradigma da Programação Orientada a Objetos no
Desenvolvimento de Sistemas: Uma Análise de seus Pontos

Positivos e Negativos
Esp. Deyvison Samuel Gomes do Nascimento1, Renan Jucá da Silva1, Esp. Marcos Ramon

Paulino Resende 1

1Instituto Federal do Piauí (IFPI)
Caixa Postal 64.260-000 – Piripiri – PI – Brasil

{deyvisonnascimento2025,renanjuca2004,marcosramon.prof10}@gmail.com

Abstract. This article analyzes the impacts of the Object-Oriented Programming
(OOP) paradigm on software development, highlighting its influence on code struc-
turing, reuse, and maintenance. The approach demonstrates how OOP principles
contribute to system modularity and readability, promoting more organized and
scalable development practices. To support this analysis, data collected through
surveys with professionals in the field are presented, along with a comparative table
of programming paradigms. The study also encourages critical reflection on the
advantages and limitations of this paradigm, considering the technical, operational,
and contextual aspects involved in its adoption.

Resumo. Este artigo analisa os impactos do paradigma da Programação Orientada
a Objetos (POO) no desenvolvimento de software, destacando sua influência na
estruturação, reutilização e manutenção do código. A abordagem evidencia como
os princípios da POO contribuem para a modularidade e legibilidade dos sistemas,
favorecendo práticas de desenvolvimento mais organizadas e escaláveis. Para isso,
são apresentados dados coletados por meio de pesquisa com profissionais formados
na área, além de uma tabela comparativa entre paradigmas de programação. O
trabalho também promove uma reflexão crítica sobre as vantagens e limitações desse
paradigma, considerando aspectos técnicos, operacionais e contextuais envolvidos
em sua adoção.

1. Introdução
Com o crescimento contínuo da complexidade dos sistemas computacionais e a necessidade
de soluções mais eficientes, reutilizáveis e fáceis de manter, a forma como o software é es-
truturado tem ganhado destaque entre profissionais e pesquisadores da área (Caputo 2006).
Nesse contexto, a Programação Orientada a Objetos (POO) consolida-se como uma das
abordagens mais adotadas no desenvolvimento de sistemas modernos, oferecendo um mo-
delo que busca aproximar a lógica da programação das estruturas e relações do mundo real
(Afonso 2013; DÁvila and Giraffa 2023).



Embora os fundamentos da POO, como encapsulamento, abstração, herança e polimor-
fismo, sejam amplamente ensinados e promovam vantagens como modularidade e reutilização
de código, sua aplicação prática nem sempre é isenta de dificuldades.A dificuldade de mui-
tos desenvolvedores em aplicar corretamente os conceitos da Programação Orientada a Objetos
pode comprometer a eficiência dos projetos ou desviá-los dos princípios fundamentais do para-
digma. Essa discrepância entre o que se aprende na teoria e o que se pratica no desenvolvimento
real levanta reflexões relevantes sobre a eficácia da POO em diferentes contextos profissionais.
(Cardoso 2023; Costa 2011).

Além disso, a POO é apenas uma entre diversas abordagens existentes no campo
da programação. Paradigmas como o estruturado, funcional, lógico e imperativo apresen-
tam diferentes formas de organizar o pensamento computacional e solucionar problemas por
meio de código. Entender as características e aplicações desses modelos é essencial para
escolher, de maneira crítica e contextualizada, a estratégia mais adequada para cada projeto
(Santos 2013; Silva 2015).

Para compreender melhor a relevância e os impactos reais da Programação Orientada
a Objetos na prática profissional, é necessário considerar não apenas os aspectos teóricos, mas
também as percepções e experiências daqueles que atuam diretamente no desenvolvimento de
software. Muitas vezes, a forma como a POO é utilizada em ambientes corporativos e acadêmi-
cos revela adaptações, simplificações ou até mesmo distorções em relação ao modelo idealizado
(Reis et al. 2015; Zanetti et al. 2023).

Em síntese, o presente artigo tem como objetivo apresentar uma análise sobre a impor-
tância do uso da Programação Orientada a Objetos (POO) no desenvolvimento de sistemas,
evidenciando suas principais características, vantagens e limitações. A proposta é oferecer uma
reflexão crítica sobre como esse paradigma contribui para a organização, manutenção e escala-
bilidade do código, considerando critérios como integração com novas tecnologias, facilidade
de entendimento, suporte à colaboração e adaptação a diferentes plataformas. A partir dessa
abordagem, busca-se fornecer subsídios teóricos e práticos que ajudem profissionais e estu-
dantes a compreenderem os impactos positivos e os desafios da adoção da POO, promovendo
escolhas mais conscientes e eficazes no processo de desenvolvimento de software.

O restante deste artigo está estruturado da seguinte forma: a Seção 2 apresenta o re-
ferencial teórico, abordando os principais paradigmas de programação, incluindo o Paradigma
de Programação Imperativo, o Paradigma de Programação Orientado a Objetos, a Programação
Funcional e a Programação Lógica; a Seção 3 descreve a metodologia adotada, bem como os
materiais e métodos utilizados na análise; a Seção 4 discute os principais resultados obtidos
com base na comparação entre as ferramentas estudadas; por fim, a Seção 5 apresenta a con-
clusão do estudo e as considerações finais acerca das contribuições e possíveis desdobramentos
futuros.

2. Fundamentação Teórica
A fundamentação teórica apresenta uma breve revisão dos principais paradigmas de programa-
ção, com o intuito de construir uma base conceitual para a análise proposta. São abordados os
paradigmas imperativo, orientado a objetos, funcional e lógica, destacando suas características,
aplicações e contribuições para o desenvolvimento de sistemas.



2.1. Paradigma de Programação Imperativo

O paradigma de programação imperativo baseia-se na execução sequencial de instruções e no
uso explícito de variáveis para representar e modificar o estado do programa ao longo do tempo.
Caracteriza-se por comandos de atribuição, estruturas de controle de fluxo como condicionais e
laços de repetição, e pelo detalhamento minucioso das etapas de processamento. A reutilização
de código é frequentemente feita por meio de sub-rotinas e funções. (Ferreira 2014).

2.2. Paradigma de Programação Orientada a Objetos

Historicamente, o paradigma orientado a objetos surgiu na década de 1970, antecedendo até
mesmo a criação da linguagem Java . No entanto, foi a partir da ampla adoção do Java que essa
abordagem passou a ganhar maior visibilidade e reconhecimento no campo da programação
(Mendes 2009).

O paradigma orientado a objetos foi desenvolvido com o intuito de aproximar as lin-
guagens de programação da maneira como os seres humanos compreendem e interagem com o
mundo. Nesse modelo, utiliza-se o conceito de "objetos"para representar entidades do mundo
real, como uma mesa, um livro ou uma pessoa, permitindo uma organização do código mais
intuitiva e baseada em abstrações (Oberleitner and Masiero 2021).

Atualmente, a orientação a objetos também é utilizada em contextos educacionais, espe-
cialmente no ensino de programação, sendo aplicada por meio de recursos didáticos e interati-
vos, que contribui para tornar o aprendizado mais acessível e envolvente (Camargo et al. 2020;
Zanetti and Borges 2021).

2.3. Paradigma de Programação Funcional

O paradigma de programação funcional destaca-se pela ênfase na avaliação de expressões e na
aplicação de funções matemáticas puras, cujo resultado depende exclusivamente dos valores
de entrada, sem causar efeitos colaterais, além de valorizar a imutabilidade, ou seja, a não
modificação de variáveis externas. Essa abordagem é ideal para algoritmos de busca, ordenação
e processamento de eventos. (Cardoso 2023).

2.4. Paradigma de Programação Lógica

A programação lógica é um paradigma declarativo que se fundamenta na lógica matemática para
a construção de programas, sendo amplamente utilizada em sistemas de banco de dados. Nessa
abordagem, definem-se fatos e regras que permitem ao sistema realizar inferências automáticas,
chegando a conclusões a partir das informações fornecidas (Costa 2011).

3. Metodologia, Materiais e Métodos
Nesta seção, apresenta a metodologia utilizada na análise do uso do paradigma da POO, des-
creve os materiais e os métodos adotados para fundamentar e evidenciar o conteúdo proposto.

3.1. Metodologia

A pesquisa teve início com uma revisão bibliográfica centrada na Programação Orientada a Ob-
jetos (POO), considerada um dos paradigmas mais amplamente utilizados no desenvolvimento



de software. Essa etapa teve como objetivo compreender os fundamentos essenciais da POO e
analisar como seus conceitos são abordados em livros técnicos, publicações científicas e materi-
ais acadêmicos. A intenção foi construir uma base teórica sólida sobre o paradigma, ao mesmo
tempo em que se buscou identificar possíveis lacunas entre o conteúdo ensinado em ambientes
educacionais e sua aplicação prática no contexto profissional. Essa análise crítica permitiu ob-
servar não apenas os benefícios atribuídos à POO pela literatura, mas também as limitações e
desafios enfrentados pelos desenvolvedores em sua adoção no cotidiano.

Com base nos conhecimentos obtidos na revisão teórica, foi elaborado um questionário
voltado a profissionais atuantes no desenvolvimento de software, com diferentes níveis de ex-
periência. O instrumento foi estruturado com perguntas objetivas que buscavam explorar desde
a compreensão teórica dos conceitos da POO até relatos de experiências práticas, incluindo
dificuldades enfrentadas na aplicação de princípios como herança, encapsulamento e polimor-
fismo em projetos reais. A escolha pelo uso de questionários teve como propósito permitir uma
análise comparativa entre o aprendizado formal e a vivência prática, contribuindo para uma
compreensão mais ampla do impacto da formação acadêmica no preparo dos profissionais. Os
dados obtidos servirão como base para refletir sobre como o paradigma orientado a objetos é
utilizado na prática e de que forma influencia aspectos como qualidade, manutenção e evolução
dos sistemas desenvolvidos.

3.2. Materiais
A pesquisa contou com a utilização de dois computadores com acesso à internet, os quais permi-
tiram a realização de buscas por referencial teórico em plataformas como o Google Acadêmico.
Além disso, foi utilizado um formulário eletrônico desenvolvido no Google Forms, destinado à
coleta de dados relacionados ao uso da Programação Orientada a Objetos (POO).

3.3. Métodos
O método adotado nesta pesquisa caracteriza-se como uma abordagem exploratória de natureza
quali-quantitativa, envolvendo revisão bibliográfica e aplicação de questionário, com foco na
análise comparativa entre a Programação Orientada a Objetos (POO) e outros paradigmas de
programação. Para isso, foram seguidos os seguintes passos:

1. Foi realizada uma pesquisa bibliográfica sobre os fundamentos e aplicações da POO,
com base em fontes do Google Acadêmico;

2. Em seguida, elaborou-se um questionário para programadores, com foco em suas per-
cepções sobre a POO. Duas perguntas foram selecionadas para análise;

3. Os dados foram organizados e analisados qualitativamente, buscando padrões nas res-
postas;

4. Por fim, elaborou-se uma síntese crítica relacionando os resultados com a teoria, com-
parando a POO a outros paradigmas.

4. Resultados
Na próxima seção, serão apresentados os resultados da pesquisa, incluindo a análise dos para-
digmas de programação e a interpretação das respostas obtidas nas entrevistas com profissionais
da área. O objetivo é complementar a revisão teórica com dados práticos, ampliando a compre-
ensão sobre a aplicação dos diferentes paradigmas no desenvolvimento de software.



4.1. Análise dos Paradigmas de Programação

Ao serem analisados os paradigmas de programação, é possível sintetizar algumas de suas prin-
cipais características, observando que cada um possui modelos de execução, mecanismos de
reutilização de código e usos específicos, conforme demonstrado na Tabela 1. Essa tabela atua
como um recurso comparativo que organiza e evidencia as diferenças entre os paradigmas abor-
dados na fundamentação teórica, facilitando a compreensão dos contextos mais apropriados
para aplicação de cada abordagem. A comparação reforça a Programação Orientada a Objetos
como uma alternativa robusta, especialmente em cenários que exigem manutenção, escalabili-
dade e estrutura modular, ao mesmo tempo em que destaca a importância de se considerar as
necessidades específicas de cada projeto na escolha do paradigma mais adequado.

Comparativo dos Paradigmas de Programação

Característica Imperativo Orientado a
Objetos (POO)

Funcional Lógico

Conceito central Comandos
sequenciais e
variáveis

Objetos com
atributos e
métodos

Funções puras e
imutabilidade

Regras e
inferência lógica

Modelo de execução Passos sequenciais Comunicação
entre objetos

Avaliação de
funções

Inferência a partir
de fatos

Reutilização de
código

Sub-rotinas, loops Herança,
polimorfismo

Composição de
funções

Regras
reutilizáveis

Exemplos de
linguagens

C, Pascal, Fortran Java, C#, Python
(POO)

Haskell, Scheme,
Elixir

Prolog

Uso comum Sistemas
operacionais,
jogos

Grandes sistemas,
softwares
complexos

Aplicações
matemáticas,
paralelas

IA, sistemas
especialistas

Tabela 1. Fonte: Próprio autor.

4.2. Análise de Entrevista

Os resultados da pesquisa, apresentados na Figura 1, revelam as situações em que os profis-
sionais consideram a Programação Orientada a Objetos (POO) mais apropriada. Aproximada-
mente 42,86% dos participantes destacaram que a POO é a melhor escolha em sistemas comple-
xos que exigem manutenção a longo prazo. Outros 28,57% indicaram que ela é particularmente
útil em projetos com equipes grandes e código colaborativo, enquanto uma proporção equiva-
lente (28,57%) mencionou sua aplicabilidade quando há a necessidade de uma modelagem mais
próxima da realidade. Esses resultados evidenciam a importância e a versatilidade da POO nos
sistemas modernos.



Figura 1. Fonte: Próprio autor.

Observa-se a Figura 2 que aproximadamente 57,14% dos entrevistados identificaram
que a principal melhoria proporcionada pela utilização da Programação Orientada a Objetos
ocorreu na organização e legibilidade do código. Esse dado sugere que, na prática, a orientação
a objetos tem contribuído significativamente para uma maior clareza estrutural, o que facilita o
entendimento, a manutenção e a evolução dos projetos desenvolvidos.



Figura 2. Fonte: Próprio autor.

Ademais, todos os entrevistados afirmaram já ter utilizado POO em diversos projetos,
demonstrando segurança e familiaridade com o paradigma. Quando questionados sobre os prin-
cipais benefícios percebidos, os aspectos mais mencionados foram: melhor organização do có-
digo, facilidade na manutenção e escalabilidade dos sistemas, além de uma modelagem mais
clara e alinhada a problemas do mundo real. Esses resultados reforçam a importância da Pro-
gramação Orientada a Objetos no desenvolvimento de soluções robustas, modulares e de fácil
manutenção.

5. Conclusão e Considerações Finais
A Programação Orientada a Objetos (POO) mostrou-se eficaz para organizar sistemas de soft-
ware de maneira clara e estruturada. Ao agrupar dados e comportamentos relacionados, o pa-
radigma facilita a representação de sistemas complexos, aproximando o código dos conceitos
do domínio aplicado. Essa abordagem melhora a legibilidade e a organização dos projetos,
especialmente quando há necessidade de manutenção e crescimento do sistema.

Os resultados indicam que a POO contribui para a criação de sistemas mais flexíveis e
fáceis de adaptar. A independência entre os componentes permite que modificações sejam feitas
com menor impacto no restante do programa. Além disso, a reutilização de partes do código
reduz o tempo de desenvolvimento e diminui a ocorrência de erros, o que é fundamental para
garantir a qualidade do software.

Para futuras pesquisas, pretende-se ampliar o número de participantes, visando aumen-
tar a diversidade de experiências analisadas. Também pretende-se investigar a aplicação da



POO em diferentes contextos, como sistemas móveis, distribuídos e em nuvem. Essas investi-
gações têm o potencial de fornecer insights mais aprofundados sobre as vantagens e desafios do
paradigma em ambientes variados.

Referências
[Afonso 2013] Afonso, N. M. M. (2013). Da tarefa ao projeto: uma visão construtivista do

ensino da programação orientada a objetos. Master’s thesis, Universidade do Minho (Portu-
gal).

[Camargo et al. 2020] Camargo, R. G., Ribeiro, C. E., Sordi Junior, F., Anastácio, P. R., and
Merlin, J. R. (2020). Utilização de pygame para ensino e aprendizado de orientação a objetos.
Revista Brasileira de Informática na Educação, 28(1):227–252.

[Caputo 2006] Caputo, G. M. (2006). Sistema computacional para o processamento textual de
patentes industriais. Universidade Federal do Rio de Janeiro, pages 1–142.

[Cardoso 2023] Cardoso, R. (2023). Programação funcional e poo: veja as diferenças dos
paradigmas. Blog Locaweb.

[Costa 2011] Costa, H. (2011). Programação lógica.
[DÁvila and Giraffa 2023] DÁvila, W. and Giraffa, L. (2023). Ensino de programação orien-

tada a objetos para iniciantes: Uma metodologia para programação criativa. In Simpósio
Brasileiro de Informática na Educação (SBIE), pages 335–344. SBC.

[Ferreira 2014] Ferreira, T. A. d. C. (2014). Um estudo sobre a correspondência entre pro-
gramação funcional com continuações e programação imperativa Single assignment. PhD
thesis.

[Mendes 2009] Mendes, D. R. (2009). Programação Java com ênfase em orientação a objetos.
Novatec, São Paulo.

[Oberleitner and Masiero 2021] Oberleitner, A. and Masiero, A. A. (2021). Programação ori-
entada a objetos: da teoria à prática. Editora Senac São Paulo, São Paulo.

[Reis et al. 2015] Reis, J. N., Vale, G., and Costa, H. (2015). Manutenibilidade de tecnologias
para programação de linhas de produtos de software: um estudo comparativo. In Simpósio
Brasileiro de Qualidade de Software, Salvador. SBC.

[Santos 2013] Santos, R. (2013). Introdução à programação orientada a objetos usando Java.
Elsevier, Rio de Janeiro, 2 edition.

[Silva 2015] Silva, M. C. (2015). Programação orientada a objetos versus programação estru-
turada: comparativo de paradigmas.

[Zanetti and Borges 2021] Zanetti, H. A. and Borges, M. A. (2021). Por que estimular a apren-
dizagem significativa no ensino de programação orientada a objetos? In Simpósio Brasileiro
de Educação em Computação (EDUCOMP), pages 290–295. SBC.

[Zanetti et al. 2023] Zanetti, H. A. P., Borges, M. A. F., and Ricarte, I. L. M. (2023). Com-
fapoo: Método de ensino de programação orientada à objetos baseado em aprendizagem
significativa e computação física. Revista Brasileira de Informática na Educação, 31:01–30.


