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Abstract. Visual classification models are essential in applications such as au-
tonomous navigation and mobile robotics, but they still face challenges in in-
door environments with lighting and temporal variations. This work compares
the performance of DINOv2 feature extractor, a state-of-the-art self-supervised
model, with supervised architectures such as ConvNeXt, EfficientNet, ResNet,
and ViT. Using the KTH-IDOL2 dataset, we evaluated the models under differ-
ent environmental conditions. Results show that DINOv2 consistently outper-
formed the others, achieving up to 98.02% accuracy. These findings highlight
the robustness of self-supervised representations in the face of visual variabil-
ity, positioning DINOv2 as a promising alternative for realistic indoor scene
classification.

Resumo. Modelos de classificação visual são fundamentais em aplicações
como navegação autônoma e robótica móvel, mas ainda enfrentam desafios
em ambientes internos com variações de iluminação e mudanças temporais.
Este trabalho compara o desempenho do extrator de caracterı́sticas DINOv2,
modelo auto-supervisionado de última geração, com arquiteturas supervision-
adas como ConvNeXt, EfficientNet, ResNet e ViT. Utilizando o dataset KTH-
IDOL2, avaliamos os modelos em diferentes condições ambientais. Os resulta-
dos mostram que o DINOv2 superou consistentemente os demais, alcançando
até 98,02% de acurácia. Os achados destacam a robustez das representações
auto-supervisionadas frente à variabilidade visual, posicionando o DINOv2
como uma alternativa promissora para classificação de ambientes em cenários
realistas.

1. Introdução
A classificação visual de ambientes constitui um componente central em sistemas in-
teligentes, com aplicações relevantes em robótica, realidade aumentada e navegação
autônoma [Barros et al. 2021, Garg et al. 2021]. Esses sistemas requerem representações
visuais robustas e generalizáveis para operarem com eficácia em ambientes com variações
temporais e espaciais [Masone and Caputo 2021].



Entretanto, modelos supervisionados enfrentam desafios significativos quando ex-
postos a alterações no ambiente, como variações de iluminação, deslocamento de objetos
ou mudanças sazonais [Pronobis et al. 2010, Zaffar et al. 2020]. Tais variações frequente-
mente comprometem a acurácia dos modelos, especialmente quando são treinados com
dados rotulados que não contemplam todos os contextos possı́veis [Zhang et al. 2021].

Nesse cenário, métodos auto-supervisionados vêm ganhando destaque por sua ca-
pacidade de aprender representações visuais discriminativas sem a necessidade de rótulos.
O DINOv2 é um exemplo notável, utilizando uma arquitetura baseada em Vision Trans-
formers (ViT) para aprender recursos robustos e transferı́veis a partir de grandes vol-
umes de dados não rotulados. Seus autores demonstram que o DINOv2 supera abor-
dagens auto-supervisionadas anteriores e atinge desempenho competitivo com modelos
supervisionados em tarefas como classificação, segmentação e recuperação de instâncias
[Oquab et al. 2024].

Paralelamente aos avanços em auto-supervisão, as arquiteturas supervisionadas
continuam a evoluir significativamente. A ConvNeXt, por exemplo, representa uma
atualização moderna das redes convolucionais clássicas, incorporando caracterı́sticas
inspiradas em Transformers, como kernels ampliados e camadas invertidas de bottle-
neck, alcançando desempenho competitivo em benchmarks como ImageNet e COCO
[Liu et al. 2022]. De forma semelhante, a EfficientNet propõe um método sistemático
de escalonamento para melhorar a relação entre desempenho e custo computacional
[Tan and Le 2019].

Desse modo, este trabalho apresenta uma análise comparativa entre o mod-
elo auto-supervisionado DINOv2 e quatro arquiteturas supervisionadas amplamente uti-
lizadas: ConvNeXt, EfficientNet, ResNet e ViT. A investigação é conduzida em um cenário
realista, utilizando o dataset KTH-IDOL2, conhecido por suas variações temporais e de
iluminação, que impõem desafios tı́picos de ambientes internos reais. Como principal
contribuição, o estudo fornece uma avaliação sistemática da robustez e capacidade de
generalização do DINOv2 frente a modelos supervisionados, considerando condições
visuais que simulam situações práticas enfrentadas em aplicações como robótica e
navegação autônoma. Além disso, o trabalho explora cenários com separação entre
sessões temporais e mudanças ambientais naturais, uma configuração pouco abordada
em estudos anteriores sobre classificação de ambientes com redes profundas.

2. Objetivos
O presente trabalho tem como objetivo principal avaliar e comparar o desempenho do
modelo auto-supervisionado DINOv2 com arquiteturas supervisionadas amplamente uti-
lizadas, como a ConvNeXt, EfficientNet, ResNet e ViT, na tarefa de classificação visual
de ambientes internos, considerando cenários com variação temporal e condições de
iluminação distintas, utilizando o dataset KTH-IDOL2.

Como objetivos especı́ficos, temos:

• Aplicar o modelo DINOv2 a dados de ambientes internos sob diferentes condições
visuais, investigando sua capacidade de generalização frente a variações temporais
e de iluminação;

• Comparar o desempenho do DINOv2 com modelos supervisionados consolidados,
utilizando métricas de acurácia em diferentes cenários de teste;



• Avaliar o impacto da variação de iluminação na estabilidade e precisão dos mod-
elos;

• Investigar a robustez temporal dos modelos, analisando seu desempenho em
sequências capturadas em momentos distintos ao longo do tempo;

3. Fundamentação Teórica
A classificação visual de ambientes internos é uma tarefa essencial em sistemas in-
teligentes, particularmente em aplicações como robótica móvel, navegação autônoma e
localização sem mapa. Esses sistemas exigem modelos capazes de lidar com variações
estruturais, temporais e visuais, frequentemente presentes em ambientes reais. Para en-
frentar esses desafios, a literatura recente tem explorado diferentes estratégias baseadas
em aprendizado profundo, com destaque para abordagens supervisionadas, arquiteturas
baseadas em Transformers, métodos hı́bridos e, mais recentemente, técnicas de apren-
dizado auto-supervisionado [Garg et al. 2021, Zaffar et al. 2020].

3.1. Modelos Supervisionados
Modelos supervisionados têm sido amplamente utilizados em tarefas de classificação
de cenas e ambientes, com ênfase em redes neurais convolucionais. Trabalhos
como o de Zhou et al. [Zhou et al. 2014] introduziram o dataset Places e demon-
straram que redes treinadas com grandes volumes de dados rotulados podem aprender
representações visuais discriminativas. Arquiteturas como ResNet [He et al. 2016], Effi-
cientNet [Tan and Le 2019] e ConvNeXt [Liu et al. 2022] destacam-se por sua eficiência
e desempenho em benchmarks de classificação. No entanto, tais modelos são geralmente
sensı́veis a mudanças de domı́nio, como variações de iluminação e rearranjos no ambi-
ente, o que limita sua robustez em cenários dinâmicos [Barros et al. 2021]].

3.2. Transformers e Arquiteturas Hı́bridas
A introdução do Vision Transformer (ViT) [Dosovitskiy et al. 2021] propôs uma mudança
conceitual ao substituir convoluções por mecanismos de atenção, possibilitando o apren-
dizado de dependências globais desde as primeiras camadas da rede. Essa abordagem tem
mostrado resultados promissores em diversas tarefas visuais. No contexto da classificação
de ambientes, modelos como o TransVPR [Wang et al. 2022] aplicam ViTs com múltiplos
nı́veis de atenção para reconhecer lugares internos de forma robusta. No entanto, ViTs
puros geralmente demandam grandes volumes de dados e alto poder computacional.
Como resposta, surgiram arquiteturas hı́bridas, como o ConvNeXt, que incorporam el-
ementos inspirados em Transformers à estrutura das redes convolucionais tradicionais
[Liu et al. 2022].

3.3. Aprendizado Auto-supervisionado e o DINOv2
Técnicas de aprendizado auto-supervisionado ganharam destaque nos últimos anos por
dispensarem rótulos durante o treinamento, o que é vantajoso em contextos com alta vari-
abilidade visual e baixo custo de anotação. O modelo DINO [Caron et al. 2021] intro-
duziu um mecanismo de auto-destilação que explora diferentes visões de uma mesma
imagem, promovendo a emergência de representações semânticas. Sua evolução, o DI-
NOv2, aprimorou esse processo incorporando grandes conjuntos de dados curados, mel-
horias na arquitetura base e funções de perda mais robustas. O DINOv2 demonstrou
desempenho competitivo com modelos supervisionados em tarefas como classificação de
cenas, segmentação e correspondência de instâncias [Oquab et al. 2024].



3.4. Classificação de Ambientes Internos

A classificação de ambientes internos é um campo especı́fico da visão computacional que
lida com desafios como variação de iluminação, reorganização de objetos e mudanças
temporais. O dataset KTH-IDOL, proposto por [Luo et al. 2006], foi desenvolvido justa-
mente para avaliar algoritmos sob essas condições, utilizando imagens coletadas por robôs
em diferentes salas e condições ambientais (ensolarado, nublado, noturno). Abordagens
multimodais também têm sido exploradas, como a proposta por [Anwer et al. 2019], que
combina informações de RGB, profundidade e textura (LBP) em redes convolucionais
para melhorar a acurácia da classificação em cenas internas.

Apesar dos avanços, a maioria das abordagens supervisionadas ainda não avalia
sistematicamente a capacidade dos modelos de generalizar sob condições visuais não vis-
tas, como aquelas causadas por variações temporais ou mudanças de iluminação. Tra-
balhos recentes com Transformers ou CNNs geralmente testam os modelos em condições
similares às de treinamento, o que limita a avaliação da robustez dos métodos em contex-
tos reais [Zaffar et al. 2020, Masone and Caputo 2021, Garg et al. 2021].

3.5. Lacunas e Direcionamento deste Trabalho

Embora haja progresso significativo na arquitetura dos modelos de visão, ainda persis-
tem lacunas importantes na avaliação de robustez frente a mudanças ambientais. Poucos
estudos utilizam protocolos experimentais com separação temporal entre treino e teste
ou troca explı́cita de condições de iluminação. Este trabalho busca preencher parte
dessa lacuna ao comparar o desempenho do modelo auto-supervisionado DINOv2 com
arquiteturas supervisionadas consolidadas (ConvNeXt, EfficientNet, ResNet e ViT), em
um cenário realista com o dataset KTH-IDOL2, focando na generalização visual sob
condições variáveis tı́picas de ambientes internos não controlados.

4. Metodologia

Neste trabalho, a metodologia adotada se fundamenta integralmente no modelo auto-
supervisionado DINOv2, que representa uma das abordagens mais recentes e robustas
no campo do aprendizado profundo aplicado à visão computacional. A escolha por esse
modelo como eixo central da investigação se deve à sua capacidade comprovada de apren-
der representações visuais generalistas, escaláveis e altamente discriminativas, mesmo
na ausência de rótulos, o que o torna ideal para tarefas em cenários visuais dinâmicos
e desafiadores, como ambientes internos com variações de iluminação e temporalidade
[Oquab et al. 2024].

O DINOv2 é baseado em Vision Transformers e opera segundo um mecanismo de
auto-destilação sem rótulos, no qual duas redes neurais idênticas em arquitetura, denomi-
nadas aluno e professor, interagem durante o treinamento. A rede aluno é otimizada para
prever as distribuições de saı́da da rede professor, que são calculadas a partir de diferentes
vistas da mesma imagem. Os parâmetros da rede professor não são aprendidos direta-
mente, mas atualizados como uma média móvel exponencial (EMA) dos parâmetros da
rede aluno, conforme introduzido por [Caron et al. 2021].

As previsões são geradas a partir da aplicação de uma MLP (Multilayer Percep-
tron) aos tokens de classe ou de patch produzidos pelo ViT, seguidas de uma normalização



com softmax em diferentes temperaturas. A principal função de perda utilizada é a en-
tropia cruzada entre as distribuições da rede professor (pt ) e da rede aluno (ps ), expressa
por:

LDINO = −
∑

pt log ps (1)

O DINOv2 aprofunda esse processo incorporando uma segunda função de perda
baseada no método iBOT, que atua no nı́vel dos patches mascarados. Com isso, o modelo
é incentivado a prever regiões ocultas da imagem, promovendo uma compreensão espa-
cial mais refinada. Para garantir estabilidade e eficiência no treinamento, a metodologia
emprega o algoritmo Sinkhorn-Knopp como mecanismo de centering e o regularizador
KoLeo, que maximiza a diversidade dos vetores latentes a partir de uma estimativa de
entropia diferencial.

Além disso, o DINOv2 utiliza técnicas computacionais de alto desempenho, como
FlashAttention, stochastic depth otimizado e paralelismo com FSDP (Fully Sharded Data
Parallel). Tais recursos possibilitam o treinamento eficiente mesmo com modelos de
grande porte, como o ViT-g/14 com mais de 1 bilhão de parâmetros. Em arquiteturas
menores, como ViT-S e ViT-L, é empregada destilação a partir de um professor congelado,
permitindo alcançar alta qualidade com menor custo computacional.

Figure 1. Arquitetura do DINOv2 adaptada de [Oquab et al. 2024].

Essa metodologia visa, portanto, avaliar de forma sistemática o desempenho do
DINOv2 em um cenário realista e desafiador, explorando seu potencial para generalização
visual em ambientes internos com variações naturais. Ao combinar um modelo de ponta
em auto-supervisão com um conjunto de dados rico em diversidade temporal e luminosa,
buscamos compreender até que ponto as representações aprendidas pelo DINOv2 são ca-
pazes de sustentar um desempenho robusto frente à complexidade visual do mundo real.
A seguir, apresentamos os resultados obtidos e a comparação com modelos supervisiona-
dos amplamente utilizados na literatura.



5. Resultados e Discussões
Nesta seção, apresentamos detalhes dos experimentos realizados para avaliar o método
proposto.

5.1. Conjunto de Dados

O KTH-IDOL2 (Image Database for Indoor and Outdoor Localization) [Luo et al. 2006]
é um conjunto de dados desenvolvido com o objetivo de avaliar a robustez e adaptabil-
idade de algoritmos de reconhecimento visual de lugares em ambientes internos reais e
dinâmicos. O dataset foi coletado no laboratório CVAP da KTH (Royal Institute of Tech-
nology), na Suécia, utilizando dois robôs móveis, Minnie e Dumbo.

Figure 2. Imagens apresentando o interior de cada ambiente.

O ambiente de coleta é composto por cinco salas com diferentes funcionalidades:
corredor, área da impressora, cozinha e dois escritórios. As sequências de imagens foram
registradas enquanto os robôs percorriam trajetórias semelhantes, com variações de ponto
de vista devido ao controle manual. Cada imagem foi automaticamente rotulada com a
posição e orientação do robô, além do cômodo em que foi capturada.

Um dos principais diferenciais do KTH-IDOL2 é a ênfase na variação visual
causada por fatores reais, sendo as imagens adquiridas sob três condições distintas: a)
ensolarado (sunny), com forte presença de luz solar, sombras e reflexos; b) nublado
(cloudy), com luz difusa e ausência de sombras marcantes; e c) noturno (night), com
baixa iluminação ambiente e predominância de luz artificial.

Sobre as variações temporais e humanas, as coletas ocorreram ao longo de
seis meses, permitindo capturar mudanças no ambiente como a presença e ausência
de pessoas, alterações na posição de móveis e objetos e modificações na decoração e
reorganização de salas. O banco de dados contém 24 sequências de imagens, sendo que
cada sequência possui entre 800 e 1100 quadros capturados a 5 fps. Os dados incluem
também odometria e varreduras a laser, úteis para estudos que integram percepção visual
e localização.



Figure 3. Exemplo de imagens capturadas sob diferentes condições de
iluminação.

5.2. Detalhes da Implementação
Para a execução dos experimentos da nossa abordagem, utilizamos a biblioteca PyTorch
em um computador Dell com uma CPU Intel® XeonT M Silver 4114 de 2,20 GHz, 128
GB de memória principal DDR4-2133 e uma GPU NVIDIA® GeForce® RTX A4000 de
16 GB GDDR6.

A fase de treinamento do modelo DINOv2 incluiu a otimização dos hiper-
parâmetros por meio de Grid Search, ajustando variáveis como learning rate, batch size,
epochs e dropout para maximizar o desempenho do modelo. Para avaliar a capacidade de
generalização do modelo, foi adotada uma estratégia de transfer learning onde o treina-
mento e a validação foram realizados com imagens de uma sequência especı́fica, enquanto
o teste foi conduzido com imagens de uma sequência distinta, respeitando a separação
temporal entre os conjuntos.

5.3. Resultados
Apresentamos os resultados obtidos nos experGeneralização entre Plataformasimentos
conduzidos com os modelos DINOv2 (nossa abordagem), ConvNeXt [Liu et al. 2022],
EfficientNet [Tan and Le 2019], ResNet [He et al. 2016] e ViT [Dosovitskiy et al. 2021]
aplicados à tarefa de classificação de ambientes internos no dataset KTH-IDOL2. As
análises foram organizadas em duas etapas complementares, com o objetivo de avaliar
a robustez dos modelos frente a variações temporais e alterações nas condições de
iluminação, ambas caracterı́sticas naturais e frequentes em ambientes reais.

Na primeira parte, investigamos a capacidade dos modelos de generalizar ao longo
do tempo, ou seja, diante de mudanças na disposição de objetos, presença de pessoas,
modificações na decoração e outras transformações naturais que ocorrem entre capturas
feitas em diferentes momentos. Na segunda parte, analisamos o impacto das condições
de iluminação na acurácia dos modelos, considerando três cenários distintos: ensolarado,



nublado e noturno. A seguir, são apresentados os resultados obtidos em cada cenário
experimental, acompanhados de análises comparativas entre os modelos e discussão dos
principais resultados.

5.3.1. Avaliação Temporal

Nesta primeira análise, avaliamos a capacidade dos modelos de generalizar sob variações
temporais em ambientes internos, considerando mudanças naturais que ocorrem com o
passar do tempo, como alterações na disposição de objetos, movimentação de móveis,
presença ocasional de pessoas e modificações na iluminação ambiente. Adotamos um
protocolo experimental em que o treinamento e a validação foram realizados utilizando
as sequências 1 e 2, enquanto o teste foi conduzido com as sequências 3 e 4, capturadas
meses depois, no mesmo ambiente. Dessa forma, é possı́vel avaliar a robustez dos mode-
los frente à evolução visual dos espaços, evitando o sobreajuste a padrões momentâneos.

Dumbo12 sunny34 cloudy34 night34
Modelo Acurácia (%) Acurácia (%) Acurácia (%)
ViT 91.84 92.72 92.30
EfficientNetB0 93.95 91.02 94.22
Resnet152 94.56 92.62 94.01
ConvNeXt-base 95.64 95.36 95.82
DINOv2 96.77 97.06 96.33

Table 1. Resultados dos experimentos ao treinar e testar sob a mesma condição
de iluminação, mas utilizando sequências diferentes, para a plataforma Dumbo.

Na Tabela 1, apresentamos os resultados obtidos na plataforma Dumbo, utilizando
as sequências 1 e 2 para treinamento e validação, e as sequências 3 e 4 para teste, man-
tendo a mesma condição de iluminação entre os conjuntos. Essa configuração permite
avaliar o impacto da variação temporal, isolando outros fatores como mudança de domı́nio
visual ou iluminação.

Observa-se que todos os modelos supervisionados apresentam desempenho satis-
fatório, com acurácia acima de 91% em todos os cenários. No entanto, o modelo DINOv2
superou todas as demais arquiteturas em todas as condições de iluminação avaliadas,
alcançando 97,06% de acurácia no cenário nublado (cloudy) e mantendo desempenho
elevado mesmo na condição ensolarada (96,77%, sunny) e noturna (96,33%, night).

A Tabela 2 apresenta os resultados obtidos na plataforma Minnie, também con-
siderando treinamento e validação nas sequências 1 e 2, e teste nas sequências 3 e 4, com
a mesma condição de iluminação entre os conjuntos. Embora os valores de acurácia sejam
ligeiramente inferiores aos obtidos na plataforma Dumbo, o modelo DINOv2 manteve-se
como o de melhor desempenho em todas as condições.

O DINOv2 atingiu 93,75% de acurácia sob condição ensolarada (sunny), 90,80%
em nublado (cloudy) e 92,93% à noite (night), superando os modelos supervisionados
em todos os casos. Os demais modelos apresentaram maior variação de desempenho,
com quedas mais acentuadas especialmente em ambientes nublados, como observado no
EfficientNetB0 (83,68%) e no ViT (86,20%).



Minnie sunny34 cloudy34 night34
Modelo Acurácia (%) Acurácia (%) Acurácia (%)
EfficientNetB0 85.03 83.68 91.92
ConvNeXt-base 91.23 89.41 89.12
Resnet152 91.91 86.94 87.66
ViT 92.49 86.20 89.90
DINOv2 93.75 90.80 92.93

Table 2. Resultados dos experimentos ao treinar e testar sob a mesma condição
de iluminação, mas utilizando sequências diferentes, para a plataforma Minnie.

Esses resultados reforçam o comportamento consistente do DINOv2 frente às
mudanças temporais, mesmo em uma plataforma com câmera em altura diferente e
possı́veis variações de perspectiva, como é o caso da Minnie. A robustez apresentada pelo
modelo auto-supervisionado o destaca como uma solução promissora para aplicações de
classificação visual em ambientes reais, sujeitos a modificações ao longo do tempo.

5.3.2. Avaliação por Condições de Iluminação

Nesta etapa, investigamos a robustez dos modelos frente a diferentes condições de
iluminação, um fator crı́tico para tarefas de classificação visual em ambientes reais. A
variação na iluminação afeta diretamente a aparência das cenas, com alterações em con-
traste, sombras, reflexos e intensidade luminosa, caracterı́sticas que podem comprometer
a estabilidade dos modelos supervisionados tradicionais.

Adotamos um protocolo em que os modelos foram treinados e validados em uma
determinada condição de iluminação (por exemplo, ensolarado) e testados em outra dis-
tinta (por exemplo, nublado ou noturno), sempre utilizando sequências diferentes para
garantir separação temporal. Essa abordagem permite avaliar até que ponto cada modelo
consegue generalizar visualmente para cenários com iluminação diversa, sem exposição
prévia a essas variações.

A Tabela 3 apresenta os resultados obtidos na plataforma Dumbo, considerando o
cenário de variação entre condições de iluminação. Neste experimento, os modelos foram
treinados com dados de duas condições de iluminação (por exemplo, sunny e cloudy) e
testados com dados de uma terceira condição não vista durante o treinamento (night).
Essa configuração permite avaliar diretamente a capacidade de generalização visual dos
modelos a condições de iluminação desconhecidas.

Observa-se que, embora todos os modelos supervisionados tenham apresentado
desempenho razoável nas condições ensolarada e nublada, houve uma queda significa-
tiva quando testados em ambiente noturno, com destaque para o ViT, que obteve apenas
81,24% de acurácia nesse cenário. O modelo DINOv2, por outro lado, demonstrou exce-
lente estabilidade entre as condições, atingindo 98,21% na condição ensolarada (sunny),
96,94% em nublado (cloudy) e 93,81% à noite (night), a maior entre todos os modelos
em todos os casos.

Esses resultados reforçam a robustez do DINOv2 a variações de iluminação, evi-
denciando sua capacidade de aprender representações visuais menos sensı́veis a artefatos



Dumbo sunny3 cloudy3 night3
Modelo Acurácia (%) Acurácia (%) Acurácia (%)
ViT 88.74 87.54 81.24
EfficientNetB0 91.47 94.97 86.65
Resnet152 94.84 95.41 88.10
ConvNeXt-base 95.26 95.63 92.75
DINOv2 98.21 96.94 93.81

Table 3. Resultados dos experimentos ao treinar com as sequências 1 e 2 de
diferentes condições de iluminação e teste com a sequência 3 condição restante,
para a plataforma Dumbo.

luminosos, como sombras e variações de intensidade. Essa caracterı́stica é especialmente
relevante para aplicações em ambientes não controlados, onde mudanças nas condições
de iluminação ocorrem de forma imprevisı́vel.

A Tabela 4 apresenta os resultados obtidos na plataforma Minnie, seguindo o
mesmo protocolo de avaliação por condição de iluminação: os modelos foram treina-
dos com duas das três condições disponı́veis e testados com a condição restante, nunca
vista durante o treinamento. Assim como na plataforma Dumbo, os resultados eviden-
ciam uma diferença de desempenho entre os modelos supervisionados e o modelo auto-
supervisionado DINOv2.

Minnie sunny3 cloudy3 night3
Modelo Acurácia (%) Acurácia (%) Acurácia (%)
ConvNeXt-base 80.18 92.51 90.11
EfficientNetB0 81.85 86.91 89.78
ViT 84.81 87.81 82.83
Resnet152 85.01 92.95 87.83
DINOv2 92.70 94.85 93.59

Table 4. Resultados dos experimentos ao treinar com as sequências 1 e 2 de
diferentes condições de iluminação e teste com a sequência 3 condição restante,
para a plataforma Minnie.

Embora alguns modelos supervisionados tenham apresentado resultados compet-
itivos em condições especı́ficas — como a ResNet152 em nublado (92,95%, cloudy), a
maioria demonstrou maior sensibilidade às mudanças de iluminação, com quedas expres-
sivas no cenário ensolarado. O ConvNeXt-base, por exemplo, obteve apenas 80,18% nesse
cenário, enquanto o ViT teve desempenho ainda inferior à noite (82,83%, night).

O modelo DINOv2 novamente se destacou, com os melhores resultados em to-
das as condições: 92,70% (sunny), 94,85% (cloudy) e 93,59% (night). A consistência
apresentada pelo DINOv2, mesmo diante de uma plataforma com caracterı́sticas visuais
distintas, como a posição da câmera da Minnie, reforça sua capacidade de abstração visual
e generalização frente a variações luminosas.

Os resultados apresentados nesta seção demonstram de forma consistente que o
modelo DINOv2 supera as arquiteturas supervisionadas em cenários com variação de
iluminação, tanto na plataforma Dumbo quanto na Minnie. Enquanto os modelos su-



pervisionados mostraram maior oscilação de desempenho, especialmente em condições
mais extremas como ambientes ensolarados e noturnos, o DINOv2 manteve alta acurácia
e estabilidade entre diferentes cenários, mesmo quando exposto a condições de teste não
vistas durante o treinamento.

Esses achados indicam que as representações aprendidas de forma auto-
supervisionada pelo DINOv2 são menos sensı́veis a artefatos visuais induzidos pela
iluminação, como sombras, reflexos e baixa luminosidade. Tal robustez é especialmente
desejável em aplicações do mundo real, como robótica móvel e sistemas autônomos, nos
quais a variabilidade das condições visuais é inevitável.

Portanto, a avaliação por condição de iluminação reforça as evidências de que o
DINOv2 não apenas atinge melhor desempenho em termos de acurácia, mas também ofer-
ece maior generalização e adaptabilidade visual, consolidando-se como uma alternativa
promissora para tarefas de classificação de ambientes em cenários não controlados.

6. Considerações Finais
Este trabalho apresentou uma análise comparativa entre o modelo auto-supervisionado
DINOv2 e arquiteturas supervisionadas amplamente utilizadas, como ConvNeXt, Effi-
cientNet, ResNet e ViT, aplicadas à tarefa de classificação de ambientes internos utilizando
o dataset KTH-IDOL2. Os experimentos foram conduzidos com foco em dois desafios
comuns em ambientes reais: variação temporal e alterações nas condições de iluminação.

Os resultados mostraram que, embora os modelos supervisionados apresentem
desempenho competitivo em cenários controlados, o DINOv2 obteve acurácia superior e
mais estável em todas as condições avaliadas. Em cenários com mudanças temporais,
que envolvem modificações no ambiente ao longo do tempo, e sob diferentes condições
de iluminação (ensolarado, nublado e noturno), o DINOv2 demonstrou maior robustez e
capacidade de generalização, alcançando acurácia de até 98,21%.

Esses achados reforçam o potencial do aprendizado auto-supervisionado como
uma abordagem eficaz para tarefas de classificação visual em ambientes dinâmicos e não
controlados, onde o acesso a grandes volumes de dados rotulados nem sempre é viável. O
desempenho consistente do DINOv2 diante de diferentes fontes de variação visual indica
que esse tipo de modelo pode ser especialmente útil em aplicações como robótica móvel,
navegação autônoma e sistemas inteligentes de percepção visual.

Como trabalho futuro, pretende-se explorar a combinação de representações auto-
supervisionadas com técnicas de agregação espacial, além da avaliação em outros datasets
e cenários de domı́nio cruzado, ampliando o escopo da análise para contextos ainda mais
desafiadores.
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