Verificacao Formal de Software para Internet das Coisas com
Validacao de Aplicacoes em Kotlin/Java

Evelim B. Rocha, Vandermi J. da Silva, Andrey A. de O. Rodrigues

nstituto de Ciéncias Exatas e Tecnologia — Universidade Federal do Amazonas (UFAM)

{evelim.rocha, vandermi, andreyrodrigues}@ufam.edu.br

Abstract. With the increase in software within embedded systems, formal veri-
fication has become more important to ensure product quality by using mathe-
matical models to identify unexpected behaviors during algorithm execution.
Among the formal verification techniques, model checking stands out, as it ve-
rifies whether a system satisfies specific properties. This is essential for critical
loT systems developed in Java and, more recently, Kotlin.

This research aims to apply formal verification to Android applications for loT,
identifying security and memory flaws, with the goal of evaluating the effective-
ness of the tools and contributing to the improvement of these systems.

Resumo. Com o aumento de softwares em sistemas embarcados, a verificacdo
formal ganha importdncia para garantir a qualidade dos produtos, utilizando
modelos matemdticos para identificar comportamentos imprevistos durante a
execugdo de algoritmos.

Dentre as técnicas de verificacdo formal, destaca-se o model checking, que ve-
rifica se um sistema atende a propriedades especificas, sendo essencial para
sistemas criticos loT desenvolvidas em Java e, mais recentemente, Kotlin.

Esta pesquisa visa aplicar verificacoes formais em aplicacdoes Android para
loT, identificando falhas de seguranca e memoria, com o objetivo de avaliar
a eficdcia das ferramentas e contribuir para a melhoria desses sistemas.

1. Introducao

O uso de dispositivos com capacidade computacional e acesso a Internet tornou-se
cada vez mais comum no cotidiano das pessoas [Rowland et al. 2015]]. Com o avanco da
tecnologia, a Internet das Coisas (do inglés Internet of Things — IoT) tem contribuido
significativamente para o aumento da conectividade e da automag¢do em diversos setores,
como o industrial e o tecnolégico. Esse avanco promove o crescimento continuo no uso
de dispositivos inteligentes interconectados [Moraes and Hayashi 2021].

Paralelamente, observa-se um aumento expressivo na quantidade de software em-
barcado em tais dispositivos. Esse cendrio exige mecanismos eficazes de verificacao,
sendo a verificagao formal uma alternativa promissora para assegurar a confiabilidade e a
qualidade do produto [SILVA et al. 2013]]. Embora existam outros métodos de verificacao
amplamente utilizados, a verificagdo formal se destaca por permitir a andlise de comporta-
mentos ndo deterministicos por meio de modelos matematicos, possibilitando a detecc¢ao
de comportamentos imprevistos durante a fase de testes [Ramalho et al. 2013]].

Nesse contexto, esta pesquisa visa explorar a verificacdo formal de aplicagcdes
Android voltadas a 10T, desenvolvidas em Kotlin/Java. O objetivo € identificar vulnerabi-
lidades relacionadas a seguranca e a memoria, como deadlock, memory leak, arithmetic
overflow e data race, utilizando ferramentas compativeis com essas linguagens.

2. Objetivos
2.1. Objetivo Geral

Aplicar as técnicas de verificagdo formal para aplicacdes desenvolvidas com o intuito de
identificar deadlock, memory leak, arithmetic overflow e data race em bytecodes gerados
pelas linguagens Kotlin/Java.

2.2. Objetivos Especificos

* Realizar um levantamento bibliogréfico sobre as ferramentas de verificagcao formal
que sao utilizadas em bytecode Kotlin/Java.

* Desenvolver testes com verificagcdo e inspecao de bytecodes.

* Identificar deadlock, memory leak, arithmetic overflow e data race em bytecode
Kotlin/Java.

3. Fundamentacao Teorica

A verificacdo de modelos (model checking) é uma técnica de verificagdo formal ampla-
mente utilizada para garantir que um sistema atenda a propriedades previamente especifi-
cadas. Diferentemente dos testes convencionais, que utilizam entradas deterministicas, o
model checking permite uma andlise abrangente, explorando todas as possiveis execugdes
do sistema, inclusive as ndo deterministicas, o que é essencial em sistemas criticos
[Clarke 1997].

Essa abordagem exige a formulagdo de especificacdes formais que descrevem pro-
priedades desejaveis, como auséncia de deadlocks, gerenciamento correto de buffers e
integridade de dados. Assim, torna-se possivel identificar falhas complexas como arith-
metic overflow, deadlock, data race e memory leak, que podem passar despercebidas em
abordagens tradicionais.

Deadlocks ocorrem quando dois ou mais processos entram em espera circular por
recursos mantidos entre si, impedindo a continuacdo da execugd@o. Um caso simples en-
volve dois processos, cada um mantendo um recurso e aguardando pelo recurso do outro,
resultando em bloqueio mutuo [Isloor and Marsland 1980].

Memory leaks surgem quando objetos que nio sdo mais necessarios permanecem
acessiveis por referéncias estaticas ou locais, geralmente devido a descuidos do programa-
dor, como esquecer de remover objetos de estruturas de dados. Esses objetos ndo podem
ser coletados automaticamente, levando a degrada¢do de desempenho ao longo do tempo
[Weninger et al. 2019].

O arithmetic overflow ocorre quando um valor excede os limites representaveis
pelo tipo de dado utilizado. Por exemplo, somar 1 ao valor 127 em um inteiro com sinal
de 8 bits (0x7F) resulta em 0x80, que representa -128 em vez de +128, configurando uma
violagdo de integridade numérica [Mihocka and Troeger 2010]].

A condicdo de data race se manifesta quando dois ou mais threads acessam si-
multaneamente uma varidvel compartilhada e ao menos uma das operagdes € de escrita,
sem sincroniza¢do adequada. Esse tipo de erro leva a resultados imprevisiveis € compor-
tamentos incorretos na execu¢ao [Pozniansky and Schuster 2003]).

Para lidar com esses desafios, técnicas como o Bounded Model Checking (BMC)
vém sendo amplamente utilizadas. O BMC verifica a violagdo de propriedades em profun-
didades limitadas de execucdo, possibilitando a anélise de sistemas complexos de forma
decidivel [Biere et al. 2009]. Embora eficaz, ainda h4 a necessidade de evolugao nas fer-
ramentas que implementam essa técnica [Monteiro et al. 2022]].

Algumas ferramentas, como JBMC [Cordeiroetal. 2018] e JayHorn
[Kahsai et al. 2019]], oferecem suporte a verificagdo de bytecode Java, porém en-
frentam limitacdes ao tratar programas escritos em Kotlin. Para suprir essa lacuna, os
autores de Menezes propuseram uma abordagem que combina o BMC, por meio da
ferramenta ESBMC, com a linguagem intermedidria Jimple e técnicas de fuzzing, com
foco em detectar falhas como estouros de memoria e vulnerabilidades de concorréncia,
especialmente em implementagdes criptograficas de IoT.

Os autores destacam que, apesar de vdrias ferramentas oferecerem suporte ao Java,
apenas JBMC e ESBMC-Jimple mostraram compatibilidade efetiva com Kotlin. O estudo
comparativo conduzido por Menezes revelou que o ESBMC-Jimple obteve desempenho
superior na verificacao de benchmarks em Kotlin, em relacdo ao JBMC. Essa vantagem
¢ atribuida a utilizacao de comandos nativos e a adaptacdo da linguagem intermedidria
Jimple.

A técnica empregada no JBMC baseia-se em um frontend especializado na analise
de bytecode, com suporte a simulagdo de chamadas de métodos virtuais e a detec¢do
de falhas ndo tratadas pela JVM [Cordeiro et al. 2018]]. Ja o ESBMC-Jimple realiza
andlise estdtica diretamente sobre representacdes em Jimple, permitindo maior precisao
na identificacdo de vulnerabilidades [Menezes et al. 2022].

Diante desses resultados, o ESBMC-Jimple foi selecionado como ferramenta prin-
cipal para a andlise experimental deste projeto, visando avaliar sua eficdcia na detec¢ao
de falhas em aplicagdes reais. A escolha fundamenta-se na necessidade de garantir a
seguranca e a robustez dos sistemas 10T, cuja criticidade cresce exponencialmente nos
cendrios atuais.

4. Metodologia

As trés etapas que compdem a metodologia sdo: mapeamento sistematico (MSL), andlise
da linguagem Kotlin e inspecao formal de bytecodes.

* Mapeamento Sistematico da Literatura (MSL): Essa etapa é crucial para iden-
tificar as limitacoes dos métodos existentes e sugerir possiveis melhorias. Para
isso, foi realizada a busca por artigos cientificos da drea da pesquisa nas bases de
dados da IEEE, Scopus e ACM para realizar o MSL da drea de pesquisa.

* Analise da Linguagem Kotlin: Para realizar a analise, foi realizado um es-
tudo com codificacdo de funcionalidades em Kotlin para simular deadlock, me-
mory leak, arithmetic overflow e data race, com objetivo de entender o uso
das ferramentas existentes para verificacdo formal dessas linguagens e avaliar os
prototipos.

* Inspecao Formal de bytecodes: Nessa etapa, foram desenvolvidas aplicacdes
utilizando as linguagens estudadas nas quais serdo aplicadas as técnicas de
verificacdo formal, analisar os resultados e sugerir melhorias na codificacdo. Os
resultados serdo comparados com os encontrados na literatura.

Durante a realizagcdo da pesquisa, foram utilizados exemplos de cédigo em Kotlin
executados no ESBMC-Jimple com o objetivo de identificar problemas relacionados a
propriedades de execu¢do, como impasses, excecoes ndo tratadas e possiveis caminhos
de execug¢do indesejados.

5. Resultados e Discussao

O estudo conduzido pelos autores de ESBMC-Jimple [Menezes et al. 2022]] apresenta
uma andlise comparativa de verificagdo em linguagem Kotlin, através de uma avalia¢do
experimental. Os resultados indicaram que a ferramenta demonstrou uma capacidade su-
perior em verificar corretamente um maior nimero de benchmarks Kotlin em comparagao
com o JBMC. Essa superioridade pode ser atribuida aos comandos nativos do ESBMC-
Jimple, que sdo eficazes na detec¢do de problemas especificos relacionados a questdo
secunddria abordada.

Em virtude dessas descobertas, o ESBMC-Jimple foi selecionado como o tinico
verificador para avaliar sua eficdcia na detec¢ao de vulnerabilidades em aplicacdes reais,
como sistemas [oT, nos testes realizados neste projeto. A escolha se justifica pela neces-
sidade de garantir a seguranca e a integridade de tais sistemas, que sdo cada vez mais
criticos em diversos contextos tecnoldgicos.

5.1. Amostragem de Resultados da Pesquisa

Para a realizacdo final da amostragem de resultados, foram desenvolvidos quatro
simulacdes de experimento para simular os problemas de seguranga e memoria: dea-
dlock, memory leak, arithmetic overflow e data race. Todas as etapas da amostragem e
deteccao de problemas com o verificador estdo detalhados nos seguintes topicos.

5.1.1. Setup de Experimento

O ambiente de desenvolvimento utilizado foi o sistema operacional Linux Ubuntu 20.04
com 8Gb de RAM. A versdo utilizada da ferramenta foi a segunda versdao disponivel
e utilizada no trabalho de Menezes, encontrada juntamente com seus benchmarks em
https://zenodo.org/records/6514608. Para utiliza-la, necessita ter Java e Kotlin instalado
em sua maquina. Os autores dessa versdo realizaram uma demonstracdo real de como a
ferramenta funciona, encontrada em https://youtu.be/J6WhNtXvJINc.

5.1.2. Sequéncia de Passos
Terminada a instalacdo e configuracio do ESBMC-Jimple, foi utilizada a seguinte
sequéncia de passos no experimento:

A sequéncia de passos consiste em fazer a construcao das classes de simulacao,
onde ird ocorrer a verificacdo de possiveis violagdes nas estruturas de dados. O préximo

https://zenodo.org/records/6514608
https://youtu.be/J6WhNfXvJNc

(e IR Ie NV R N N R R

— e e e e
NN R W= OO

Figura 1. Sequéncia de passos utilizados no experimento

Construcéo de
classes de
simulagéo

Compilagéo das
classes
Transformagéo em
arquivos .jimple
Execugéo da
Verificagao

passo € a compilacdo dos cddigos kotlin utilizando o arquivo nativo da ferramenta
“compile-kotlin.sh”. Em seguida, as classes sdo transformadas em arquivos “.jimple”
usando o arquivo “generate-jimple.sh” com seus arquivos .class. Por fim, para demons-
trar o resultado da verificacdo, ha a execucdo usando o “esbmc” juntamente com seus
arquivos .jimple e os comandos desejados para a analise de bytecode.

5.1.3. Amostragem do Experimento

No processo de verificacdo, a ferramenta gera alguns arquivos extra para auxiliar na
execucdo. Devido a isso, as classes foram separadas em diferentes diretorios para melhor
visualizagdo e clareza de seus passos. A verificacdo das classes foi realizada de forma
separada, onde cada uma de suas classes tinha sua prépria funcdo “main” como indica o
exemplo no listing [1]

Listing 1. Classe teste "main.kt”’que simula um overflow

class OverFlowSimulate {

var a = 20000000L
var b = 20000000L
var ¢ = 20000000L
var d = a + b + ¢
var e = d = d

fun imprimeNumero () {
println (”e=$e”)

}

}

fun main() {
val overFlow = OverFlowSimulate ()
overFlow .imprimeNumero ()

}

No processo inicial da coleta de resultados, houveram desafios na integracdao do

codigo Kotlin para com ESBMC-Jimple. Apds a compilacio, as classes, principalmente
de deadlock e memory simulate, ndo aceitavam a conversao para a extensao .jimple utili-
zando o SOOT, uma estrutura de andlise estética para bytecode Java, com c6digo Kotlin.
A compatibilidade e a conversdo adequada do c6digo Kotlin em um formato que pudesse
ser processado pelo SOOT foram problemas iniciais que surgiram.

Apesar desses conflitos, foi encontrada outra solucio para o problema. No repo-
sitorio do autor dos scripts do ESBMC-Jimple, € disponibilizada uma alternativa para a
conversao de bytecodes Kotlin para Jimple. Essa alternativa estd disponivel no seguinte
repositorio GitHub.

ApOs a conversao de bytecodes, a verificacao foi realizada no prompt de comando
com a seguinte instrucao do listing

Listing 2. Instrucao para a verificacao com a classe OverFlowSimulate

/home/usuario /ESBMC-Jimple/esbmc sootOutput/mainKt.jimple
sootOutput/OverFlowSimulate.jimple ——overflow-check ——k-
induction

Listing 3. Resultado da verificagdo no terminal

Violated proprerty:
aritmethic overflow on add
loverflow (">, $16, $15)

VERIFICATION FAILED

A verificagdo estendeu-se para as demais classes DataRaceCondition, Deadlock-
Simulate e MemoryLeakSimulate, resultando na tabela (Il A ferramenta possui verifica-
dores de propriedades nativas para cada tipo de erro especificado, facilitando, assim, a
deteccao de problemas proprio de cada classe testada.

Tabela 1. Resultado das verificagoes com ESBMC-Jimple

Classes ‘;f:(l)fri,i?i;): d((lae Erro LC T(s) M (bytes) EI;?)()(,;‘,E)
DataRaceCondition —data-races-check Sim 48 0,59 16252928 Corrida de Dados
DeadlockSimulate —deadlock-check Sim 46 0,63 16252928 Bloqueio Fatal
MemoryLeakSimulate —memory-leak-check Sim 21 0,61 49913856 Vazamento de Memoria
OverFlowSimulate —overflow-check Sim 17 0,14 16252928 Estouro Aritmético

Na tabela [T} a primeira coluna possui o nome das classes seguida do verificador
de propriedade utilizado na verificagdo, j4 a terceira coluna apresenta se o erro foi encon-
trado. As colunas seguintes estdo com o titulo simplificado em siglas onde LC representa
quantas linhas de c6digo a classe possui, T (s) € o tempo de execugdo, em segundos, da
classe pelo ESBMC-Jimple, M (bytes) € a quantidade de memédria RAM quantificada em
bytes e TE € o tipo do erro encontrado traduzido para o portugués.

E observivel que os erros influenciaram na quantidade de tempo e meméria uti-
lizada pelo hardware, podendo destacar a classe DeadlockSimulate com o maior tempo
de execucdo e MemoryLeakSimulate pela maior quantidade de memdria utilizada. Vale
mencionar que a primeira classe dita, se executada normalmente pelo compilador Kotlin,
terd tempo de execug¢do infinito, ou seja, o0 programa nunca terminard o0 processo impos-
sibilitando o funcionamento da aplicacao.

https://github.com/rafaelsamenezes/jimple2json?tab=readme-ov-file

6. Consideracoes Finais

Essa pesquisa aplicou técnicas de verificagao formal em aplicagdes com o intuito de iden-
tificar deadlock, memory leak, arithmetic overflow e data race em bytecodes gerados pe-
las linguagens Kotlin/Java. Esse objetivo foi alcancado, como descrito no topico anterior,
onde foram desenvolvidas aplicagdes-teste para a ferramenta ESBMC-Jimple.

Embora a verificagdo tenha sido realizada sem maiores problemas, hd uma notavel
dificuldade para com o uso da ferramenta, no qual necessita de manipulagdo via terminal
para configurar e executar os testes. E uma limitagdo para usudrios inexperientes em
verificadores formais e demanda de orientacdes externas de instalacdo de dependéncias,
conversao para extensao .jimple e comandos ndo especificados no repositério existente.

Apesar da complexidade, o verificador estudado mostrou-se eficaz quanto a
identificagdo de vulnerabilidades. A verificagdo revelou que a ferramenta consegue iden-
tificar com precisdo todas as vulnerabilidades listadas no objetivo da pesquisa, além de
indicar a localizagao da causa dos erros, o que auxilia na refatoragcao pelo desenvolvedor.

Conclui-se que, baseado nos dados experimentais disponiveis até o momento, a
ferramenta cumpre sua func¢do de verificagdo formal ao identificar os problemas especifi-
cados com alta assertividade, mostrando-se ideal para a realizacao de verificacdes minu-
ciosas em aplicacdes Kotlin. No contexto de [oT, a ferramenta pode auxiliar na prevencao
de erros de vulnerabilidade de hardware aos componentes interconectados do sistema de
Internet das Coisas.

Referéncias

[Biere et al. 2009] Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. (2009).
Bounded model checking. Handbook of satisfiability, 185(99):457-481.

[Clarke 1997] Clarke, E. M. (1997). Model checking. In Foundations of Software Techno-
logy and Theoretical Computer Science: 17th Conference Kharagpur, India, December
18-20, 1997 Proceedings 17, pages 54-56. Springer.

[Cordeiro et al. 2018] Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., and Trtik,
M. (2018). Jbmc: A bounded model checking tool for verifying java bytecode. In
International Conference on Computer Aided Verification, pages 183—190. Springer.

[Isloor and Marsland 1980] Isloor, S. S. and Marsland, T. A. (1980). The deadlock problem:
An overview. Computer, 13(9):58-78.

[Kahsai et al. 2019] Kahsai, T., Riimmer, P., and Schif, M. (2019). Jayhorn: A java model
checker: (competition contribution). In Tools and Algorithms for the Construction and
Analysis of Systems: 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019,
Prague, Czech Republic, April 611, 2019, Proceedings, Part IIl 25, pages 214-218.
Springer.

[Menezes et al. 2022] Menezes, R., Moura, D., Cavalcante, H., de Freitas, R., and Cordeiro,
L. C. (2022). Esbmc-jimple: verifying kotlin programs via jimple intermediate re-
presentation. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 777-180.

[Mihocka and Troeger 2010] Mihocka, D. and Troeger, J. (2010). = A proposal for
hardware-assisted arithmetic overflow detection for array and bitfield operations. In
WISH—Workshop on Infrastructures for Software/Hardware Co-Design. Citeseer.

[Monteiro et al. 2022] Monteiro, F. R., Gadelha, M. R., and Cordeiro, L. C. (2022). Model
checking c++ programs. Software Testing, Verification and Reliability, 32(1):e1793.

[Moraes and Hayashi 2021] Moraes, A. d. and Hayashi, V. (2021). Seguranga em loT: En-
tendendo os Riscos e Ameagas em loT. Alta Books. Editora Alta Books.

[Pozniansky and Schuster 2003] Pozniansky, E. and Schuster, A. (2003). Efficient on-the-
fly data race detection in multithreaded c++ programs. In Proceedings of the ninth

ACM SIGPLAN symposium on Principles and practice of parallel programming, pages
179-190.

[Ramalho et al. 2013] Ramalho, M., Freitas, M., Sousa, F., Marques, H., Cordeiro, L., and
Fischer, B. (2013). Smt-based bounded model checking of c++ programs. In 2013 20th
IEEE International Conference and Workshops on Engineering of Computer Based
Systems (ECBS), pages 147-156. IEEE.

[Rowland et al. 2015] Rowland, C., Goodman, E., Charlier, M., Light, A., and Lui, A.
(2015). Designing connected products: UX for the consumer Internet of Things.
”O’Reilly Media, Inc.”.

[SILVA et al. 2013] SILVA, V. J., CORDEIRO, L. C., and JUNIOR, V. E. D. L. (2013).
Verificacdo de aplicacdes ami usando java pathfinder.

[Weninger et al. 2019] Weninger, M., Gander, E., and Mossenbock, H. (2019). Analyzing
data structure growth over time to facilitate memory leak detection. In Proceedings
of the 2019 ACM/SPEC International Conference on Performance Engineering, pages
273-284.

	Introdução
	Objetivos
	Objetivo Geral
	Objetivos Específicos

	Fundamentação Teórica
	Metodologia
	Resultados e Discussão
	Amostragem de Resultados da Pesquisa
	Setup de Experimento
	Sequência de Passos
	Amostragem do Experimento

	Considerações Finais

