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Abstract. With the increase in software within embedded systems, formal veri-
fication has become more important to ensure product quality by using mathe-
matical models to identify unexpected behaviors during algorithm execution.
Among the formal verification techniques, model checking stands out, as it ve-
rifies whether a system satisfies specific properties. This is essential for critical
IoT systems developed in Java and, more recently, Kotlin.
This research aims to apply formal verification to Android applications for IoT,
identifying security and memory flaws, with the goal of evaluating the effective-
ness of the tools and contributing to the improvement of these systems.

Resumo. Com o aumento de softwares em sistemas embarcados, a verificação
formal ganha importância para garantir a qualidade dos produtos, utilizando
modelos matemáticos para identificar comportamentos imprevistos durante a
execução de algoritmos.
Dentre as técnicas de verificação formal, destaca-se o model checking, que ve-
rifica se um sistema atende a propriedades especı́ficas, sendo essencial para
sistemas crı́ticos IoT desenvolvidas em Java e, mais recentemente, Kotlin.
Esta pesquisa visa aplicar verificações formais em aplicações Android para
IoT, identificando falhas de segurança e memória, com o objetivo de avaliar
a eficácia das ferramentas e contribuir para a melhoria desses sistemas.

1. Introdução

O uso de dispositivos com capacidade computacional e acesso à Internet tornou-se
cada vez mais comum no cotidiano das pessoas [Rowland et al. 2015]. Com o avanço da
tecnologia, a Internet das Coisas (do inglês Internet of Things — IoT) tem contribuı́do
significativamente para o aumento da conectividade e da automação em diversos setores,
como o industrial e o tecnológico. Esse avanço promove o crescimento contı́nuo no uso
de dispositivos inteligentes interconectados [Moraes and Hayashi 2021].

Paralelamente, observa-se um aumento expressivo na quantidade de software em-
barcado em tais dispositivos. Esse cenário exige mecanismos eficazes de verificação,
sendo a verificação formal uma alternativa promissora para assegurar a confiabilidade e a
qualidade do produto [SILVA et al. 2013]. Embora existam outros métodos de verificação
amplamente utilizados, a verificação formal se destaca por permitir a análise de comporta-
mentos não determinı́sticos por meio de modelos matemáticos, possibilitando a detecção
de comportamentos imprevistos durante a fase de testes [Ramalho et al. 2013].



Nesse contexto, esta pesquisa visa explorar a verificação formal de aplicações
Android voltadas à IoT, desenvolvidas em Kotlin/Java. O objetivo é identificar vulnerabi-
lidades relacionadas à segurança e à memória, como deadlock, memory leak, arithmetic
overflow e data race, utilizando ferramentas compatı́veis com essas linguagens.

2. Objetivos

2.1. Objetivo Geral

Aplicar as técnicas de verificação formal para aplicações desenvolvidas com o intuito de
identificar deadlock, memory leak, arithmetic overflow e data race em bytecodes gerados
pelas linguagens Kotlin/Java.

2.2. Objetivos Especı́ficos

• Realizar um levantamento bibliográfico sobre as ferramentas de verificação formal
que são utilizadas em bytecode Kotlin/Java.

• Desenvolver testes com verificação e inspeção de bytecodes.
• Identificar deadlock, memory leak, arithmetic overflow e data race em bytecode

Kotlin/Java.

3. Fundamentação Teórica

A verificação de modelos (model checking) é uma técnica de verificação formal ampla-
mente utilizada para garantir que um sistema atenda a propriedades previamente especifi-
cadas. Diferentemente dos testes convencionais, que utilizam entradas determinı́sticas, o
model checking permite uma análise abrangente, explorando todas as possı́veis execuções
do sistema, inclusive as não determinı́sticas, o que é essencial em sistemas crı́ticos
[Clarke 1997].

Essa abordagem exige a formulação de especificações formais que descrevem pro-
priedades desejáveis, como ausência de deadlocks, gerenciamento correto de buffers e
integridade de dados. Assim, torna-se possı́vel identificar falhas complexas como arith-
metic overflow, deadlock, data race e memory leak, que podem passar despercebidas em
abordagens tradicionais.

Deadlocks ocorrem quando dois ou mais processos entram em espera circular por
recursos mantidos entre si, impedindo a continuação da execução. Um caso simples en-
volve dois processos, cada um mantendo um recurso e aguardando pelo recurso do outro,
resultando em bloqueio mútuo [Isloor and Marsland 1980].

Memory leaks surgem quando objetos que não são mais necessários permanecem
acessı́veis por referências estáticas ou locais, geralmente devido a descuidos do programa-
dor, como esquecer de remover objetos de estruturas de dados. Esses objetos não podem
ser coletados automaticamente, levando à degradação de desempenho ao longo do tempo
[Weninger et al. 2019].

O arithmetic overflow ocorre quando um valor excede os limites representáveis
pelo tipo de dado utilizado. Por exemplo, somar 1 ao valor 127 em um inteiro com sinal
de 8 bits (0x7F) resulta em 0x80, que representa -128 em vez de +128, configurando uma
violação de integridade numérica [Mihocka and Troeger 2010].



A condição de data race se manifesta quando dois ou mais threads acessam si-
multaneamente uma variável compartilhada e ao menos uma das operações é de escrita,
sem sincronização adequada. Esse tipo de erro leva a resultados imprevisı́veis e compor-
tamentos incorretos na execução [Pozniansky and Schuster 2003].

Para lidar com esses desafios, técnicas como o Bounded Model Checking (BMC)
vêm sendo amplamente utilizadas. O BMC verifica a violação de propriedades em profun-
didades limitadas de execução, possibilitando a análise de sistemas complexos de forma
decidı́vel [Biere et al. 2009]. Embora eficaz, ainda há a necessidade de evolução nas fer-
ramentas que implementam essa técnica [Monteiro et al. 2022].

Algumas ferramentas, como JBMC [Cordeiro et al. 2018] e JayHorn
[Kahsai et al. 2019], oferecem suporte à verificação de bytecode Java, porém en-
frentam limitações ao tratar programas escritos em Kotlin. Para suprir essa lacuna, os
autores de Menezes propuseram uma abordagem que combina o BMC, por meio da
ferramenta ESBMC, com a linguagem intermediária Jimple e técnicas de fuzzing, com
foco em detectar falhas como estouros de memória e vulnerabilidades de concorrência,
especialmente em implementações criptográficas de IoT.

Os autores destacam que, apesar de várias ferramentas oferecerem suporte ao Java,
apenas JBMC e ESBMC-Jimple mostraram compatibilidade efetiva com Kotlin. O estudo
comparativo conduzido por Menezes revelou que o ESBMC-Jimple obteve desempenho
superior na verificação de benchmarks em Kotlin, em relação ao JBMC. Essa vantagem
é atribuı́da à utilização de comandos nativos e à adaptação da linguagem intermediária
Jimple.

A técnica empregada no JBMC baseia-se em um frontend especializado na análise
de bytecode, com suporte à simulação de chamadas de métodos virtuais e à detecção
de falhas não tratadas pela JVM [Cordeiro et al. 2018]. Já o ESBMC-Jimple realiza
análise estática diretamente sobre representações em Jimple, permitindo maior precisão
na identificação de vulnerabilidades [Menezes et al. 2022].

Diante desses resultados, o ESBMC-Jimple foi selecionado como ferramenta prin-
cipal para a análise experimental deste projeto, visando avaliar sua eficácia na detecção
de falhas em aplicações reais. A escolha fundamenta-se na necessidade de garantir a
segurança e a robustez dos sistemas IoT, cuja criticidade cresce exponencialmente nos
cenários atuais.

4. Metodologia
As três etapas que compõem a metodologia são: mapeamento sistemático (MSL), análise
da linguagem Kotlin e inspeção formal de bytecodes.

• Mapeamento Sistemático da Literatura (MSL): Essa etapa é crucial para iden-
tificar as limitações dos métodos existentes e sugerir possı́veis melhorias. Para
isso, foi realizada a busca por artigos cientı́ficos da área da pesquisa nas bases de
dados da IEEE, Scopus e ACM para realizar o MSL da área de pesquisa.

• Análise da Linguagem Kotlin: Para realizar a análise, foi realizado um es-
tudo com codificação de funcionalidades em Kotlin para simular deadlock, me-
mory leak, arithmetic overflow e data race, com objetivo de entender o uso
das ferramentas existentes para verificação formal dessas linguagens e avaliar os
protótipos.



• Inspeção Formal de bytecodes: Nessa etapa, foram desenvolvidas aplicações
utilizando as linguagens estudadas nas quais serão aplicadas as técnicas de
verificação formal, analisar os resultados e sugerir melhorias na codificação. Os
resultados serão comparados com os encontrados na literatura.

Durante a realização da pesquisa, foram utilizados exemplos de código em Kotlin
executados no ESBMC-Jimple com o objetivo de identificar problemas relacionados a
propriedades de execução, como impasses, exceções não tratadas e possı́veis caminhos
de execução indesejados.

5. Resultados e Discussão
O estudo conduzido pelos autores de ESBMC-Jimple [Menezes et al. 2022] apresenta
uma análise comparativa de verificação em linguagem Kotlin, através de uma avaliação
experimental. Os resultados indicaram que a ferramenta demonstrou uma capacidade su-
perior em verificar corretamente um maior número de benchmarks Kotlin em comparação
com o JBMC. Essa superioridade pode ser atribuı́da aos comandos nativos do ESBMC-
Jimple, que são eficazes na detecção de problemas especı́ficos relacionados à questão
secundária abordada.

Em virtude dessas descobertas, o ESBMC-Jimple foi selecionado como o único
verificador para avaliar sua eficácia na detecção de vulnerabilidades em aplicações reais,
como sistemas IoT, nos testes realizados neste projeto. A escolha se justifica pela neces-
sidade de garantir a segurança e a integridade de tais sistemas, que são cada vez mais
crı́ticos em diversos contextos tecnológicos.

5.1. Amostragem de Resultados da Pesquisa

Para a realização final da amostragem de resultados, foram desenvolvidos quatro
simulações de experimento para simular os problemas de segurança e memória: dea-
dlock, memory leak, arithmetic overflow e data race. Todas as etapas da amostragem e
detecção de problemas com o verificador estão detalhados nos seguintes tópicos.

5.1.1. Setup de Experimento

O ambiente de desenvolvimento utilizado foi o sistema operacional Linux Ubuntu 20.04
com 8Gb de RAM. A versão utilizada da ferramenta foi a segunda versão disponı́vel
e utilizada no trabalho de Menezes, encontrada juntamente com seus benchmarks em
https://zenodo.org/records/6514608. Para utilizá-la, necessita ter Java e Kotlin instalado
em sua máquina. Os autores dessa versão realizaram uma demonstração real de como a
ferramenta funciona, encontrada em https://youtu.be/J6WhNfXvJNc.

5.1.2. Sequência de Passos

Terminada a instalação e configuração do ESBMC-Jimple, foi utilizada a seguinte
sequência de passos no experimento:

A sequência de passos consiste em fazer a construção das classes de simulação,
onde irá ocorrer a verificação de possı́veis violações nas estruturas de dados. O próximo

https://zenodo.org/records/6514608
https://youtu.be/J6WhNfXvJNc


Figura 1. Sequência de passos utilizados no experimento

passo é a compilação dos códigos kotlin utilizando o arquivo nativo da ferramenta
“compile-kotlin.sh”. Em seguida, as classes são transformadas em arquivos “.jimple”
usando o arquivo “generate-jimple.sh” com seus arquivos .class. Por fim, para demons-
trar o resultado da verificação, há a execução usando o “esbmc” juntamente com seus
arquivos .jimple e os comandos desejados para a análise de bytecode.

5.1.3. Amostragem do Experimento

No processo de verificação, a ferramenta gera alguns arquivos extra para auxiliar na
execução. Devido a isso, as classes foram separadas em diferentes diretórios para melhor
visualização e clareza de seus passos. A verificação das classes foi realizada de forma
separada, onde cada uma de suas classes tinha sua própria função “main” como indica o
exemplo no listing 1.

Listing 1. Classe teste ”main.kt”que simula um overflow

1 c l a s s OverF lowSimula te {
2 v a r a = 20000000L
3 v a r b = 20000000L
4 v a r c = 20000000L
5
6 v a r d = a + b + c
7 v a r e = d * d
8
9 fun imprimeNumero ( ) {

10 p r i n t l n ( ” e=$e ” )
11 }
12 }
13
14 fun main ( ) {
15 v a l overFlow = OverF lowSimula te ( )
16 overFlow . imprimeNumero ( )
17 }

No processo inicial da coleta de resultados, houveram desafios na integração do



código Kotlin para com ESBMC-Jimple. Após a compilação, as classes, principalmente
de deadlock e memory simulate, não aceitavam a conversão para a extensão .jimple utili-
zando o SOOT, uma estrutura de análise estática para bytecode Java, com código Kotlin.
A compatibilidade e a conversão adequada do código Kotlin em um formato que pudesse
ser processado pelo SOOT foram problemas iniciais que surgiram.

Apesar desses conflitos, foi encontrada outra solução para o problema. No repo-
sitório do autor dos scripts do ESBMC-Jimple, é disponibilizada uma alternativa para a
conversão de bytecodes Kotlin para Jimple. Essa alternativa está disponı́vel no seguinte
repositório GitHub.

Após a conversão de bytecodes, a verificação foi realizada no prompt de comando
com a seguinte instrução do listing 2

Listing 2. Instrução para a verificação com a classe OverFlowSimulate
/ home / u s u a r i o /ESBMC− J i m p l e / esbmc s o o t O u t p u t / mainKt . j i m p l e

s o o t O u t p u t / OverF lowSimula te . j i m p l e −− over f low − check −−k−
i n d u c t i o n

Listing 3. Resultado da verificação no terminal
V i o l a t e d p r o p r e r t y :

a r i t m e t h i c o v e r f l o w on add
! o v e r f l o w ( ” * ” , $l6 , $ l 5 )

VERIFICATION FAILED

A verificação estendeu-se para as demais classes DataRaceCondition, Deadlock-
Simulate e MemoryLeakSimulate, resultando na tabela 1. A ferramenta possui verifica-
dores de propriedades nativas para cada tipo de erro especificado, facilitando, assim, a
detecção de problemas próprio de cada classe testada.

Tabela 1. Resultado das verificações com ESBMC-Jimple

Classes Verificador de
Propriedade Erro LC T (s) M (bytes) Tipo de

Erro (TE)
DataRaceCondition –data-races-check Sim 48 0,59 16252928 Corrida de Dados
DeadlockSimulate –deadlock-check Sim 46 0,63 16252928 Bloqueio Fatal
MemoryLeakSimulate –memory-leak-check Sim 21 0,61 49913856 Vazamento de Memória
OverFlowSimulate –overflow-check Sim 17 0,14 16252928 Estouro Aritmético

Na tabela 1, a primeira coluna possui o nome das classes seguida do verificador
de propriedade utilizado na verificação, já a terceira coluna apresenta se o erro foi encon-
trado. As colunas seguintes estão com o tı́tulo simplificado em siglas onde LC representa
quantas linhas de código a classe possui, T (s) é o tempo de execução, em segundos, da
classe pelo ESBMC-Jimple, M (bytes) é a quantidade de memória RAM quantificada em
bytes e TE é o tipo do erro encontrado traduzido para o português.

É observável que os erros influenciaram na quantidade de tempo e memória uti-
lizada pelo hardware, podendo destacar a classe DeadlockSimulate com o maior tempo
de execução e MemoryLeakSimulate pela maior quantidade de memória utilizada. Vale
mencionar que a primeira classe dita, se executada normalmente pelo compilador Kotlin,
terá tempo de execução infinito, ou seja, o programa nunca terminará o processo impos-
sibilitando o funcionamento da aplicação.

https://github.com/rafaelsamenezes/jimple2json?tab=readme-ov-file


6. Considerações Finais

Essa pesquisa aplicou técnicas de verificação formal em aplicações com o intuito de iden-
tificar deadlock, memory leak, arithmetic overflow e data race em bytecodes gerados pe-
las linguagens Kotlin/Java. Esse objetivo foi alcançado, como descrito no tópico anterior,
onde foram desenvolvidas aplicações-teste para a ferramenta ESBMC-Jimple.

Embora a verificação tenha sido realizada sem maiores problemas, há uma notável
dificuldade para com o uso da ferramenta, no qual necessita de manipulação via terminal
para configurar e executar os testes. É uma limitação para usuários inexperientes em
verificadores formais e demanda de orientações externas de instalação de dependências,
conversão para extensão .jimple e comandos não especificados no repositório existente.

Apesar da complexidade, o verificador estudado mostrou-se eficaz quanto à
identificação de vulnerabilidades. A verificação revelou que a ferramenta consegue iden-
tificar com precisão todas as vulnerabilidades listadas no objetivo da pesquisa, além de
indicar a localização da causa dos erros, o que auxilia na refatoração pelo desenvolvedor.

Conclui-se que, baseado nos dados experimentais disponı́veis até o momento, a
ferramenta cumpre sua função de verificação formal ao identificar os problemas especifi-
cados com alta assertividade, mostrando-se ideal para a realização de verificações minu-
ciosas em aplicações Kotlin. No contexto de IoT, a ferramenta pode auxiliar na prevenção
de erros de vulnerabilidade de hardware aos componentes interconectados do sistema de
Internet das Coisas.
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checker: (competition contribution). In Tools and Algorithms for the Construction and
Analysis of Systems: 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019,
Prague, Czech Republic, April 6–11, 2019, Proceedings, Part III 25, pages 214–218.
Springer.

[Menezes et al. 2022] Menezes, R., Moura, D., Cavalcante, H., de Freitas, R., and Cordeiro,
L. C. (2022). Esbmc-jimple: verifying kotlin programs via jimple intermediate re-
presentation. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 777–780.



[Mihocka and Troeger 2010] Mihocka, D. and Troeger, J. (2010). A proposal for
hardware-assisted arithmetic overflow detection for array and bitfield operations. In
WISH—Workshop on Infrastructures for Software/Hardware Co-Design. Citeseer.

[Monteiro et al. 2022] Monteiro, F. R., Gadelha, M. R., and Cordeiro, L. C. (2022). Model
checking c++ programs. Software Testing, Verification and Reliability, 32(1):e1793.

[Moraes and Hayashi 2021] Moraes, A. d. and Hayashi, V. (2021). Segurança em IoT: En-
tendendo os Riscos e Ameaças em IoT. Alta Books. Editora Alta Books.

[Pozniansky and Schuster 2003] Pozniansky, E. and Schuster, A. (2003). Efficient on-the-
fly data race detection in multithreaded c++ programs. In Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel programming, pages
179–190.

[Ramalho et al. 2013] Ramalho, M., Freitas, M., Sousa, F., Marques, H., Cordeiro, L., and
Fischer, B. (2013). Smt-based bounded model checking of c++ programs. In 2013 20th
IEEE International Conference and Workshops on Engineering of Computer Based
Systems (ECBS), pages 147–156. IEEE.

[Rowland et al. 2015] Rowland, C., Goodman, E., Charlier, M., Light, A., and Lui, A.
(2015). Designing connected products: UX for the consumer Internet of Things.
”O’Reilly Media, Inc.”.

[SILVA et al. 2013] SILVA, V. J., CORDEIRO, L. C., and JÚNIOR, V. F. D. L. (2013).
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