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Resumo. Imagens sdo amplamente utilizadas na navegagdo de veiculos aéreos
autonomos, mas seu processamento local pode exigir alta capacidade compu-
tacional e consumo energético. Como alternativa, este artigo propoe o método
AESR (Autoencoder-based Super-Resolution) para viabilizar o processamento
remoto, reconstruindo imagens de alta resolucdo a partir de versoes de baixa
resolucdo capturadas pelo veiculo. A abordagem utiliza autoencoders com
conexoes de salto e modulos de autoatencdo. Os resultados mostram que o
AESR supera técnicas do estado da arte em métricas como PSNR, SSIM, LPIPS,
DISTS, NIQE e BRISQUE, mesmo em cendrios desafiadores.

1. Introducao

Na robética mével, o processamento remoto de dados dos sensores € uma pritica comum
que reduz as exigéncias computacionais locais € o consumo de energia do robd, além de
possibilitar, em alguns casos, a transmissao de um volume menor de dados, aliviando a
carga na comunicacdo. As cameras, amplamente utilizadas nesses sistemas, fornecem
imagens fundamentais para tarefas como deteccao de objetos, navegacdo e mapeamento.
No entanto, a qualidade dessas imagens pode ser afetada por limitagdes do dispositivo
de captura, transmiss@o ou compressdo, comprometendo a operacao autdbnoma em tempo
real [Abdullah et al. 2021]. Nesse contexto, a super-resolu¢do surge como uma aborda-
gem promissora para reconstruir imagens de alta resolug@o a partir de versdes de baixa
resolu¢do, aumentando a nitidez e o nivel de detalhes. Essa técnica tem se mostrado
eficaz em aplica¢des como navegacao autdonoma [Angarano et al. 2023] e sistemas de vi-
gilancia [Gonzalez et al. 2022], sendo especialmente ttil em veiculos aéreos ndo tripula-
dos (VANTS) [Lin et al. 2023]. A Figura 1 ilustra a aplicacdo da abordagem de super-
resolucao proposta, destacando seu potencial para auxiliar na navegacdo autdbnoma de
veiculos aéreos por meio do processamento remoto de imagens.

Neste trabalho, propde-se o AESR (Autoencoder-based Super-Resolution), uma
abordagem de aprendizado profundo baseada em arquitetura de autoencoder para
reconstrugdo de imagens de alta resolucdo a partir de dados de baixa resolu¢do. O método
foi desenvolvido para processar imagens aéreas, visando facilitar o processamento remoto
na navegacao de veiculos aéreos autdonomos. Para isso, o autoencoder foi integrado a co-
nexodes de salto (skip connections) e médulos de autoatengdo (self-attention modules),
aprimorando o processo de aprendizado e a capacidade de generalizacao do modelo.

As principais contribui¢des deste trabalho sdo apresentadas a seguir:
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Figura 1: Exemplo de aplicacao de uma técnica de super-resoluciio para apoiar a navegacao
de veiculos aéreos.

* Uma abordagem inovadora de aprendizado para o problema de super-resolucdo,
capaz de gerar imagens aéreas de alta qualidade a partir de dados de baixa
resolucdo. A metodologia proposta extrai conhecimento a partir de um conjunto
de dados desafiador, composto por diversas imagens aéreas, para estimar valores
de pixels desconhecidos durante o processo de aumento de resolucao;

* Combinacdo de conexdes de salto e médulos de autoatengdo em uma arquitetura
de autoencoder, integrando a preservagdo de informacdes relevantes e a melhoria
da capacidade do modelo de focar em regides especificas da imagem.

2. Metodologia

Este artigo aborda o problema da super-resolu¢do, reconstruindo imagens aéreas em alta
resolucdo a partir de dados de baixa resolugdo [Oliveira et al. 2024]. A metodologia pro-
posta serd detalhada nas subsecdes seguintes.
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Figura 2: Visdo geral da metodologia proposta para super-resolu¢ao de imagens aéreas.

2.1. Autoencoder para Super-Resoluciao

Autoencoders sdo um tipo de arquitetura de rede neural projetada para aprender
representacdes eficientes dos dados. Esse processo permite que o modelo capture carac-
teristicas essenciais enquanto elimina ruidos [Liu et al. 2021]. Um autoencoder é com-
posto por dois principais componentes: uma fun¢do de codificagdo f e uma funcdo de
decodificagdo g. O codificador mapeia a entrada x para uma representacdo latente z em
um espaco de menor dimensio, i.e., z = f(x). O decodificador tenta reconstruir a entrada
a partir dessa representacdo latente, produzindo & = g(z). O objetivo do treinamento é
minimizar o erro de reconstru¢do, geralmente medido por uma fungdo de perda. Neste tra-
balho, utilizou-se a fun¢io de perda baseada no Indice de Similaridade Estrutural (SSIM),
que € mais adequada para preservar informacdes perceptuais e estruturais.



A funcdo de perda SSIM mede a similaridade entre a entrada original x e a saida
reconstruida 2 em termos de luminancia, contraste e estrutura, aspectos cruciais para a
percepg¢do visual humana. A fungdo de perda pode ser representada como:

L(z,#) = 1 — SSIM(x, &) (1)

onde:

(2papts + C1) (2043 + Ch)
(U2 + p2 + Ch) (02 + 02+ Cy)

SSIM(z, &) = 2)

Nesta equacdo, /1, € j1; representam as médias de x e 7; 02 e 02 sdo as varilncias;

0.3 € a covariancia entre x e T; e C; e (5 s@o constantes utilizadas para estabilizar a
divisdao [Wang et al. 2004]. Ao utilizar a funcdo de perda SSIM, o autoencoder € orien-
tado a preservar a integridade estrutural e perceptual das imagens durante o processo de
reconstrucao.

O processo de codificagao € realizado por meio de uma sequéncia de camadas
convolucionais, fun¢gdes de ativacdo e pooling, retendo apenas as informagdes mais re-
levantes. As camadas convolucionais aplicam filtros aprendidos a imagem de entrada,
capturando progressivamente caracteristicas de nivel mais elevado enquanto reduzem as
dimensdes espaciais. A arquitetura do codificador proposta € composta por duas camadas
convolucionais, com 64 e 128 filtros na primeira e segunda camada, respectivamente. Es-
sas camadas sao seguidas pela fun¢do de ativacao ReLLU e pelo Max Pooling de tamanho
(2 x 2), resultando na representagdo de embedding.

O processo de decodificac@o, por sua vez, tem como objetivo reconstruir a ima-
gem de entrada a partir da representagao de embedding z. Esse processo € realizado por
meio de camadas de deconvolucdo, também conhecidas como camadas convolucionais
transpostas, que executam o upsampling progressivo dos mapas de caracteristicas até o
espaco original da entrada. A arquitetura do decodificador proposta é composta por qua-
tro camadas de deconvolugdo, com 128, 64, 32 e 16 filtros, respectivamente, da primeira
a quarta camada. Essas camadas sdo seguidas pela funcdo de ativacdo ReLLU e pelo Max
Pooling de tamanho (2 x 2), resultando na imagem aérea predita em alta resolugo.

2.1.1. Conexoes de Salto

As conexdes de salto conectam diretamente a saida de camadas iniciais a camadas posteri-
ores, mitigando o problema do desaparecimento do gradiente e preservando detalhes finos
ao possibilitar que a rede contorne certas transformacdes. Isso permite que informacoes
espaciais cruciais ndo sio perdidas durante o processo de codificagdo e podem ser dire-
tamente utilizadas durante a reconstru¢do. Na arquitetura de autoencoder proposta, a pri-
meira conexao de salto conecta a primeira camada do codificador a primeira camada do
decodificador, ap6s a aplicagdo do médulo de autoatencdo. A segunda conexdo de salto
conecta a segunda camada do codificador a segunda camada do decodificador, também
apos a aplicagdo do médulo de autoatencio, conforme ilustrado na Figura 2.



2.1.2. Médulos de Autoatencao

Os médulos de autoatencdao permitem que a rede concentre-se em regides importantes da
imagem ao ponderar dinamicamente diferentes partes da entrada, facilitando a captura
de dependéncias locais e globais dentro da imagem. Na arquitetura de autoencoder pro-
posta, o médulo de autoatencdo é composto por duas camadas convolucionais com 64 e
128 filtros, na primeira e segunda camada, respectivamente. Os filtros possuem tamanho
121 e sdo seguidos por normalizacdo em batch (batch normalization) e fun¢do de ativagao
ReLU. Os médulos de autoatencao sao aplicados apos a primeira camada do codifica-
dor, ap6s a primeira camada do decodificador e apds a segunda camada do decodificador
(conforme ilustrado na Figura 2).

3. Experimentos

3.1. Ambiente Experimental

A abordagem proposta utiliza os frameworks OpenCV e TensorFlow em um computa-
dor Dell, equipado com processador Intel® Xeon?™ Silver 4114 de 2,20 GHz, 128 GB
de meméria DDR4-2133 e uma placa NVIDIA® GeForce® RTX A4000 com 16 GB de
memoéria GDDR6. Na etapa de treinamento, foi utilizado o framework Grid Search para
ajuste dos hiperparametros, incluindo o nimero de filtros, o tamanho dos filtros, o ta-
manho do lote (batch size), o nimero de €pocas (epochs), o algoritmo de otimizacdo e
a taxa de aprendizado, com o objetivo de alcancar alta precisdao. Como resultado desse
ajuste, o tamanho do lote foi definido como 16, o nimero de épocas como 50 e a taxa de
aprendizado como 0,0001.

3.2. Conjunto de Dados

Nos experimentos, utilizou-se o desafiador conjunto de dados DSR (Drone Super-
Resolution) [Lin et al. 2023] para validar a metodologia proposta de super-resolucdo no
dominio aéreo. Esse conjunto de dados é composto por 2132 imagens aéreas, sendo 1066
imagens de baixa resolu¢do e 1066 imagens correspondentes de alta resolugdo. As ima-
gens de baixa resolu¢do possuem dimensdo de 180 x 180, enquanto as imagens de alta
resolucao tém dimensao de 720 x 720, ou seja, sdo 4x maiores do que as imagens de
baixa resolucdo.

3.3. Métricas de Qualidade da Imagem

Na andlise quantitativa, foram avaliados os resultados obtidos pelo método proposto
(AESR) e pelas técnicas da literatura utilizadas como compara¢do. Na andlise com
referéncia, em que a imagem predita ¢ comparada com a imagem de referéncia, fo-
ram utilizados os indicadores PSNR [Pratt 1978], SSIM [Wang et al. 2004], LPIPS
[Zhang et al. 2018] e DISTS [Ding et al. 2022]. J4 na andlise sem referéncia, em que a
imagem predita ndo é comparada com imagens de referéncia, foram utilizadas as métricas
NIQE [Mittal et al. 2013] e BRISQUE [Bosse et al. 2018].

3.4. Avaliacao de Desempenho
3.4.1. Analise Qualitativa

A andlise qualitativa envolve a comparacao do método proposto de Super-Resolugao
(AESR) com técnicas consolidadas da literatura. Os experimentos consideram o aumento



da dimensao das imagens aéreas em 4 X em relacao as imagens de baixa resolucio. A qua-
lidade visual das diferentes técnicas no conjunto de dados DSR ¢ analisada, com €nfase
nas diferengas em cor, contraste, nitidez e qualidade visual geral. Essa abordagem com-
parativa oferece insights sobre as vantagens e limitacdes da técnica proposta, constituindo
um passo fundamental para validar sua capacidade de gerar imagens de alta resolugdo a
partir de dados de baixa resolugdo, especialmente em aplicacdes aéreas.
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Figura 3: Comparaciao qualitativa das imagens de super-resolu¢ao no conjunto de dados
DSR. Da esquerda para a direita, sio apresentadas as imagens aéreas originais (raw) e os
resultados dos métodos EDSR, ESPCN, FSRCNN, LapSRN, Real-ESRGAN e da abordagem
AESR proposta. A primeira e a terceira linhas representam imagens aéreas do conjunto
de dados, enquanto a segunda e a quarta linhas mostram regioes extraidas das imagens
correspondentes.

A Figura 3 apresenta as imagens super-resolvidas ap0s a aplicagdo dos algoritmos
de reconstru¢do de alta resolugd@o, considerando o conjunto de dados DSR. As diferen-
tes linhas mostram cendrios distintos, com caracteristicas desafiadoras para reconstrucao,
destacando detalhes em cenas variadas. As colunas exibem, da esquerda para a direita,
a imagem original, os métodos comparativos da literatura e o0 método proposto (AESR).
Diferentemente dos métodos existentes, o método proposto destaca-se no aumento da
resolucdo de imagens aéreas de baixa qualidade, evitando borramento, contraste exces-
sivo, distor¢do de cor e recuperando detalhes originais. EDSR, ESPCN, FSRCNN e
LapSRN apresentaram reconstru¢des borradas, com baixa fidelidade nos detalhes. Por
outro lado, o Real-ESRGAN mostrou boa qualidade na nitidez e reduc¢do do borramento.
Contudo, vale destacar que, no Real-ESRGAN, varios detalhes da cena real sdo perdi-
dos devido ao uso de um filtro passa-baixa para mitigar o efeito de borramento apds a
reconstru¢do. O método AESR preservou detalhes nas imagens geradas, apresentando
qualidade em cor e contraste e reduzindo os efeitos de borramento nas imagens aéreas
reconstruidas.



3.4.2. Analise Quantitativa

A andlise quantitativa avalia os resultados gerados pelo método AESR proposto e
os compara com técnicas de referéncia na darea, incluindo EDSR[Lim et al. 2017],
ESPCNIShi et al. 2016], FSRCNN[Dong et al. 2016], LapSRN [Lai et al. 2017] e Real-
ESRGAN [Wang et al. 2021]. As medi¢des quantitativas sdo utilizadas para determinar
a precisdao do processo de super-resolucao. Para garantir uma avalia¢do rigorosa, foram
empregadas métricas de qualidade com e sem referéncia. PSNR, SSIM, LPIPS (AlexNet,
VGG e SqueezeNet) e DISTS compdem as métricas de andlise com referéncia completa,
enquanto NIQE e BRISQUE avaliam a qualidade sem referéncia.

Tabela 1: Avaliacdo da qualidade das imagens, com e sem referéncia, utilizando as métricas
de qualidade PSNR, SSIM, LPIPS (AlexNet, VGG e SqueezeNet), DISTS, NIQE e BRISQUE

no conjunto de dados DSR.
Métricas EDSR ESPCN FSRCNN LapSRN Real-ESRGAN AESR (Proposta)
(CVPR 2017) (CVPR 2016) (ECCYV 2016) (CVPR 2017) (CVPR 2021)
PSNR 1 20.152 20.125 20.101 20.126 18.556 21.005
SSIM 1 0.724 0.721 0.718 0.722 0.646 0.758
LPIPS gte | 0.608 0.561 0.544 0.579 0.421 0.402
LPIPSygeG | 0.520 0.528 0.543 0.536 0.491 0.443
LPIPSsquceze | 0.497 0.448 0.405 0.459 0.263 0.228
DISTS | 0.233 0.235 0.233 0.237 0.207 0.189
NIQE | 0.951 0.954 0.952 0.952 0.901 0.826
BRISQUE | 18.947 18.949 18.968 18.980 19.022 18.845

A Tabela 1 apresenta a comparagdo entre 0 método proposto e varios algoritmos
reconhecidos na literatura, avaliados por métricas de qualidade de imagem com e sem
referéncia. Os resultados mostram que o método proposto supera os demais métodos,
mesmo quando testado em um conjunto de dados desafiador de imagens aéreas e conside-
rando diferentes métricas de qualidade. Entre os métodos concorrentes, Real-ESRGAN
e EDSR apresentaram o melhor desempenho. O Real-ESRGAN destacou-se em precisao
nas métricas LPIPS (AlexNet, VGG e SqueezeNet), DISTS, NIQE e BRISQUE. Em con-
trapartida, o EDSR alcangou alta precisdao nas métricas tradicionais PSNR e SSIM. Em-
bora o0 AESR tenha apresentado alta precisdao em todas as métricas de qualidade, demons-
tra sua robustez e efici€ncia para aplica¢des aéreas.

4. Conclusoes

Este artigo aborda o problema da super-resolucdo, reconstruindo imagens aéreas de alta
resolucdo a partir de dados de baixa resolucdo. Dessa forma, a abordagem proposta vi-
abiliza a transmissao de imagens de baixa resolucdo capturadas por veiculos aéreos para
processamento remoto, o que contribui para a melhoria da navegagdo e da tomada de
decisdo. O método proposto alcangou alta precisao no DSR, um conjunto de dados desa-
fiador de imagens aéreas para super-resolucdo. Os resultados indicam que o processo de
super-resolu¢do proposto apresenta robustez mesmo em cenas complexas e sob diversas
condicoes, oferecendo alta precisdo em diferentes cendrios.
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