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Jhonathan A. Oliveira1 e Felipe G. Oliveira2

1Inst. de Computação (ICOMP) - Univ. Federal do Amazonas (UFAM)

2Inst. de Ciências Exatas e Tecnologia (ICET) - Univ. Federal do Amazonas (UFAM)

jholiveira@icomp.ufam.edu.br, felipeoliveira@ufam.edu.br

Resumo. Imagens são amplamente utilizadas na navegação de veı́culos aéreos
autônomos, mas seu processamento local pode exigir alta capacidade compu-
tacional e consumo energético. Como alternativa, este artigo propõe o método
AESR (Autoencoder-based Super-Resolution) para viabilizar o processamento
remoto, reconstruindo imagens de alta resolução a partir de versões de baixa
resolução capturadas pelo veı́culo. A abordagem utiliza autoencoders com
conexões de salto e módulos de autoatenção. Os resultados mostram que o
AESR supera técnicas do estado da arte em métricas como PSNR, SSIM, LPIPS,
DISTS, NIQE e BRISQUE, mesmo em cenários desafiadores.

1. Introdução

Na robótica móvel, o processamento remoto de dados dos sensores é uma prática comum
que reduz as exigências computacionais locais e o consumo de energia do robô, além de
possibilitar, em alguns casos, a transmissão de um volume menor de dados, aliviando a
carga na comunicação. As câmeras, amplamente utilizadas nesses sistemas, fornecem
imagens fundamentais para tarefas como detecção de objetos, navegação e mapeamento.
No entanto, a qualidade dessas imagens pode ser afetada por limitações do dispositivo
de captura, transmissão ou compressão, comprometendo a operação autônoma em tempo
real [Abdullah et al. 2021]. Nesse contexto, a super-resolução surge como uma aborda-
gem promissora para reconstruir imagens de alta resolução a partir de versões de baixa
resolução, aumentando a nitidez e o nı́vel de detalhes. Essa técnica tem se mostrado
eficaz em aplicações como navegação autônoma [Angarano et al. 2023] e sistemas de vi-
gilância [Gonzalez et al. 2022], sendo especialmente útil em veı́culos aéreos não tripula-
dos (VANTs) [Lin et al. 2023]. A Figura 1 ilustra a aplicação da abordagem de super-
resolução proposta, destacando seu potencial para auxiliar na navegação autônoma de
veı́culos aéreos por meio do processamento remoto de imagens.

Neste trabalho, propõe-se o AESR (Autoencoder-based Super-Resolution), uma
abordagem de aprendizado profundo baseada em arquitetura de autoencoder para
reconstrução de imagens de alta resolução a partir de dados de baixa resolução. O método
foi desenvolvido para processar imagens aéreas, visando facilitar o processamento remoto
na navegação de veı́culos aéreos autônomos. Para isso, o autoencoder foi integrado a co-
nexões de salto (skip connections) e módulos de autoatenção (self-attention modules),
aprimorando o processo de aprendizado e a capacidade de generalização do modelo.

As principais contribuições deste trabalho são apresentadas a seguir:



Figura 1: Exemplo de aplicação de uma técnica de super-resolução para apoiar a navegação
de veı́culos aéreos.

• Uma abordagem inovadora de aprendizado para o problema de super-resolução,
capaz de gerar imagens aéreas de alta qualidade a partir de dados de baixa
resolução. A metodologia proposta extrai conhecimento a partir de um conjunto
de dados desafiador, composto por diversas imagens aéreas, para estimar valores
de pixels desconhecidos durante o processo de aumento de resolução;

• Combinação de conexões de salto e módulos de autoatenção em uma arquitetura
de autoencoder, integrando a preservação de informações relevantes e a melhoria
da capacidade do modelo de focar em regiões especı́ficas da imagem.

2. Metodologia
Este artigo aborda o problema da super-resolução, reconstruindo imagens aéreas em alta
resolução a partir de dados de baixa resolução [Oliveira et al. 2024]. A metodologia pro-
posta será detalhada nas subseções seguintes.

Figura 2: Visão geral da metodologia proposta para super-resolução de imagens aéreas.

2.1. Autoencoder para Super-Resolução
Autoencoders são um tipo de arquitetura de rede neural projetada para aprender
representações eficientes dos dados. Esse processo permite que o modelo capture carac-
terı́sticas essenciais enquanto elimina ruı́dos [Liu et al. 2021]. Um autoencoder é com-
posto por dois principais componentes: uma função de codificação f e uma função de
decodificação g. O codificador mapeia a entrada x para uma representação latente z em
um espaço de menor dimensão, i.e., z = f(x). O decodificador tenta reconstruir a entrada
a partir dessa representação latente, produzindo x̂ = g(z). O objetivo do treinamento é
minimizar o erro de reconstrução, geralmente medido por uma função de perda. Neste tra-
balho, utilizou-se a função de perda baseada no Índice de Similaridade Estrutural (SSIM),
que é mais adequada para preservar informações perceptuais e estruturais.



A função de perda SSIM mede a similaridade entre a entrada original x e a saı́da
reconstruı́da x̂ em termos de luminância, contraste e estrutura, aspectos cruciais para a
percepção visual humana. A função de perda pode ser representada como:

L(x, x̂) = 1− SSIM(x, x̂) (1)

onde:

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
(2)

Nesta equação, µx e µx̂ representam as médias de x e x̂; σ2
x e σ2

x̂ são as variâncias;
σxx̂ é a covariância entre x e x̂; e C1 e C2 são constantes utilizadas para estabilizar a
divisão [Wang et al. 2004]. Ao utilizar a função de perda SSIM, o autoencoder é orien-
tado a preservar a integridade estrutural e perceptual das imagens durante o processo de
reconstrução.

O processo de codificação é realizado por meio de uma sequência de camadas
convolucionais, funções de ativação e pooling, retendo apenas as informações mais re-
levantes. As camadas convolucionais aplicam filtros aprendidos à imagem de entrada,
capturando progressivamente caracterı́sticas de nı́vel mais elevado enquanto reduzem as
dimensões espaciais. A arquitetura do codificador proposta é composta por duas camadas
convolucionais, com 64 e 128 filtros na primeira e segunda camada, respectivamente. Es-
sas camadas são seguidas pela função de ativação ReLU e pelo Max Pooling de tamanho
(2× 2), resultando na representação de embedding.

O processo de decodificação, por sua vez, tem como objetivo reconstruir a ima-
gem de entrada a partir da representação de embedding z. Esse processo é realizado por
meio de camadas de deconvolução, também conhecidas como camadas convolucionais
transpostas, que executam o upsampling progressivo dos mapas de caracterı́sticas até o
espaço original da entrada. A arquitetura do decodificador proposta é composta por qua-
tro camadas de deconvolução, com 128, 64, 32 e 16 filtros, respectivamente, da primeira
à quarta camada. Essas camadas são seguidas pela função de ativação ReLU e pelo Max
Pooling de tamanho (2× 2), resultando na imagem aérea predita em alta resolução.

2.1.1. Conexões de Salto

As conexões de salto conectam diretamente a saı́da de camadas iniciais a camadas posteri-
ores, mitigando o problema do desaparecimento do gradiente e preservando detalhes finos
ao possibilitar que a rede contorne certas transformações. Isso permite que informações
espaciais cruciais não são perdidas durante o processo de codificação e podem ser dire-
tamente utilizadas durante a reconstrução. Na arquitetura de autoencoder proposta, a pri-
meira conexão de salto conecta a primeira camada do codificador à primeira camada do
decodificador, após a aplicação do módulo de autoatenção. A segunda conexão de salto
conecta a segunda camada do codificador à segunda camada do decodificador, também
após a aplicação do módulo de autoatenção, conforme ilustrado na Figura 2.



2.1.2. Módulos de Autoatenção

Os módulos de autoatenção permitem que a rede concentre-se em regiões importantes da
imagem ao ponderar dinamicamente diferentes partes da entrada, facilitando a captura
de dependências locais e globais dentro da imagem. Na arquitetura de autoencoder pro-
posta, o módulo de autoatenção é composto por duas camadas convolucionais com 64 e
128 filtros, na primeira e segunda camada, respectivamente. Os filtros possuem tamanho
1x1 e são seguidos por normalização em batch (batch normalization) e função de ativação
ReLU. Os módulos de autoatenção são aplicados após a primeira camada do codifica-
dor, após a primeira camada do decodificador e após a segunda camada do decodificador
(conforme ilustrado na Figura 2).

3. Experimentos
3.1. Ambiente Experimental
A abordagem proposta utiliza os frameworks OpenCV e TensorFlow em um computa-
dor Dell, equipado com processador Intel® XeonTM Silver 4114 de 2,20 GHz, 128 GB
de memória DDR4-2133 e uma placa NVIDIA® GeForce® RTX A4000 com 16 GB de
memória GDDR6. Na etapa de treinamento, foi utilizado o framework Grid Search para
ajuste dos hiperparâmetros, incluindo o número de filtros, o tamanho dos filtros, o ta-
manho do lote (batch size), o número de épocas (epochs), o algoritmo de otimização e
a taxa de aprendizado, com o objetivo de alcançar alta precisão. Como resultado desse
ajuste, o tamanho do lote foi definido como 16, o número de épocas como 50 e a taxa de
aprendizado como 0,0001.

3.2. Conjunto de Dados
Nos experimentos, utilizou-se o desafiador conjunto de dados DSR (Drone Super-
Resolution) [Lin et al. 2023] para validar a metodologia proposta de super-resolução no
domı́nio aéreo. Esse conjunto de dados é composto por 2132 imagens aéreas, sendo 1066
imagens de baixa resolução e 1066 imagens correspondentes de alta resolução. As ima-
gens de baixa resolução possuem dimensão de 180 × 180, enquanto as imagens de alta
resolução têm dimensão de 720 × 720, ou seja, são 4× maiores do que as imagens de
baixa resolução.

3.3. Métricas de Qualidade da Imagem
Na análise quantitativa, foram avaliados os resultados obtidos pelo método proposto
(AESR) e pelas técnicas da literatura utilizadas como comparação. Na análise com
referência, em que a imagem predita é comparada com a imagem de referência, fo-
ram utilizados os indicadores PSNR [Pratt 1978], SSIM [Wang et al. 2004], LPIPS
[Zhang et al. 2018] e DISTS [Ding et al. 2022]. Já na análise sem referência, em que a
imagem predita não é comparada com imagens de referência, foram utilizadas as métricas
NIQE [Mittal et al. 2013] e BRISQUE [Bosse et al. 2018].

3.4. Avaliação de Desempenho
3.4.1. Análise Qualitativa

A análise qualitativa envolve a comparação do método proposto de Super-Resolução
(AESR) com técnicas consolidadas da literatura. Os experimentos consideram o aumento



da dimensão das imagens aéreas em 4× em relação às imagens de baixa resolução. A qua-
lidade visual das diferentes técnicas no conjunto de dados DSR é analisada, com ênfase
nas diferenças em cor, contraste, nitidez e qualidade visual geral. Essa abordagem com-
parativa oferece insights sobre as vantagens e limitações da técnica proposta, constituindo
um passo fundamental para validar sua capacidade de gerar imagens de alta resolução a
partir de dados de baixa resolução, especialmente em aplicações aéreas.

(a) Raw (b) EDSR (c) ESPCN (d) FSRCNN (e) LapSRN (f) Real-ESRGAN (g) AESR (Proposta)

Figura 3: Comparação qualitativa das imagens de super-resolução no conjunto de dados
DSR. Da esquerda para a direita, são apresentadas as imagens aéreas originais (raw) e os
resultados dos métodos EDSR, ESPCN, FSRCNN, LapSRN, Real-ESRGAN e da abordagem
AESR proposta. A primeira e a terceira linhas representam imagens aéreas do conjunto
de dados, enquanto a segunda e a quarta linhas mostram regiões extraı́das das imagens
correspondentes.

A Figura 3 apresenta as imagens super-resolvidas após a aplicação dos algoritmos
de reconstrução de alta resolução, considerando o conjunto de dados DSR. As diferen-
tes linhas mostram cenários distintos, com caracterı́sticas desafiadoras para reconstrução,
destacando detalhes em cenas variadas. As colunas exibem, da esquerda para a direita,
a imagem original, os métodos comparativos da literatura e o método proposto (AESR).
Diferentemente dos métodos existentes, o método proposto destaca-se no aumento da
resolução de imagens aéreas de baixa qualidade, evitando borramento, contraste exces-
sivo, distorção de cor e recuperando detalhes originais. EDSR, ESPCN, FSRCNN e
LapSRN apresentaram reconstruções borradas, com baixa fidelidade nos detalhes. Por
outro lado, o Real-ESRGAN mostrou boa qualidade na nitidez e redução do borramento.
Contudo, vale destacar que, no Real-ESRGAN, vários detalhes da cena real são perdi-
dos devido ao uso de um filtro passa-baixa para mitigar o efeito de borramento após a
reconstrução. O método AESR preservou detalhes nas imagens geradas, apresentando
qualidade em cor e contraste e reduzindo os efeitos de borramento nas imagens aéreas
reconstruı́das.



3.4.2. Análise Quantitativa

A análise quantitativa avalia os resultados gerados pelo método AESR proposto e
os compara com técnicas de referência na área, incluindo EDSR[Lim et al. 2017],
ESPCN[Shi et al. 2016], FSRCNN[Dong et al. 2016], LapSRN [Lai et al. 2017] e Real-
ESRGAN [Wang et al. 2021]. As medições quantitativas são utilizadas para determinar
a precisão do processo de super-resolução. Para garantir uma avaliação rigorosa, foram
empregadas métricas de qualidade com e sem referência. PSNR, SSIM, LPIPS (AlexNet,
VGG e SqueezeNet) e DISTS compõem as métricas de análise com referência completa,
enquanto NIQE e BRISQUE avaliam a qualidade sem referência.

Tabela 1: Avaliação da qualidade das imagens, com e sem referência, utilizando as métricas
de qualidade PSNR, SSIM, LPIPS (AlexNet, VGG e SqueezeNet), DISTS, NIQE e BRISQUE
no conjunto de dados DSR.

Métricas EDSR
(CVPR 2017)

ESPCN
(CVPR 2016)

FSRCNN
(ECCV 2016)

LapSRN
(CVPR 2017)

Real-ESRGAN
(CVPR 2021) AESR (Proposta)

PSNR ↑ 20.152 20.125 20.101 20.126 18.556 21.005
SSIM ↑ 0.724 0.721 0.718 0.722 0.646 0.758

LPIPSAlex ↓ 0.608 0.561 0.544 0.579 0.421 0.402
LPIPSV GG ↓ 0.520 0.528 0.543 0.536 0.491 0.443

LPIPSSqueeze ↓ 0.497 0.448 0.405 0.459 0.263 0.228
DISTS ↓ 0.233 0.235 0.233 0.237 0.207 0.189
NIQE ↓ 0.951 0.954 0.952 0.952 0.901 0.826

BRISQUE ↓ 18.947 18.949 18.968 18.980 19.022 18.845

A Tabela 1 apresenta a comparação entre o método proposto e vários algoritmos
reconhecidos na literatura, avaliados por métricas de qualidade de imagem com e sem
referência. Os resultados mostram que o método proposto supera os demais métodos,
mesmo quando testado em um conjunto de dados desafiador de imagens aéreas e conside-
rando diferentes métricas de qualidade. Entre os métodos concorrentes, Real-ESRGAN
e EDSR apresentaram o melhor desempenho. O Real-ESRGAN destacou-se em precisão
nas métricas LPIPS (AlexNet, VGG e SqueezeNet), DISTS, NIQE e BRISQUE. Em con-
trapartida, o EDSR alcançou alta precisão nas métricas tradicionais PSNR e SSIM. Em-
bora o AESR tenha apresentado alta precisão em todas as métricas de qualidade, demons-
tra sua robustez e eficiência para aplicações aéreas.

4. Conclusões
Este artigo aborda o problema da super-resolução, reconstruindo imagens aéreas de alta
resolução a partir de dados de baixa resolução. Dessa forma, a abordagem proposta vi-
abiliza a transmissão de imagens de baixa resolução capturadas por veı́culos aéreos para
processamento remoto, o que contribui para a melhoria da navegação e da tomada de
decisão. O método proposto alcançou alta precisão no DSR, um conjunto de dados desa-
fiador de imagens aéreas para super-resolução. Os resultados indicam que o processo de
super-resolução proposto apresenta robustez mesmo em cenas complexas e sob diversas
condições, oferecendo alta precisão em diferentes cenários.
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