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Abstract. The Internet of things (IoT) has recently transformed the internet, en-
abling the communication between every kind of objects (things). The growing
number of sensors and smart devices enhanced data creation and collection ca-
pabilities and led to an explosion of generated data in the form of Data Streams.
Processing these data streams is complex and presents challenges and oppor-
tunities in the stream processing field. Due to the inherent lacking of accuracy
and completeness of sensor generated data, the quality of raw data is often poor.
Data cleaning tasks are required to help increasing the quality of the data being
processed in an IoT application. This work proposes a data stream process-
ing workflow for IoT to be deployed at the edge of the network. It performs a
fast data cleaning with low power consumption from edge and sensor nodes.
The edge computing paradigm is used to bring the data cleaning task closer to
the data sources and allow actions to be triggered immediately. In addition,
an energy-aware data collection component is designed to reduce the network
traffic and, as a consequence, decrease the power consumption of the network
devices. The proposed workflow enables the deployment of long running real-
time processing systems on remote outdoor environments.

1. Introduction

The Internet of things (IoT) is transforming the internet in recent years, enabling the
communication between every kind of objects (things) and creating a vision of “any-
time, anywhere, any media, anything” communications [Atzori et al. 2010]. The growing
number of sensors and smart devices led to an explosion of volume, variety and velocity
of generated data, empowering a new way of value creation to people and corporations
[Dias de Assunção et al. 2018]. In addition to this increased number of devices, tech-
nological advances have also enhanced their data collection capabilities, resulting in an
even larger amount of data generated in the form of continuous streams also known as
Data Streams [Karkouch et al. 2016]. The processing of these “firehoses” of data from
existing and newly emerging applications presents a challenge and an opportunity in the
stream processing field.

Processing data streams is complex because of several factors. Often, there is no
control over the order or frequency of streamed data, which is transient or non-persisted.
They are also potentially unbounded in size, have a high volume of information and can
demand stringent processing requirements such as real time responses. The demand for
computational resources capable of processing large volumes of data has historically been



an obstacle for creating high volume and/or high speed data processing solutions. Cloud
computing based approaches are widely adopted in IoT systems. The data is pushed to the
cloud to be processed and the outcome is delivered back to the local system. However, the
internet backbone is unable to meet the requirements of low latency to transport a huge
amount of data coming at a high speed. This creates a communication bottleneck and
leads to the search for other approaches, non-cloud based, to manipulate IoT-generated
data [Janjua et al. 2019].

In this work, we aim to meet real-time processing requirements in data streams
produced by IoT devices. To deal with the network bandwidth vs. data production bottle-
neck, we decided to bring the processing physically closer to the data source making use
of a new paradigm called Edge Computing [Dautov et al. 2018]. It is an effort to involve
decentralized agents to perform necessary processing, which can reduce the burden on
centralized processing units [Shi and Dustdar 2016]. Edge Computing is potentially use-
ful and has been adopted in several domains such as smart home, smart city, smart health,
and smart transportation. In these applications, data is processed by an edge device such
as a gateway to extract meaningful information from it and take necessary actions imme-
diately [Janjua et al. 2019].

Addressing data quality in the IoT context is challenging due to the inherent lack-
ing of accuracy and completeness of sensor generated data. Accuracy is affected by in-
correct readings or even fails from sensors. Completeness is compromised whenever an
actual event is lost for various reasons and variables under which the system might be
exposed such as: limited energy sources, weather conditions and more. Information and
decisions derived from such data will also be subject to failure [Klein and Lehner 2010].
Identifying errors/inconsistencies on a data stream is crucial to improve the accuracy of
the data being processed. These errors/inconsistencies are often called outliers, which are
readings considered outside the regular state of the data being collected. For example,
data points that differ significantly from others in a data set and can represent either errors
or events of importance to the application [Karkouch et al. 2016]. Clustering and clas-
sification algorithms, which are well known machine learning techniques, are frequently
used for outlier detection in several use cases [Aggarwal 2013].

Among the diverse outlier detection techniques available, those based on statistical
models and artificial intelligence (AI) stand out [Karkouch et al. 2016]. Both groups of
techniques are often dependent of compute intensive algorithms. This might represent
an issue to IoT applications, in which it is quite common the presence of constrained
devices, in terms of memory, CPU, and more [Atzori et al. 2010]. This compute intensive
behavior, as a consequence, imposes another challenge regarding sensing infrastructure
which consists in keeping the sensors working as long as possible. This is critical specially
when deploying real-time processing systems on remote outdoor environments such as
forests, open fields and watercrafts. In such environments there is no access to continuous
sources of electricity thus requiring the use of batteries, solar panels or other types limited
power sources.

Frameworks for data stream processing usually involve multi-layer compositions
with loosely coupled components to facilitate maintenance and provide scalability and
availability. In general, data collectors are responsible for the acquisition and preprocess-
ing of raw data from the most diverse sources, transferring it to processing engines with a



specific (business logic) purpose to deliver value-added information to a final consumer.
Messaging systems, built on specific communication protocols, and different types of
technologies for data storage are also part of the range of key components found in these
frameworks [Dias de Assunção et al. 2018].

Due to the inherent lacking of accuracy and completeness of sensor generated
data, the quality of raw data is often poor. Data cleaning tasks are required to help in-
creasing the quality of the data being processed in an IoT application. This work proposes
a data stream processing workflow to be deployed at the edge of the network. It performs
a fast data cleaning with low power consumption from edge and sensor nodes. It serves as
an input for other processing components or systems which provide real-time responses
and decisions for applications. To achieve such a major goal, the secondary objectives of
the proposed workflow are:

• To provide an energy-aware data collection component to reduce the network traf-
fic and, as a consequence, the power consumption of the sensor and edge nodes;

• To implement a density-based clustering component to efficiently perform the data
cleaning task by quickly identifying and removing outliers from the data stream;

• To deliver a curated secondary data stream output which can be consumed by busi-
ness applications, services or additional workflow tasks with real-time processing
requirements.

The major benefit expected by adopting the proposed workflow is the capability
of deploying long running real-time processing systems on remote outdoor environments.

The rest of this article is organized as follows. Section 2 presents relevant works
which individually tackle the issues we aim to solve together. Section 3 describes the
proposed workflow. A proof of concept to evaluate the proposal is presented and discussed
in Section 4. Finally, Section 5 concludes the paper and provides additional information
about the ongoing and future work on this research.

2. Related work

Relevant proposals addressing separately the issues of real-time responses, data accu-
racy and completeness or power consumption can be found in the data stream processing
fields. However, to the best of our knowledge, no solution tackling these three concerns
together has been found so far. This makes it difficult to deploy solutions that can effi-
ciently respond to real-time events in power-constrained environments, such as a forest
fire suppression system, a malfunction detection system on small ships, etc.

IRESE [Janjua et al. 2019] presents an outlier (denoted as ”rare-event” in the pa-
per) detection system that applies unsupervised machine learning techniques at the gate-
way to identify events on audio data streams. A data framing module takes buffered data
and breaks it into smaller pieces (frames). It is a tumbling window, which moves over
the buffered data stream in a way that two consecutive windows do not overlap with each
other. Then a two-stage strategy is applied. In the first stage, the high speed data is pro-
cessed with BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) in
real-time to quickly extract statistical information from it in the form of micro-clusters.
It can indicate the presence of outliers in the data steam. In the second stage, the data is
further processed and merged together with Agglomerative Clustering. The final output



is always in the form of two clusters: cluster A is dense and containing data points reflect-
ing normal behavior. Cluster B contains rare-events (if they exist) which is an outlier and
different from other events occurring in that specific interval of buffered data. Despite the
significant results achieved in terms of data quality and real-time response, no concern re-
garding energy consumption is mentioned. Therefore, this solution might not be feasible
on environments with limited power sources, which is a major concern for our work.

Virtual Sensing Framework [Sarkar et al. 2016], or simply VSF, is a data collec-
tion framework for Wireless Sensor Networks (WSN). WSN are groups of tiny multi-
functional sensor nodes that communicate in short distances to monitor an environment
over a collaborative effort [Akyildiz et al. 2002] and can be considered as part of IoT.
The proposal aims at reducing activities of the sensor nodes to decrease the overall en-
ergy consumption of the network while keeping the desired redundancy for the sensing
requirements. Virtual sensors (VS) are logical representations of physical sensors (PS) at
the gateway node. The proposed activity reduction schema assumes that a predicted value
for a VS must consider the past readings of its correspondent PS and also consider cross
correlations among the nodes to handle long dormant periods of PS. These correlations
are obtained with an adaptive node correlation schema which does not assume a prior
knowledge such as physical placement of the nodes to determine it. The goal is to select a
minimal number of active nodes (maximal sleeping node policy) so that the union of the
correlated companions of all the active nodes contains all the nodes in a WSN. Despite an
efficient data collection scheme is introduced to reduce the overall energy consumption on
a WSN, no data stream processing capability is mentioned. Time intervals in the order of
hours are considered to “virtualize” the data using several statistical methods to perform
calculations. Bringing this approach “as is” to a data stream processing scenario, where
the data comes on a high rate, is not possible. Our proposal takes the central idea behind
the “Virtual Sensing Framework” and makes it simple as described in the next section.

A high-dimensional data cleaning method for mobile edge nodes on WSNs is
presented in [Wang et al. 2019]. It is an adaptive mechanism which combines machine
learning techniques with the edge computing paradigm to optimize the cleaning model in
real-time. The authors highlight the importance of the data cleaning task on the Industrial
IoT scenario and how an edge computing approach can significantly contribute to reduce
energy consumption of sensor nodes and to accelerate the cleaning speed of abnormal
data. The proposed solution is presented as a three-tier architecture, which would be an
evolution from a traditional two-tier approach. It brings the task of cleaning the data to the
middle layer (edge) and relieves the workload of the sensor nodes that would be responsi-
ble for this task in the two-layer architecture. The authors also propose a new algorithm to
clean data using the mobile edge nodes called Angle-based Oultlier Detection (ABOD).
It uses a combination of the variance of angles and distance between data points to calcu-
late factors and identify outliers. An online machine learning algorithm is also present to
optimize the parameters of the cleaning model, thus adding an adaptive behaviour to the
proposed solution. It is important to underline that in Mobile Cleaning [Wang et al. 2019]
the edge computing paradigm is applied to handle power consumption, unlike what hap-
pens in IRESE [Janjua et al. 2019] where it is used to address real-time processing. This
might be an indicative of how representative edge computing can be on the data stream
processing for the IoT field.



A novel image superpixel segmentation using Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) is introduced in [Shi and Dustdar 2016]. Traditional
segmentation algorithms tend to be costly in terms of computation and speed. This work
introduces DBSCAN due to its reduced computational cost and its ability to find arbitrar-
ily shaped clusters. To achieve the stated goals, an adaptation is made on the conventional
DBSCAN by reducing its search range. While the original approach would search an en-
tire image, the proposed approach limits the search range in the rhombus neighbor region
around the seed. This creates a local search strategy which makes each superpixel with a
uniform shape as possible. The results show that the proposed model is able to achieve
the same results as traditional models in less time. This is a good indication that DB-
SCAN can be a good fit for other scenarios which demand smaller response times such as
real-time data stream processing.

The works presented in this section propose effective solutions to address require-
ments of real-time responses, data accuracy and completeness or power consumption, but
none of them tackle all these three concerns together. Combining these three require-
ments in the same solution is complex because the approach used to solve one problem
can negatively impact the solution of another. For example, statistical methods based on
intensive computing can efficiently solve the problem of lack of accuracy or completeness
of the data but demand a high energy consumption of the devices. The contribution of our
work consists of combining approaches such as those described, promoting the necessary
adaptations so that the three requirements are jointly met.

3. Proposed workflow

Considering the heterogeneity of IoT environments, there is an increasing num-
ber of proposed architectures which have not yet converged to a reference model
[Atzori et al. 2010]. From the pool of the proposed models, in this work we consider
a three-tier architecture as proposed in [Li et al. 2017]. In such architecture, the first tier
is the Things tier and it comprises physical sensors and embedded devices responsible for
collecting information from the monitored environment and generating data to the IoT
system. The second is the edge/fog tier composed of devices located physically close
to the things and responsible for less compute intensive tasks such as preprocessing the
incoming data. The upper tier is the cloud, encompassing robust devices (data centers)
capable of handling more compute intensive processing tasks and/or permanently store
relevant data (archiving).

To provide a fast and energy-aware data cleaning method for IoT streamed data,
we propose a workflow to be deployed at the thing and edge tiers. The design of this
workflow starts by following the guidelines of the online data stream processing workflow
introduced in [Dias de Assunção et al. 2018]. Since the reference is a general model,
the particularities defined for the context of this work are presented in Fig. 1. Sensors
embedded in IoT devices are the data sources and the starting point of the workflow.
The grey rounded-bordered boxes represent the workflow activities with their inner tasks
shown as white rectangles. The full arrows represent data flow while the dashed ones
represent triggered actions. A generic consumer component stands as the end of the
workflow. Each component is further described in the following subsections.



Figure 1. Overview of the proposed data cleaning workflow for real-time data
stream processing.

3.1. Data source

A group of several sensors placed on the bottom tier (things) which generates data about a
monitored or observed environment (or object, entity, etc.) serves as input stream of raw
data for the workflow. It is expected that more than one sensor is used to collect informa-
tion about a single entity to provide redundancy on sensor readings and thus improve the
completeness of the generated data.

3.2. Data collection

Considering that idle-listening and packet overhearing are significant sources of energy
drain and still taking into account that data transmission and reception require higher en-
ergy compared to sensing [Sarkar et al. 2016], reducing both the node activities and the
communication between nodes is a reasonable way to reduce the overall power consump-
tion on a network. In an IoT context this number can easily scale to tens, hundreds or even
thousands of devices. Therefore, this activity in the proposed workflow is implemented
by two components which act together over time to disable a subset physical sensors and
predict their values directly on the edge nodes. This activity aims to reduce the communi-
cation burden for both sensor and edge nodes. Further details for these tasks are described
below. The output of this data collection activity generates a secondary data stream (that
we call virtualized data) that will serve as an input for the next activity.

3.2.1. Lightweight Virtual Sensing (LVS)

The Virtual Sensing Framework [Sarkar et al. 2016] provides an efficient way to imple-
ment virtual sensors to reduce the communication between sensor nodes and their con-
sumers without compromising data accuracy as described in section 2. The idea is to
create virtual sensors corresponding to each existing physical sensor where the virtual
sensor readings can, at a given moment, be obtained through the reading made by the cor-
responding physical sensor and, in another moment, be forecasted based on a prediction
model.

Although the latest published release of VSF features a prediction model that com-
bines complex tasks such as adaptive node correlation, linear regression and adaptive pa-
rameter update, earlier publications of the same framework implemented simplified pre-
diction models that also achieved good results. Taking into account the edge computing
approach, which is often composed of resource-constrained devices, we propose a sim-
plified prediction model in our workflow. This choice is to keep the implementation as



lightweight as possible. The predicted value for the virtual sensor will always be com-
puted as the last cached reading of its correlated physical sensor. The rules that define the
lightweight virtual sensing task are described below:

1. An active physical sensor only sends the reading to the sink if its value is different
(or higher than a predefined threshold) from its last reading;

2. A virtual sensor defines its values as the last reading from its physical correspon-
dent.

3.2.2. Active node selection

An active node selection is an important component responsible for defining from time to
time which sensor nodes will be active and which will be on a dormant state. Only the
active nodes will send their readings to processing nodes. Similarly to what happens for
LVS, this task has been simplified from VSF [Sarkar et al. 2016] to make the implemen-
tation lighter and more adapted to resource-constrained devices. Assuming homogeneous
power consumption between sensor nodes, a simple round robin algorithm is responsible
for ensuring a uniform distribution of the workload based on a predefined time interval
(turn):

1. A parameter will indicate a percentage (%) of the sensors which will be disabled
each turn;

2. The node selector component:
(a) Organizes sensors on a queue (if it does not exist – 1st turn);
(b) Puts the actual “dormant” nodes on the end of the queue;
(c) Calculates the absolute number (X) of sensors to disable;
(d) Pops the first X sensors from the queue and puts on a “dormant” state;

3. Active sensors send readings to the sink;
4. Dormant sensors do not send readings to the sink.

3.3. Data cleaning

Sensor generated data, regardless of physical or virtual origin, need to be accurate and
complete. Physical sensors fail. Incorrect readings are a reality in the IoT context and
they need to be identified and discarded as best as possible to improve the quality of the
information and decisions based on the acquired data. A common practice in sensed envi-
ronments is to use a group of sensors to monitor the same entity, providing the necessary
redundancy that makes it easier to identify incorrect or noisy readings. The proposed
workflow implements a buffering and framing technique on the subsets of sensor read-
ings at a given time and applies a clustering algorithm to identify outliers as errors and
discard them. The output of this activity is a new stream of more accurate data that will
serve as an input for consumers (application, services, etc.).

3.3.1. Buffering and framing

Data streams are continuous flows of isolated data points. In an IoT use case with sensor
generated data, these data points are represented by sensor readings. No data point can
be considered an outlier on an individual basis analysis. Thus, defining a way to group



and analyze these data points is a major concern when designing an outlier detection task.
Buffering incoming data on a predefined length or time interval to create frames (win-
dows) is a common approach to perform operations on data streams [Tsai et al. 2014].
This is also adopted in this task so that these data frames can be transmitted to the next
task which will perform the outlier detection itself.

3.3.2. Clustering

Clustering is a problem widely studied in the data mining and AI literature. However, it
is more difficult to adapt arbitrary clustering algorithms to the context of data stream pro-
cessing. Its potentially unbounded in size feature makes this adaptation especially com-
plex [Aggarwal 2013]. K-means is certainly one of the best-known clustering and also the
starting point for a number of variations tailored for stream processing [Tsai et al. 2014].
However, the number of clusters is an input parameter, making such an algorithm unsuit-
able for some situations. The micro-clustering technique is more effective and versatile
than K-means for the context of data streams [Aggarwal 2013]. Density-based techniques
are possible solutions to the problem of clustering in an IoT scenario [Aggarwal 2013].
Techniques like this, in turn, are able to determine the number of clusters as an output.
Therefore, in our work we apply density-based spatial clustering of applications with
noise (DBSCAN) on the incoming data frames to detect and discard outliers and aggre-
gate the remaining readings into a new accurate data stream output in a real-time fashion.

3.4. Consumer

Assuming the proposed workflow is executed as a pre-processing step of a data stream
processing, it is not expected that its output is directly consumed by end users or visual-
ization tools since it is still a data stream. The expected consumer for this output would be
an application, service or any software component capable of ingest and process stream-
ing data.

4. Evaluation
In this section we perform a proof of concept (PoC) for the proposed workflow in or-
der to evaluate (i) how efficient the edge computing paradigm can be in terms of low
latency when compared to the cloud computing paradigm; (ii) DBSCAN as a clustering
approach for the outlier detection task on the data cleaning activity and (iii) the proposed
lightweight virtual sensing approach.

All components were implemented using the Flask framework (Python 3), in the
form of web APIs under HTTP protocol. A processor node is implemented to get data
from a remote sensor node, perform data collection and data cleaning activities and trigger
a new request to the sensor node with the time series data to be further processed as shown
in Fig. 2. Data is processed in windows (or frames), which are subsets of the streamed
data collected under a predefined time interval. The size of each window (S) and the
number of windows processed (N) during the runtime are the two parameters considered
to measure and compare the workflow’s performance on each scenario.

In terms of infrastructure, the specifications for the edge and cloud devices men-
tioned on the subsections to follow are described as follows:



• Cloud device: an Amazon EC2 instance t3a.large (2*2,5GHz vCPU / 8GB RAM);
• Edge device: a Raspberry Pi 3 model B+ (Quad core 1,4GHz CPU / 1GB RAM);
• Sensor device: a group of seven DHT11 sensors (temperature + humidity digital

output) attached to a Raspberry Pi 3 model B+.

Figure 2. The interaction between the nodes implemented for this PoC.

4.1. Edge computing paradigm
We aim to evaluate how efficient the edge computing paradigm can be to achieve real
time responses when compared to cloud computing. The proposed workflow has been
run multiple times with the same parameter set and the processor node role runs both on
at the edge and the cloud nodes specified in this section.

The goal is to measure and compare the total runtime of the workflow in two
different parameter set:

1. Fixed number of windows, ramping up the window size;
2. Fixed window size, ramping up the number of windows.

Despite the remarkable difference on computing power capabilities (RAM and
CPU) between the edge and cloud nodes, Fig. 3 shows an edge computing average pro-
cessing time of approximately half of cloud computing average processing time for both
cases. This is in line with what was said in section 1: the data transportation bottle-
neck has more impact on response times than the computational capacity of the devices
involved in processing data coming at a high speed.

4.2. Outlier detection with DBSCAN
4.2.1. Speed

To assess the feasibility of using DBSCAN as an outlier detection technique for the data
cleaning activity of the workflow, the algorithm has been executed several times for dif-
ferent sized data sets, still considering both edge and cloud computing scenarios. Fig.
4 shows how faster is the cloud node processing when compared to edge node process-
ing, which is expected considering that the algorithm is processed centrally (on a single



Figure 3. Runtime comparison with fixed number of windows (a) and window size
(b).

node) rather than distributed. The node with the highest computational capacity runs the
algorithm faster. However, proving this superiority is not the purpose of this test, but
identifying the data set size thresholds for running DBSCAN on a millisecond basis for
each scenario. These thresholds can later be used to define window sizes on future imple-
mentations of the proposed workflow. It is also important to mention that the edge node
was not able to run DBSCAN for data sets larger than 13,500 data points.

Figure 4. DBSCAN runtime on edge and cloud nodes for different dataset sizes.

DBSCAN runs in less than 1 second for data sets with up to 3,000 data points on
the evaluated edge node and for data sets with up to 10,000 data points on the evaluated
cloud node. For data sets with up to 2,000 data points, the algorithm runs extremely fast
(up to 0,5s), which means that, on a real use case, these devices would be able to identify
outliers on a frame of 2,000 sensor readings in half a second. These numbers indicate that
DBSCAN is a fast outlier detection algorithm for data streams generated by IoT devices.

Considering the big difference of DBSCAN runtime in both devices, this DB-



SCAN standalone evaluation reinforces what was stated in section 4.1: the data trans-
portation bottleneck has more impact on response times than the computational capacity
of devices involved. Despite being capable of processing 10,000 data points in less than
1 second on a cloud node, the internet backbone would take too much time to transfer
this data from its source and bring a high latency to the entire workflow, which would not
achieve real time processing requirements.

4.2.2. Accuracy

Data collected from the sensors (temperature and humidity) on a time frame of 60 minutes
were used to check the accuracy of DBSCAN as the engine of the outlier detection task.
In Fig. 5 the red line gives an idea of how outliers can negatively impact data analysis
while the green line shows how the same data set looks like after being cleaned using
DBSCAN. Further tuning can still be applied by adjusting DBSCAN parameters, but the
results achieved so far were enough for the PoC purposes. DBSCAN can be taken as a
fast and accurate outlier detection technique for data stream processing.

Figure 5. DBSCAN as an outlier detection technique for data cleaning.

Figure 6. Simplified version of virtual sensing implemented for the PoC.



4.3. Lightweight Virtual Sensing

The same data collected from DHT11 sensors and used on section 4.2.2 were also used to
evaluate a simplified version of VSF [Sarkar et al. 2016]. The main goal is to testify its
efficiency on reducing the communication between sensor and processor nodes without
significantly impacting data accuracy. Fig. 6 demonstrates an almost imperceptible dif-
ference between the projection of humidity and temperature readings using the full data
set (red line) and using a data set with sampling reduced by 30% (green line). These data
points are forecasted by LVS described on section 3.2.1. Taking as an assumption that
data transmission contributes more to a device’s energy drain than computing instructions
[Sarkar et al. 2016], we can conclude that this lightweight implementation of VSF en-
ables reduction of device power consumption without significantly affecting the accuracy
of the output data of the proposed workflow.

5. Conclusion and Future Work

This work presented an energy-aware data stream processing for IoT. It successfully ad-
dresses real time issues by using the edge computing paradigm. Experiments show that
accuracy and completeness are improved due to a fast and efficient data cleaning task
based on DBSCAN algorithm. Finally, being energy aware, as shown on section 4.3 has
reduced the energy consumption on constrained devices without a significant impact on
the data accuracy. Based on the experiments described on the sections 4.1 and 4.2.1, it
is possible to confirm what is stated on the section 1: the data transportation bottleneck
has more impact on response times than the computational capacity of devices involved
in processing data coming at a high speed. The tests performed on 4.2 does not guarantee
that DBSCAN is the best solution to perform the outlier detection task for the data clean-
ing activity, but proves it is a fast and accurate alternative, thus a good choice based on the
achieved results. Lightweight VSF, which is a simplified version of the Virtual Sensing
Framework [Sarkar et al. 2016], described on section 3.2.1 and evaluated on section 4.3
stands-out as a promising technique to achieve a better use of edge devices, in terms of
power consumption, without significantly affecting the accuracy of the output data. This
is a proven successful approach for reducing network traffic on WSN which was adapted
to a real time data stream processing context. Therefore, the proposed workflow might be
used to enable the deployment of long running real time data stream processing IoT sys-
tems on remote outdoor environments such as forests, open fields and watercrafts, where
there is no access to continuous sources of electricity thus requiring the use of batteries,
solar panels or other types limited power sources.

This is an incipient and promising study which shall be extended to a more com-
plete asset to promote the development of energy aware real time data stream processing
IoT systems. The proposed processing workflow can be evolved into an IoT framework
with appropriate abstraction and reuse levels to speed up the development of systems
with the common purpose of real time data stream processing on resource constrained
edge devices. Additional features such as alternative scheme’s for active node selection
or the possibility of using overlapping windows would increase the flexibility and usabil-
ity of the solution. Extending the experiments on energy consumption to fine tune the
results achieved with the PoC is an ongoing work.
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