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Abstract. The integration of robotics in agriculture is revolutionizing traditio-
nal practices to enable intelligent plant health monitoring and disease detec-
tion. This work proposes a new approach for plant disease identification, using
the ConvNeXt deep learning model to extract and classify plant visual featu-
res across species and disease types. Two datasets were used: Plant Village
and Plant Pathology 2020. The proposed method achieved high accuracy, with
99.47% in Plant Village and 93.83% in Plant Pathology 2020, outperforming
comparative approaches. The model was shown to be robust and scalable to
independent robots, supporting more sustainable agriculture.

Resumo. A integração da robótica na agricultura está revolucionando práticas
tradicionais para permitir o monitoramento inteligente da saúde das plantas
e a detecção de doenças. Este trabalho propõe uma nova abordagem para a
identificação de doenças em plantas, utilizando o modelo de aprendizado pro-
fundo ConvNeXt para extrair e classificar caracterı́sticas visuais de plantas em
diferentes espécies e tipos de doenças. Foram utilizados dois conjuntos de da-
dos: Plant Village e Plant Pathology 2020. O método proposto obteve alta
acurácia, com 99,47% no Plant Village e 93,83% no Plant Pathology 2020, su-
perando abordagens comparativas. O modelo foi mostrado robusto e escalável
para robôs independentes, apoiando uma agricultura mais sustentável.

1. Introdução
O rápido crescimento da população global aumentou significativamente a demanda pela
produção de alimentos, representando um grande desafio para a agricultura moderna. Ga-
rantir a segurança alimentar requer práticas agrı́colas sustentáveis e eficientes para maxi-
mizar a produtividade das culturas e, ao mesmo tempo, minimizar o consumo de recursos.
A agricultura desempenha um papel fundamental na economia global, fornecendo bens
essenciais e oportunidades de emprego. No entanto, diversos desafios ameaçam a produ-
tividade agrı́cola, incluindo mudanças climáticas, degradação do solo e a disseminação
de doenças de plantas. Entre eles, as doenças de plantas representam uma questão crı́tica,
pois podem levar a perdas substanciais na produtividade das culturas, afetando tanto o
suprimento de alimentos quanto a estabilidade econômica.

A detecção precoce e precisa de doenças é essencial para mitigar o impacto nega-
tivo das doenças de plantas na produtividade agrı́cola. Tradicionalmente, a identificação



de doenças tem sido realizada manualmente por agricultores e especialistas agrı́colas por
meio da inspeção visual das plantas. Embora essa abordagem seja amplamente utili-
zada, ela consome tempo, exige muita mão de obra e está sujeita a erros humanos, es-
pecialmente em fazendas de grande porte. A necessidade de soluções automatizadas e
escaláveis levou a pesquisa a abordagens tecnológicas para a detecção de doenças de
plantas.

Os avanços tecnológicos permitiram o desenvolvimento de sistemas automatiza-
dos de detecção de doenças em plantas, oferecendo soluções eficientes e escaláveis para
apoiar a agricultura moderna. Entre essas tecnologias, a robótica, a visão computacional
e a inteligência artificial surgiram como ferramentas poderosas para automatizar o moni-
toramento da saúde das culturas. Ao alavancar a análise baseada em imagens e modelos
de aprendizado de máquina, esses sistemas podem identificar doenças em plantas com
alta precisão, reduzindo a dependência da inspeção manual e permitindo uma intervenção
eficiente. A integração de plataformas robóticas com a detecção de doenças baseada em
visão aumenta a escalabilidade e a eficiência dessas soluções, abrindo caminho para a
agricultura de precisão.

Neste artigo, propomos uma abordagem baseada em visão para a identificação
de doenças em plantas utilizando um modelo de aprendizado profundo ConvNeXt. Para
isso, um modelo ConvNeXt foi empregado para aprender as caracterı́sticas visuais nos
diferentes tipos de plantas, identificando plantas saudáveis e doentes. Nos experimentos,
utilizamos dois conjuntos de dados de imagens bem estabelecidos, o Plant Village e o
Plant Pathology 2020. Além disso, foi realizada uma análise comparativa, comparando
nossos resultados com outros algoritmos de última geração bem estabelecidos na área.
Os resultados comprovam a eficácia da nossa abordagem para a identificação de doenças
em plantas, destacando uma precisão significativa na operação de classificação. Também
avaliamos a metodologia proposta na presença de ruı́do, onde os resultados demonstraram
a robustez da nossa abordagem.

Nossas principais contribuições estão resumidas a seguir:

• Propomos uma abordagem baseada em Aprendizado Profundo para o monitora-
mento da saúde vegetal, identificando plantas doentes. O processo de classificação
proposto, utilizando um modelo ConvNeXt, aprende e representa as principais ca-
racterı́sticas das plantas, aprimorando a detecção de doenças durante a inspeção.
Essa abordagem inovadora oferece uma solução robusta para a inspeção com-
plexa de diferentes tipos de plantas, alcançando precisão significativa mesmo na
presença de ruı́do.

• Realizamos experimentos extensivos para a validação da nossa metodologia utili-
zando dois conjuntos de dados bem definidos. Esses experimentos tiveram como
objetivo comparar quantitativamente modelos de aprendizado profundo com o mo-
delo proposto, especificamente em cenários desafiadores envolvendo a presença
de ruı́do. Os resultados fornecem insights significativos que podem orientar futu-
ras pesquisas nessa área.

2. Objetivos
Este trabalho tem como principal objetivo desenvolver uma abordagem robusta e efici-
ente para a identificação automática de doenças em plantas, utilizando técnicas de apren-



dizado profundo aplicadas à visão computacional. Busca-se, por meio da arquitetura
ConvNeXt, explorar a capacidade dos modelos neurais modernos em extrair e classificar
caracterı́sticas visuais relevantes, permitindo distinguir entre plantas saudáveis e doen-
tes com elevada precisão. A proposta visa atender à crescente demanda por soluções
tecnológicas que automatizem o monitoramento da saúde vegetal, minimizando a ne-
cessidade de análises manuais e ampliando a rapidez e a confiabilidade na detecção de
anomalias que afetam o desenvolvimento das culturas.

3. Fundamentação Teórica

A classificação de doenças de plantas é amplamente explorada devido ao impacto das pra-
gas na produtividade e nas perdas econômicas. Diversas abordagens têm sido propostas
para mitigar esses desafios usando técnicas de aprendizado profundo e visão computaci-
onal [Pendhari et al. 2023] [Hashemifar and Zakeri-Nasrabadi 2024].

Modelos baseados em Redes Neurais Convolucionais (CNNs) são amplamente
aplicados nesta área, destacando a variabilidade de modelos não pré-treinados para
cenários complexos, embora os desafios em ambientes não controlados sejam ressalta-
dos. O trabalho de [Belmir et al. 2023] propõe um modelo de CNN para classificação de
doenças em folhas de plantas, utilizando o conjunto de dados PlantVillage, que abrange
38 classes de doenças em 14 culturas. O objetivo é automatizar o diagnóstico precoce de
doenças, substituindo métodos manuais e subjetivos, com foco em aumentar a acurácia e
a eficiência na agricultura. A arquitetura da CNN é composta por três blocos convolucio-
nais com 32, 64 e 128 filtros, além de camadas de pooling e dropout, alcançando 94,33%
de acurácia, superando modelos como YOLOv8 e DenseNet-77.

Em [Lakshmanarao et al. 2021] é proposto um modelo baseado em CNN para
detecção e classificação de doenças em plantas, utilizando o conjunto de dados público
PlantVillage, com foco em folhas de batata, pimentão e tomate. As imagens foram redi-
mensionadas para 64x64 pixels, alcançando acurácias de 98,3%, 98,5% e 95%, respec-
tivamente. O trabalho destaca a eficácia de modelos especializados, embora os desafios
em cenários complexos sejam enfatizados. A baixa resolução das imagens pode compro-
meter detalhes sutis. O trabalho de [Kolakaluru et al. 2023] propõe um sistema baseado
em CNN para identificação automatizada de doenças e pragas em culturas, com o obje-
tivo de aprimorar o Manejo Integrado de Pragas (MIP) e reduzir perdas econômicas no
setor agrı́cola. Os resultados apresentaram 97,5% de acurácia na identificação de pragas,
integrando técnicas de imagem hiperespectral para superar desafios como camuflagem,
superando técnicas como o YOLOv5.

Além dos modelos tradicionais de CNN, o aprendizado por transferência tem se
mostrado uma estratégia eficaz para lidar com os desafios da classificação de doenças
em plantas. O trabalho de [Pendhari et al. 2023] compara o desempenho de modelos
de aprendizado por transferência, como MobileNetV2, VGG16, VGG19, NASNet e
Inception-ResNet, na detecção de doenças em plantas, utilizando o conjunto de dados
New Plant Diseases, com 31 classes de doenças em 9 culturas. O objetivo é identificar
o modelo mais eficaz para aplicações práticas na agricultura. Os modelos pré-treinados
foram ajustados com modificações nas camadas densas e funções de ativação. O artigo
oferece uma análise valiosa dos modelos de transferência para detecção de doenças, des-
tacando o VGG19 como o mais preciso, com 94% de acurácia, embora menos eficiente.



Sua principal contribuição é a comparação estruturada entre arquiteturas, útil para pesqui-
sadores e desenvolvedores que precisam equilibrar precisão e recursos computacionais.

Complementando, [Pavan et al. 2023] propôs um modelo baseado em aprendi-
zado por transferência com a arquitetura EfficientNetb5 para classificação de doenças
em folhas de plantas, utilizando um conjunto de dados do Kaggle com 38 classes e
80.000 imagens. O modelo foi comparado com as arquiteturas Inception-v3 e VGG16,
alcançando 99,20% de acurácia, superando os demais e demonstrando equilı́brio entre
precisão e generalização. No entanto, a falta de detalhes sobre o balanceamento do con-
junto de dados e validação externa limita a interpretação da robustez do modelo.

Modelos hı́bridos surgiram como alternativas promissoras ao combinar as van-
tagens de diferentes arquiteturas para melhorar a acurácia na classificação de doenças
em plantas. O trabalho de [Hashemifar and Zakeri-Nasrabadi 2024] propõe um mo-
delo hı́brido que combina o Vision Transformer (ViT) e o VGG-16 para detecção de
doenças em plantas, utilizando o conjunto de dados PlantVillage. O objetivo é superar
as limitações de modelos baseados exclusivamente em CNNs ou ViTs, equilibrando a
captação de caracterı́sticas locais e globais. Para isso, a abordagem combina a extração
hierárquica de caracterı́sticas do VGG-16 com a capacidade de captura de contexto global
do Pyramid ViT (PVT). O modelo alcançou 98,51% de acurácia, superando outros mode-
los combinados. A junção do VGG-16 com o PVT aborda questões como a necessidade
de grandes conjuntos de dados e a ausência de contexto global. No entanto, o custo com-
putacional e o desbalanceamento entre classes ainda são desafios a serem enfrentados.

Outros estudos exploraram métodos comparativos para avaliar o desempenho de
diferentes modelos. O trabalho de [Melese and Yayeh 2023] propõe modelos hı́bridos que
combinam CNNs com métodos clássicos de aprendizado de máquina, como Máquinas de
Vetores de Suporte (SVM), Random Forest e Árvore de Decisão, para identificação e
classificação de doenças em folhas de soja. A ideia é aproveitar a capacidade de extração
de caracterı́sticas profundas das CNNs e a robustez dos classificadores tradicionais, vi-
sando melhorar a acurácia e a eficiência no diagnóstico de doenças agrı́colas. Três arqui-
teturas hı́bridas foram desenvolvidas: CNN-SVM, CNN-RF e CNN-DT, substituindo a
camada softmax da CNN por classificadores tradicionais. A CNN-RF alcançou 78,41%
de acurácia na validação. Este trabalho abre caminho para futuras pesquisas que integrem
técnicas de deep learning com algoritmos clássicos em cenários mais diversificados.

O trabalho de [Hanif et al. 2024] conduziu um estudo comparando ResNet,
Inception-v3 e SVM utilizando o CIFAR-10, um conjunto de dados genérico ampla-
mente usado para classificação de imagens. Os resultados mostraram que a ResNet obteve
99,81% de precisão, superando o Inception-v3, que obteve 87%, enquanto o SVM apre-
sentou o melhor desempenho, com 99,88%. [Ermolaeva 2024] utilizou aprendizado de
máquina com 70.000 imagens de 38 classes, treinando modelos como ResNet-9, ResNet-
18 e VGG-16. O ResNet-9 se destacou, alcançando 99,23% de precisão em apenas cinco
épocas.

Além disso, abordagens que combinam deep learning com aprendizado de
máquina têm se mostrado eficazes em cenários especı́ficos. [Jain et al. 2023] comparou
Regressão Logı́stica, Redes Neurais Convolucionais e métodos hı́bridos de deep learning
para classificar doenças em folhas de milho, utilizando os conjuntos de dados PlantVil-



lage e PlantDoc. O método proposto alcançou 93,2% de acurácia, destacando o potencial
das técnicas hı́bridas, apesar dos desafios enfrentados em cenários do mundo real.

Por fim, [Bhargava et al. 2024] revisou o uso de inteligência artificial e visão com-
putacional na detecção de doenças em plantas, destacando o papel de modelos como Res-
Net e EfficientNet, bem como o uso de dados RGB e hiperespectrais para alcançar alta
precisão. Os autores também enfatizaram os desafios relacionados à necessidade de con-
juntos de dados e à generalização para condições reais de campo, sugerindo que avanços
futuros devem focar em técnicas robustas e aplicáveis no ambiente agrı́cola.

Esta visão geral destaca os avanços na área, mas também revela lacunas significa-
tivas em termos de generalização para condições reais de cultivo, uma questão que este
estudo aborda de forma inovadora. Embora os trabalhos revisados apresentem aborda-
gens eficazes para a identificação de doenças em plantas, muitos enfrentam dificuldades
na aplicação de seus resultados em cenários do mundo real. Este estudo busca supe-
rar essas limitações ao propor uma abordagem robusta e eficiente, que integra técnicas
modernas de deep learning e visão computacional para sistemas autônomos de manejo
agrı́cola.

4. Metodologia

Este artigo aborda o problema do gerenciamento da saúde das plantas utilizando a arqui-
tetura de deep learning ConvNeXt. A metodologia proposta explora a identificação de
doenças em plantas por meio da extração e classificação de caracterı́sticas visuais, com
ênfase na eficiência e precisão do modelo. Os detalhes da arquitetura ConvNeXt, as-
sim como a configuração dos experimentos realizados, serão apresentados nas subseções
seguintes.

4.1. Arquitetura ConvNeXt para Identificação de Doenças em Plantas

ConvNeXt é uma arquitetura baseada em redes neurais convolucionais (CNNs), projetada
para combinar os avanços das arquiteturas tradicionais de CNN com ideias inspiradas em
Transformers. Desenvolvida com o objetivo de melhorar o desempenho e a eficiência
computacional, ConvNeXt introduz otimizações como convoluções profundas, camadas
de normalização adaptativas e uma organização hierárquica das camadas para aprimorar
a capacidade de extração de caracterı́sticas. Entre os principais diferenciais do ConvNeXt
estão o uso de convoluções separáveis e a aplicação de camadas de normalização que eli-
minam a necessidade de camadas como a Batch Normalization, reduzindo a complexidade
e aumentando a eficiência. Essas melhorias tornam o ConvNeXt uma escolha competitiva
para tarefas complexas de classificação de imagens, como a detecção de doenças em plan-
tas [Liu et al. 2022]. Mais detalhes sobre a arquitetura ConvNeXt podem ser encontrados
na Figura 1.

A arquitetura do ConvNeXt consiste em:

4.1.1. Bloco Residual do ConvNeXt

Cada bloco residual no ConvNeXt segue uma estrutura de gargalo invertido, semelhante
à do Transformer [Liu et al. 2022]. A saı́da do bloco é dada por:



Figura 1. Proposed ConvNeXt architecture.

y = x+ α ·Block(x), (1)

onde x é a entrada do bloco, Block(x) representa as operações realizadas no bloco
(convoluções, normalização, ativação) e α é um parâmetro escalar.

4.1.2. Gargalo Invertido

Inspirado pelo MobileNetV2, o bloco expande a dimensionalidade dos canais antes de
aplicar a convolução depthwise e, em seguida, a reduz novamente [Sandler et al. 2018].
A estrutura é:

z = Proj↑(x), (2)

z
′
= DWConvk×k(z), (3)

y = Proj↓(z
′) + x, (4)

onde Proj↑ é a projeção linear (1×1 conv) que aumenta os canais, DWConvk×k

é a convolução depthwise com kernel k × k, e Proj↓ é a projeção linear que reduz os
canais de volta à sua dimensão original.

4.1.3. Convoluções com Kernel Grande

O ConvNeXt utiliza kernels grandes (7 × 7) em convoluções depthwise, contrariando
a tendência de kernels pequenos (3 × 3) em CNNs tradicionais [Liu et al. 2022]. Isso
aumenta o campo receptivo para capturar contextos globais, de forma semelhante aos
Transformers. A operação é:

z′ = Wk×k ∗ z, (5)

onde Wk×k é o kernel de convolução k × k (k = 7).



4.1.4. LayerNorm

Substitui a BatchNorm, comum em CNNs, pela LayerNorm, utilizada em Transformers
[Lei Ba et al. 2016]. Para um tensor de entrada x ∈ RB×C×H×W , a LayerNorm é aplicada
aos canais (C):

x̂ =
x− µ

σ
· γ + β, (6)

onde µ e σ são a média e o desvio padrão calculados sobre C,H,W , e γ e β são
parâmetros aprendidos (escala e viés).

4.1.5. Ativação GELU

Substitui a ReLU pela função GELU [Hendrycks and Gimpel 2016], utilizada em Trans-
formers, definida como:

GELU(x) = x · Φ(x), (7)

onde Φ(x) é a função de distribuição acumulada (CDF) da normal padrão. Apro-
ximadamente:

GELU(x) ≈ 0.5x

(
1 + tanh

(√
2

π
(x+ 0.044715x3)

))
. (8)

4.1.6. LayerScale

Técnica introduzida no ConvNeXt para estabilizar o treinamento [Touvron et al. 2021].
Multiplica a saı́da do bloco residual por um vetor diagonal α ∈ RC :

y = x+ α
⊙

Block(x), (9)

onde
⊙

denota a multiplicação elemento a elemento. Inicialmente, α é definido
com um valor pequeno.

4.1.7. Stochastic Depth

Uma técnica que desativa aleatoriamente blocos durante o treinamento, prevenindo o
overfitting [Huang et al. 2016]. Para um bloco na camada l, a saı́da é:

y = x+ bl ·Block(x), (10)

onde bl ∼ Bernoulli(pl) é uma variável aleatória binária e pl é a probabilidade de
sobrevivência do bloco.



O ConvNeXt é uma arquitetura de deep learning fundamentada em sua capacidade
única de combinar a eficiência comprovada das redes convolucionais clássicas (CNNs)
com avanços inspirados nos Vision Transformers (ViTs), resultando em um modelo ro-
busto, escalável e adaptável para diversas tarefas de visão computacional. Sua superio-
ridade decorre da preservação de vieses indutivos das convoluções, os quais mantêm a
robustez a variações espaciais, algo crucial para tarefas de detecção e segmentação.

Ao adaptar estratégias fundamentais dos ViTs ao paradigma convolucional, a ar-
quitetura ConvNeXt se destaca em benchmarks como ImageNet-C e ImageNet-A, por
meio do uso de LayerNorm e kernels grandes. Isso demonstra que as convoluções conti-
nuam sendo essenciais na era dos Transformers, oferecendo um modelo preciso, eficiente
e prático para várias aplicações.

5. Resultados e Discussão
5.1. Configurações experimentais
5.1.1. Conjuntos de Dados

Para avaliar a abordagem proposta, adotamos dois conjuntos de dados desafiadores. O
Plant Village [G. and J. 2019] contém 55.448 imagens de 13 tipos de folhas de plantas
saudáveis e doentes, distribuı́das em 39 classes. O conjunto de dados Plant Pathology
2020 [Kaeser-Chen et al. 2020] é composto por 4 classes e inclui 3.651 imagens de folhas
de macieiras afetadas por doenças como Apple Scab, Ferrugem e Cedar Apple Rust, além
de folhas saudáveis.

Para aumentar a robustez e a capacidade de generalização do modelo de aprendi-
zado proposto, o conjunto de dados foi artificialmente expandido com diversas variações
por meio de técnicas de aumento de dados (data augmentation). Para isso, foram utiliza-
dos parâmetros variados de recorte, mistura e variação de cores (color jittering), gerando
imagens mais desafiadoras. Além disso, as imagens foram redimensionadas para 224 ×
224 pixels para se adequar às dimensões esperadas pelo tensor de entrada dos modelos.
A Figura 2 apresenta amostras de folhas de plantas dos conjuntos de dados utilizados.

5.1.2. Detalhes de Implementação

Utilizamos o framework PyTorch em um computador Dell com processador Intel®
Xeon™ Silver 4114 2.20GHz, 128 GB de memória principal DDR4-2133 e uma GPU
NVIDIA® GeForce® RTX A4000 com 16 GB de memória GDDR6 para a nossa aborda-
gem. A fase de treinamento do modelo ConvNeXt proposto envolveu o uso de Grid Search
para otimização de hiperparâmetros (taxa de aprendizado, tamanho do batch, número de
épocas e taxa de dropout), visando alta acurácia. As abordagens baseadas em aprendizado
utilizaram um conjunto de imagens de entrada, divididas em conjuntos de treinamento e
teste, garantindo a ausência de sobreposição por meio do protocolo de validação cruzada
com 5 folds.

5.2. Avaliação da Identificação de Doenças em Plantas
Este experimento avalia a acurácia do método proposto para identificação de doenças
em plantas. Oito estratégias de classificação diferentes são avaliadas: i) abordagem



Figura 2. Exemplos de folhas de plantas que compõem os conjuntos de dados,
destacando folhas saudáveis e doentes.

ConvNeXt (proposta); ii) Swin Transformer V2; iii) MobileViT; iv) ConvFormer; v)
EfficientFormer; vi) BeiT; vii) DeiT; e viii) MLP Mixer. Técnicas de avaliação base-
adas em deep learning são empregadas devido ao seu alto desempenho em problemas
de classificação e segmentação, ainda representando o estado da arte na área, especi-
almente em aplicações voltadas à agricultura de precisão [Fahim-Ul-Islam et al. 2024]
[Mu et al. 2024] [Yu et al. 2024] [Ji et al. 2024] [Ahmed et al. 2024] [Ma et al. 2023]
[Li and Tanone 2022].

Os resultados indicam que o modelo ConvNeXt proposto supera as demais
técnicas comparadas de deep learning, conforme mostrado na Tabela I, considerando
tanto a acurácia quanto o desvio padrão. O ConvNeXt combina eficiência computaci-
onal, alta precisão e simplicidade arquitetural. Ele utiliza convoluções depthwise para
substituir o mecanismo de self-attention dos Transformers, reduzindo a carga computaci-
onal. O Gargalo Invertido (Inverted Bottleneck) expande os canais antes da convolução
espacial, otimizando os recursos. A integração de vieses indutivos e técnicas modernas,
como kernels grandes e a ativação GELU, permite capturar o contexto global de forma
mais eficiente e com custo linear. Além disso, o ConvNeXt estabiliza o treinamento e
melhora a convergência em redes profundas. Sem a necessidade de módulos especializa-
dos e com uma arquitetura totalmente convolucional, ele simplifica a implementação e é
eficiente para aprendizado por transferência, mantendo alta acurácia sem necessidade de
extensos ajustes finos [Liu et al. 2022].



Tabela 1. Resultados da Identificação de Doenças em Plantas como um problema
de classificação. Este experimento apresenta a acurácia dos métodos
de deep learning ConvNeXt (proposto), Swin Transformer V2, MobileViT,
ConvFormer, EfficientFormer, BeiT, DeiT e MLP-Mixer.

Método Acurácia no Plant Village Acurácia no Plant Pathology
Swin Transformer V2 [20] 99.06 ± 0.05 90.58 ± 5.25

MobileViT [21] 98.40 ± 0.08 91.75 ± 0.75
ConvFormer [22] 99.28 ± 0.08 92.42 ± 0.49

EfficientFormer [23] 99.15 ± 0.09 90.06 ± 1.11
BeiT [24] 98.89 ± 0.09 90.03 ± 0.35
DeiT [25] 99.04 ± 0.10 92.21 ± 0.41

MLP-Mixer [26] 98.82 ± 0.16 89.44 ± 0.71
ConvNeXt (Proposto) 99.47 ± 0.06 93.83 ± 0.67

5.3. Avaliação da Identificação de Doenças em Plantas na Presença de Ruı́do
Neste experimento, avaliamos a robustez da abordagem proposta para identificação de
doenças em plantas sob condições com ruı́do. Para isso, adicionamos ruı́do Gaussiano e
ruı́do Sal e Pimenta às imagens de folhas do conjunto de dados Plant Pathology e com-
paramos o desempenho de diversas técnicas de deep learning, incluindo nossa solução
baseada no modelo ConvNeXt. Exemplos de imagens de plantas doentes com ruı́do são
ilustrados na Figura 3. A Figura 3a apresenta uma imagem de planta doente sem ruı́do.
A Figura 3b mostra uma imagem com ruı́do Gaussiano, considerando densidade de ruı́do
de 0.02. A Figura 3c apresenta uma imagem com ruı́do Sal e Pimenta, também com
densidade de ruı́do de 0.02.

Esse ruı́do simula desafios reais na aquisição de imagens para identificação de
doenças em plantas. Durante a fase de treinamento, foram utilizadas imagens sem ruı́do,
enquanto a fase de teste envolveu imagens com ruı́do adicionado, utilizando um processo
de aprendizado por transferência.

(a) (b) (c)

Figura 3. Exemplos de imagens de plantas com e sem ruı́do: Figura 3a sem
ruı́do; Figura 3b com ruı́do Gaussiano; Figura 3c com ruı́do Sal e Pimenta.
Ambas as imagens com ruı́do consideram densidade de ruı́do igual a 0,02.

Os resultados deste experimento indicam que o modelo ConvNeXt proposto apre-
senta melhor desempenho mesmo sob condições com ruı́do, conforme mostrado nas tabe-
las a seguir. A Tabela 2 apresenta os resultados de classificação para o ruı́do Gaussiano,



incluindo acurácia e desvio padrão, utilizando o conjunto de dados Plant Pathology. A Ta-
bela 3 apresenta os resultados para o ruı́do Sal e Pimenta, também com acurácia e desvio
padrão, para o mesmo conjunto de dados. Esses resultados demonstram que a abordagem
proposta supera os demais métodos de classificação, evidenciando sua robustez.

Tabela 2. Resultados da avaliação de robustez para o problema de identificação
de doenças em plantas, considerando a presença de ruı́do Gaussiano.

Ruı́do Gaussiano
Densidade de ruı́do 0,005 0,01 0,02
ConvFormer [Yu et al. 2024] 91,32 ± 0,33 87,91 ± 1,30 81,10 ± 1,32
DeiT [Ma et al. 2023] 92,31 ± 0,50 90,39 ± 0,65 84,27 ± 1,52
MobileViT [Mu et al. 2024] 89,23 ± 0,96 78,98 ± 0,57 44,61 ± 3,12
ConvNeXt (Proposto) 93,72 ± 0,38 92,35 ± 0,43 88,26 ± 1,17

Tabela 3. Resultados da avaliação de robustez para o problema de identificação
de doenças em plantas, considerando a presença de ruı́do Sal e Pimenta.

Ruı́do Sal e Pimenta
Densidade de ruı́do 0,005 0,01 0,02
ConvFormer [22] 81,86 ± 2,93 71,37 ± 4,68 63,08 ± 3,43
DeiT [25] 89,46 ± 0,98 85,63 ± 0,31 75,27 ± 1,06
Mobile ViT [21] 67,35 ± 1,57 62,29 ± 4,53 54,42 ± 2,40
ConvNeXt (Proposto) 90,94 ± 0,62 86,45 ± 0,85 76,99 ± 4,40

Para esses experimentos, comparamos nossa abordagem com os modelos DeiT,
ConvFormer e MobileViT, considerando seu alto desempenho no experimento anterior.
Utilizamos o conjunto de dados Plant Pathology, por conter imagens mais representativas
de um ambiente real de doenças em plantas.

Os experimentos demonstraram que a arquitetura ConvNeXt superou todas as
abordagens comparadas, tanto em condições normais quanto na presença de ruı́dos ar-
tificiais, como ruı́do Gaussiano e ruı́do Sal e Pimenta. Esses resultados indicam não
apenas a superioridade do ConvNeXt em termos de acurácia, mas também sua resiliência
a variações e distúrbios nos dados de entrada. Essa robustez é essencial para a aplicação
prática do modelo em ambientes agrı́colas reais, nos quais as imagens capturadas estão
sujeitas a diferentes condições de iluminação, variações na qualidade da câmera e inter-
ferências externas. Diante desses achados, o ConvNeXt destaca-se como uma solução
promissora para sistemas autônomos de monitoramento da saúde de plantas. A seguir,
discutiremos em detalhes as implicações desses resultados e possı́veis direções futuras
para o aprimoramento do modelo.

6. Conclusão
Neste estudo, demonstramos que a arquitetura ConvNeXt é altamente eficaz para a
identificação de doenças em plantas, superando abordagens comparativas mesmo sob
condições adversas com a introdução de ruı́do artificial. A alta acurácia alcançada nos
conjuntos de dados Plant Village (99,47%) e Plant Pathology 2020 (93,83%) reforça
a capacidade do modelo de generalizar em diferentes cenários e espécies vegetais.



Além disso, a resiliência do modelo a perturbações visuais destaca sua adequação para
aplicações em campo, onde variações de iluminação e qualidade de imagem represen-
tam desafios reais. A integração de sistemas autônomos para o monitoramento da saúde
das plantas é um passo fundamental para o avanço da agricultura de precisão, possibili-
tando maior produtividade e redução no desperdı́cio de recursos. Os resultados obtidos
neste trabalho evidenciam o potencial do ConvNeXt como uma solução escalável e efi-
ciente para esses sistemas, contribuindo para o progresso da robótica agrı́cola e para a
implementação de práticas agrı́colas mais sustentáveis.

Como trabalho futuro, planejamos submeter um artigo para periódico apresen-
tando os resultados complementares obtidos em cenários mais desafiadores. Além
disso, investigações futuras incluirão a avaliação de novos modelos de deep learning e
a adaptação da metodologia para identificação de doenças em diferentes tipos de culturas.
Por fim, pretendemos aprimorar a abordagem de identificação de doenças em cenários
reais, considerando diferentes condições de iluminação e o uso de distintos veı́culos
robóticos.



Referências

Ahmed, S. T., Barua, S., Fahim-Ul-Islam, M., and Chakrabarty, A. (2024). Enhancing
precision in rice leaf disease detection: A transformer model approach with attention
mapping. In 2024 Int. Conf. on Adv. in Comp., Com., Elect., and Smart Sys. (iCAC-
CESS), pages 1–6.

Belmir, M., Difallah, W., and Ghazli, A. (2023). Plant leaf disease prediction and clas-
sification using deep learning. In 2023 Int. Conference on Decision Aid Sciences and
Applications (DASA), pages 536–540. IEEE.

Bhargava, A., Shukla, A., Goswami, O., Alsharif, M. H., Uthansakul, P., and Uthansakul,
M. (2024). Plant leaf disease detection, classification and diagnosis using computer
vision and artificial intelligence: A review. IEEE Access.

Ermolaeva, A. D. (2024). Plant disease detection using small convolutional neural
networks. In 2024 Conference of Young Researchers in Electrical and Electronic En-
gineering (ElCon), pages 10–12. IEEE.

Fahim-Ul-Islam, M., Chakrabarty, A., Ahmed, S. T., Rahman, R., Kwon, H. H., and Ja-
lil Piran, M. (2024). A comprehensive approach toward wheat leaf disease identifica-
tion leveraging transformer models and federated learning. IEEE Access, 12:109128–
109156.

G., G. and J., A. P. (2019). Identification of plant leaf diseases using a nine-layer deep
convolutional neural network. Computers Electrical Engineering, 76:323–338.

Hanif, M. A., Zim, M. K. I., and Kaur, H. (2024). Resnet vs inception-v3 vs svm: A
comparative study of deep learning models for image classification of plant disease
detection. In 2024 IEEE International Conference on Interdisciplinary Approaches in
Technology and Management for Social Innovation (IATMSI), volume 2, pages 1–6.
IEEE.

Hashemifar, S. and Zakeri-Nasrabadi, M. (2024). Deep identification of plant diseases.
In 2024 20th CSI International Symposium on Artificial Intelligence and Signal Pro-
cessing (AISP), pages 1–6. IEEE.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016). Deep networks
with stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages
646–661. Springer.

Jain, S., Jaidka, P., and Jain, V. (2023). Plant leaf disease classification using deep learning
based hybrid approach. In 2023 Int. Conf. on Com., Security and Artificial Intelligence
(ICCSAI), pages 383–387. IEEE.

Ji, W., Zhang, T., Xu, B., and He, G. (2024). Apple recognition and picking sequence
planning for harvesting robot in a complex environment. Journal of Agricultural En-
gineering, 55(1).



Kaeser-Chen, C., Pathology, F., Maggie, and Dane, S. (2020). Plant
pathology 2020 - fgvc7. https://kaggle.com/competitions/
plant-pathology-2020-fgvc7. Kaggle.

Kolakaluru, H., Vishal, T., Chandu, M. P., Harshini, M., Vignesh, T., and Padyala, V.
V. P. (2023). Crop disease identification using convolutional neural network. In 2023
International Conference on Inventive Computation Technologies (ICICT), pages 366–
369. IEEE.

Lakshmanarao, A., Babu, M. R., and Kiran, T. S. R. (2021). Plant disease prediction
and classification using deep learning convnets. In 2021 Int. Conf. on Art. Intel. and
Machine Vision (AIMV), pages 1–6. IEEE.

Lei Ba, J., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. ArXiv e-prints,
pages arXiv–1607.

Li, L.-H. and Tanone, R. (2022). Mlp-mixer approach for corn leaf diseases classifica-
tion. In Nguyen, N. T., Tran, T. K., Tukayev, U., Hong, T.-P., Trawiński, B., and Szc-
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