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Abstract. Urban transportation planning in densely populated areas is a prob-
lem in constant need of efficient solutions. Graphs can represent urban street
networks and be used to train algorithms, enriching decisions with informa-
tion learned from structural and topological data of cities. Relational Fusion
Networks (RFNs) are Graph Neural Networks specifically tailored for learning
on road networks. This work explores the use of RFNs in estimating free-flow
travel times and includes experiments on relevant cities from all continents. Re-
sults demonstrate the significance of fusion functions and city characteristics
in both the learning process of RFNs on regression tasks and the capacity to
extrapolate acquired knowledge to different cities.

1. Introduction
The relationship between the world population and its inhabited spaces is constantly
changing. Since urban centers have become more attractive to large concentrations of
people, several social and environmental issues are still waiting for sustainable solutions.
The challenge of urban transportation in areas with increasing population density rein-
forces the ongoing demand for urban design efficient solutions [Albino et al. 2015].

Urban design is the technical process of shaping the physical features of cities
to provide services to its inhabitants, generating equitable and sustainable environments
[Karimi 2012]. When investigating urban design problems, it is possible to use net-
works (or graphs) to represent street maps [Boeing 2017] and take advantage of network
science to study, for example, urban form [Strano et al. 2013] and urban transportation
[Parthasarathi et al. 2013]. Networks’ power lies in their generality and focus on relation-
ships between objects rather than the properties of individual objects [Hamilton 2020].

Machine learning techniques have continuously advanced network science and
are recently being extended to address problems posed on irregular domains. In these
domains, data is typically represented by pairwise interactions along the network’s seg-
ments. Urban street networks, or road networks graphs [Boeing 2017, Jepsen et al. 2018],
structure human interactions and transportation inside cities and can be mathematically
represented by a graph holding structural information along with any features that its com-
ponents might have. Graph learning algorithms, like Graph Neural Networks (GNNs),
can evaluate transportation system patterns, using information learned from road network
structural and topological data to enrich urban design decisions.

Literature on graph representation learning ranges from node classification tasks,
such as in social networks [Ying et al. 2018], to regressions on the urban context, such



as local culture prediction [Silva and Silver 2024]. However, learning with urban road
network graphs differs substantially from such tasks and might require specialized archi-
tectures and techniques [Jepsen et al. 2018].

Most of the literature on road network learning tasks explores traffic predic-
tion in the temporal context [Yu et al. 2017, Zhao et al. 2020, Derrow-Pinion et al. 2021,
Abhinav Nippani 2024]. Despite possible contributions to urban design challenges, only
a few GNN models have been designed for static representations of road networks.

In the literature on static representations of road networks, the Graph Attention
Isomorphism Network (GAIN) [Gharaee et al. 2021] is a model proposed to overcome
general-purpose GNNs on the road type classification task. It uses topological neigh-
borhoods instead of the direct one-hop neighborhood usually selected for aggregation on
GNNs, sampling neighbors based on an unbiased random walk to extend node representa-
tion and improve the learning procedure. Although claimed to overcome other GNNs on
the road type classification task, it requires more processing to generate topological neigh-
borhoods. Therefore, an extended comparison of training costs is still needed. Moreover,
it was tested for classification tasks, while this work focuses on regression tasks.

The HyperRoad (Hypergraph-Oriented Road network representation)
[Zhang and Long 2023] captures at the same time the pairwise, high-order, and
long-range relationships among the roads. It constructs hyperedges based on regions
with similar semantic functions to capture the high-order relationships among road
segments and creates a hypergraph from it. Then, a dual-channel aggregating mechanism
propagates simultaneously, information through the simple and the hypergraph. Both
channels are then fused via a gating mechanism as the road embedding. The model is
tested on both road type classification and travel time regression tasks.

Different from the HyperRoad proposed by [Zhang and Long 2023], which per-
forms a regression task with temporal data (travel time) related to trajectories, our work
explores the use of RFNs in a static context. The experiments consider the regression task
of estimating free-flow travel times, which depend on streets’ static features like type,
length, and maximum legal speed. Regression performance is measured for twelve cities
representing all continents.

Relational Fusion Networks (RFNs), the main model considered in this work, are
GNNs designed specifically for learning on road networks [Jepsen et al. 2020]. Although
RFNs have been demonstrated to be adapted for learning tasks on road networks, there is
currently no discussion on its capacity of extrapolating acquired knowledge.

The present work proposes to compare four RFNs variants for predicting free-
flow travel times in twelve cities selected from all continents: Aalborg, Brisbane, Nara,
Manhattan, Miami, Seattle, Damascus, Cape Town, Johannesburg, Curitiba, Niteroi, and
Recife. The mean absolute regression error is computed in self-test (RFN is trained and
tested with data of the same city) and extrapolation-test (RFN is trained with data of one
city and tested in other city). Moreover, the influence of feature selection is also evaluated.

The main contributions of our work are twofold: i) a comparative analysis of RFN
performance in estimating free-flow travel times across urban road networks on relevant
cities from all continents; ii) an evaluation of the ability of RFNs to extrapolate the learned
model to cities whose road networks were not included in the training.



2. Brackground
This section introduces GNNs and provides details of RFNs, including the fusion and
aggregation functions explored in the present work.

2.1. Graph Neural Networks
A GNN is a learning model that generates node representation with a strong dependency
on both, the input network structure and any additional information its components might
have. It generates an updated version of the input network, which can be useful on predic-
tion tasks where a prediction model could be trained based on its output [Hamilton 2020].

GNNs can be synthesized as a locally shared learnable function g, applied to every
neighborhood, that maps the multi-set of features M (N (u)) to a latent space. Later, a
learnable function f is applied over this latent space, producing an updated version of the
input graph. This transformation alters the feature representations while preserving the
graph’s connectivity. As illustrated in Figure 1, in general, the defining feature for most
of the GNN models is the use of a neural message-passing mechanism, in which vector
messages are exchanged between nodes and updated using neural networks, making the
learned representations aware of the graph connectivity [Battaglia et al. 2018].

Figure 1. Message Passing: Updating Node A representation

In summary, GNNs need to learn, for every component (e.g., nodes), its local rep-
resentations by aggregating neighborhood information in a way that it is neither affected
by the neighborhood order (i.e., permutation invariant), nor by the order that compo-
nents are presented (i.e., permutation equivariant) [Sanchez-Lengeling et al. 2021]. Us-
ing neighborhood features to generate information about a node’s position and role in the
graph is the key to generalizing knowledge learned to unseen nodes and graphs.

A road network graph has few edge and node feature information. It is usually
a low-density network (i.e., few adjacent street segments), and the small size of neigh-
borhoods makes aggregation on such graphs highly sensitive to abnormal neighbors. It
also has between-edge features denoting the relation between road segments (e.g., turn
direction, turn angle), characterizing them as edge-relational graphs [Jepsen et al. 2018].

General purpose GNNs are capable, in theory, of leveraging the structure of an
urban graph, but are usually designed for node classification tasks on graphs that differ
too much from road networks in terms of information available and structural character-
istics (e.g., social networks, proteins). Also, GNNs are commonly based on the implicit
assumption that graphs exhibit homophily1, while road network graphs exhibit volatile ho-

1When neighbor nodes have similar features and changes in the graph occur gradually.



mophily2 [Jepsen et al. 2018]. Therefore, some implicit assumptions of general-purpose
GNNs do not hold for road network related tasks. Literature have shown that general-
purpose GNNs fail to leverage road network graph structure and do not even outperform
regular MLPs on such tasks [Jepsen et al. 2020].

When learning from road networks, edge features are crucial information to gener-
ate good descriptive representations since street segments are more interesting than simple
street segment junctions (nodes). Therefore, one option for learning with urban graphs is
to apply a Line Graph Transformation to the input data [Beineke and Bagga 2021]. A
Primal Graph GP = (V , E) is transformed by a Line Graph Transformation into a Dual
Graph GD = (E ′

,B), in which every primal graph edge (u, v) ∈ E is transformed into a
dual graph node e ∈ E ′ . The between-edge connections in the primal graph (i.e., nodes)
are transformed into dual graph edges b ∈ B.

2.2. Relational Fusion Networks
A Relational Fusion Network (RFN) is a spatial, inductive, and general-purpose model
proposed to overcome all the aforementioned specificities associated with road networks.
It simultaneously learns representations based on primal (i.e., node relational) and dual
(i.e., edge relational) representations. It aggregates over representations of relations, in-
stead of representations of neighbors, and is designed to disregard relations with outlier
neighbors using an attention mechanism.

(a) (b)

Figure 2. RFNs: (a) A RF layer and (b) a K-layered RFN [Jepsen et al. 2020]

An RFN layer receives an input graph G = (V , E) with a set of node features
XV ∈ R|V |×dV , a set of edge features XE ∈ R|E|×dE and a set of between-edge fea-
tures XB ∈ R|B|×dB , where dV , dE and dB represent, respectively, the node, the edge
and the between-edge feature vectors dimensions. The input graph can be broken on its
node-relational (i.e., primal), GP = (V , E), XV , XE , and its edge-relational (i.e., dual),
GD = (E ,B), XE , XB, representations.

Each RFN layer has three outputs: node, edge, and between-edge latent represen-
tations, that can be used for learning on any of the three components or even for multi-task
learning settings. Each fusion layer of Figure 2 (a) performs both node-relational fusion
and edge-relational fusion to learn representations from both views simultaneously. It
captures their interdependencies from outputs of the previous layers, according to Fig-
ure 2 (b). The between-edge representations are transformed by a single feed-forward
operator at each layer to increasingly learn representations.

2Regions can be highly homophilic and have sharp boundaries with abrupt changes



A relational fusion is a graph convolutional operator in which aggregation is per-
formed over representations of relations (u, v) that a given node u ∈ V participates, as
opposed to aggregation over-representation of u and its neighbors. A relation representa-
tion includes representations of nodes u ∈ V , v ∈ V and the representation of the edge
(u, v) ∈ E , all fused by a Fusion Function (FUSEk). A fusion function is responsible
for extracting the right information from each relation, designed to capture Road Network
Graphs intrinsic volatile homophily, allowing the creation of sharp boundaries at the edge
of homophilic regions [Jepsen et al. 2020].

Fusion functions can be ADDITIVE or INTERACTIONAL. The first summarizes
the relationship between u and v; however, it does not explicitly model interactions be-
tween representations, while the second better addresses the challenge of volatile ho-
mophily at the cost of an increase in parameters. Aggregation is then performed over the
fused representations set, generating a single latent representation of u, called u′. RFNs
can use an attention mechanism to filter out irrelevant and abnormal neighbors by weight-
ing their contribution. Such filtering capacity is highly desirable for road network graphs
since its low average node degree can amplify the aggregation noise.

3. Methodology
The present paper explores four RFN variants (see Table 1) on an edge regression task,
using the same code made publicly available in [Jepsen et al. 2020].

Table 1. Relation Fusion Network Variants

Acronym Fusion Function Aggregation Function
RFN-AI Interactional Attentional

RFN-NAI Interactional Non-Attentional
RFN-AA Additive Attentional

RFN-NAA Additive Non-Attentional

This work addresses road networks of different cities, whose drivable
maps are available in the collaborative mapping project OpenStreetMap® (OSM)
[OpenStreetMap 2017]. OSM not only provides topological network structure, with di-
rection and feature information included but provides it openly for anyone interested in
verifying or reproducing experimental results. OSM data quality may vary between coun-
tries, but in general, high-quality street information is available [Boeing 2019].

OSMnx Python package [Boeing 2017] has been chosen to retrieve data from
OSM mainly because it addresses two issues when working with street networks: the
data over-simplification and the repeatability of results. The retrieved information in-
cludes several useful graph global statistics on the selected road network graph, including
the circuity average3 (ς) and the orientation-order4 (ϕ) [Boeing 2019]. OSMnx retrieves
directed graphs with multi-edges containing the road network representation of a given
city. All OSMnx graphs contain both node and edge features. The graph topology can be

3This metric indicates how much more circuitous a city is than it would be if all of its edges were
straight-line paths between nodes. That is the relation between all edge lengths in the graph and the sum of
all great-circle distances between all pairs for connected nodes [Boeing 2019].

4Orientation-order is defined by calculating the bearings of all edges and dividing it into 36 bins of 10o

each, measuring then the entropy of the binned bearings.



simplified by removing all non-intersection and non-dead-end nodes. Additionally, nodes
outside the city boundary polygon are truncated, even if they have neighbors inside it.

Twelve cities have been selected for the experiments: the European city of Aal-
borg, the same city used in [Jepsen et al. 2020] experiments; Brisbane, an Australian city;
Nara, in Japan; Manhattan island, Miami, and Seattle, all in the USA; Damascus, in Syria;
Cape Town and Johannesburg, South African cities; and three Brazilian cities: Curitiba,
Niteroi, and Recife. Figure 3 presents two road network examples and their respective
polar plots5 of edge orientation distribution. Large city road network graphs, including
primal and dual graphs, and their associated feature sets, might not entirely fit in GPU
memory. For those cities, networks were cropped to focus on their more central areas.

(a) (b)

Figure 3. Cities RNGs: (a) Recife, BR; (b) Miami, USA

Although OSM can have rich information on both the road network nodes and
edges, the availability of features might vary from city to city, and even within the same
city. Hence, this work establishes a standard setup for all the studied road networks. The
proposed modeling only considers in node features x and y geographical coordinates (lat-
itude and longitude) of an intersection. In the set of edge features, lanes and length repre-
sent, respectively how many lanes a street segment has and its length in meters; one way
indicates whether the street segment has one or two traffic ways; a vector of size five
represents the one-hot-encoded highway classes of an edge. Finally, the between-edges
feature set contains the x and y geographical coordinates of the edges intersection node; a
one-hot-encoded vector for the turn direction between the edges: {”right”, ”left”, ”for-
ward”, ”backward”}; and bearing, representing the turn angle in degrees.

This work considers the following edges highway classes: {residential, liv-
ing street, primary, primary link, secondary, secondary link, tertiary, tertiary link, trunk,
trunk link, motorway, motorway link, unclassified}6. Nevertheless, it is naturally ex-
pected that an urban scenario would have few, or even none, motorway and trunk road
segments. As they are classes representing high-speed roads connecting two or more dif-
ferent cities, they usually only outline or cross an urban road network. Moreover, within

5A polar plot divided into 36 sections of 10o each, in which each section has a bar with height repre-
senting the count of edges that have that bearing orientation

6OpenStreetMap® documentation [OpenStreetMap 2017]



cities, major arterial roads usually connect different city’s regions, and, therefore, edges
classified as primary and secondary are expected but on a lower count when compared
to residential or living street edges. The same applies to tertiary and unclassified edges,
although those represent minor public roads more often expected than arterial roads.

For instance, Figure 4 shows Aalborg highway class distribution. It is not a
densely concentrated city within its territory. However, as depicted in Figure 4(a), it
presents a considerable concentration of residential edges when compared to the other
classes. Although unbalanced distributions are expected for urban networks, encoding 13
classes as one hot encoding might jeopardize the learning process. To reduce the number
of edge features, this work reclassifies the original 13 classes into five class groups as
Highest Performance Roads (HPR): motorway and trunk; Arterial Main Roads (AMR):
primary and secondary; Minor Public Roads (MPR): unclassified and tertiary; Link Only
Roads (LOR): all link classes; Local Traffic Roads (LTR): living street and residential.

(a) (b)

Figure 4. Edge classes in Aalborg road network: (a) original; (b) 5 classes.

Notice in Figure 4(b) that the classes’ unbalanced nature is maintained. Balancing
the class distributions within urban road networks is out of the scope of this paper. In-
stead, our experiments aim to evaluate RFN models’ performance on unbalanced datasets,
considering the potential significance of edge classification in modeling strategies.

In this paper, an urban road network is characterized by 12 global features: number
of nodes, number of edges, average node degree, edge length mean and median (in me-
ters), average streets per node, circuity average, entropy, free-flow travel-time mean and
median (in seconds), maximum legal speed mean and median (in kilometers per hour).
Moreover, a metric called Major Highway Class Rate is used to represent the edge class
distribution of a road network. It measures how concentrated an edge class distribution is
towards a specific class by computing the count ratio between the number of edges in the
most common class and the total number of edges.

We consider two regression scenarios in the evaluation: i- self-test , which trains
the model on a city A and tests it on unseen data (edges) for the same city, i.e., this
scenario evaluates the generalization of regression on travel time with a fixed topology;
and ii- extrapolation test, which trains the model on a city A and tests it on entirely new
data from other cities, i.e., this scenario evaluates generalization of regression on travel
time for a varying topology – this is useful to explore how well an RFN can extrapolate
what was learned from an urban road network to a different urban road network.



4. Results
This work applies the same experimental setup to train and test all RFNs listed in Ta-
ble 1, with experimental parameters detailed in Table 2. Notably, no normalization was
applied in the output layers, and the final edge representation was intended to character-
ize the edge’s free-flow travel time in seconds. This consistency holds for both regression
scenarios under consideration.

Table 2. Experimental Parameters Setup

Parameter Value Parameter Value
Layers 2 Hidden Size 16

Input Size Feature vector size7 Output Size 18

Mini-batch Size 512 Hidden Size 16
Optimizer Adam [Kingma and Ba 2014] Learning Rate 0.001

To avoid biasing the training towards any particular edge feature, training batches
were generated without ensuring that: i) each batch maintains the same distribution for
any edge feature, and ii) each batch exhibits a distribution similar to the entire training set.
Apart from biasing the training process, ensuring that batches maintain the distribution
of edge features from the entire training set would require preprocessing steps, which
extrapolate the scope of this work.

Before training, all road network graphs were split into five disjoint subsets (i.e., 5-
fold). Each model was then trained once for each fold, in a training session that considered
the fold as the test data (i.e., 20% of the road network edges) and the remaining folds
(i.e., 80% of the road network edges) as the training data. Training data was additionally
randomly split into training (60%) and validation (20%) sets.

For urban road networks with varying edge lengths and driving speeds, edge-free-
flow travel time might vary on wider scales. Therefore, the training cost function is based
on a loss value defined by the Mean Absolute Error (MAE), such that errors with different
magnitudes will be penalized equally.

All experiments have been run with the following hardware specs: 12th Gen
Intel(R) Core(TM) i7-12700F Processor with 12 cores (2 Threads per core), CPU max
frequency of 4900.0000 MHz, and minimum frequency of 800.000 MHz; 32GB RAM;
NVIDIA GeForce RTX 3060 Ti Graphic Card with 8 GB GDDR6 memory available and
4864 CUDA cores.

Figure 5 shows the results, for each, city of the average self-test regression error
of interactional fusion RFNs (RFN-AI and RFN-NAI) and additive fusion RFNs (RFN-
AA and RFN-NAA). Light blue bars show results for attentional RFNs, dark blue bars for
non-attentional RFNs, and black lines represent 95% confidence intervals.

In Figure 5 the same RFN presents different regression errors when applied to
different cities. An example is RFN-AI which presents lower self-test MAE values for
Aalborg and Manhattan than it does for Niteroi and Seattle. In general, interactional RFNs
present better regression results than additive RFNs. Moreover, there are no relevant

7Node, edge, or between-edge.
8Only the edge representation output was considered since the experiment explores edge regression.



Figure 5. Average (5-fold) self-test regression error (MAE) for interactional and
additive fusion RFNs.

differences between RFN-AI and RFN-NAI, or between RFN-AA and RFN-NAA, for
any city. Therefore, results suggest that the attentional aggregator does not enhance the
learning capacity of RFNs, for this regression task.

Figure 6 shows the average extrapolation-test regression error of interactional and
additive RFNs trained with a single city data and tested with data from all other cities.

Figure 6. Average extrapolation-test regression error (MAE) for different RFNs
when trained for one city (vertical labels) but tested with data from all other
cities.

As expected, Figure 6 shows higher regression errors than Figure 5, i.e., the task
of training an RFN for one city and testing it to the other cities is even more challeng-
ing. As occurred in the self-test the attentional aggregator does not enhance the learning
capacity of the models. However, the results are slightly better for additive variants than
for interactional fusion variants. It is important to point out that RFNs trained with road
networks that performed best in the self-test (i.e., Aalborg and Manhattan) were the two
worst performers on the extrapolation test.



Figure 7 presents the Pearson correlation between self-test and extrapolation-test
regression errors of cities for interactional and additive fusion RFNs. The Pearson corre-
lations are 0.43, 0.42, -0.81, and -0.82 for RFN-AA, RFN-NAA, RFN-AI, and RFN-NAI,
respectively. The positive correlations between their self and extrapolation tests enforces
that additive RFNs extrapolate better than interactional RFNs which exhibit negative cor-
relations.

(a) (b)

Figure 7. Correlation between test performances (MAE) for RFNs with (a) interac-
tional and (b) additive fusion.

Figure 8 details the extrapolation-test of each RFN variant for each city. Each
row contains the average extrapolation-test regression error of a model trained with data
of a city (row label) and tested individually on all remaining cities (column labels). The
lowest error in a row often occurs in the diagonal entry as expected, i.e., for the self-test
scenario. In addition, note that entries in the heatmap are not symmetric. Therefore, the
results of training an RFN for city A and testing in city B are not the same as training for
B and testing in A.

The idea of extrapolating learned knowledge to other cities should be better inves-
tigated by relating road network global features to the corresponding regression errors.
Figure 9 presents the heatmap of Pearson correlations between road network features and
the corresponding regression error of each RFN variant, using data of all cities for both
tests (self-test and extrapolation-test ).

According to Figure 9, the numbers of nodes and edges do not show any rele-
vant effect in the RFN regression performance, i.e., no relevant correlation between those
features and test performance was found. The average degree, usually low for urban net-
works, circuity average (ς), and orientation order (ϕ) are also not relevantly correlated
with the test performance for the set of explored cities.

Additionally, the road network global features that present relevant correlations
with the regression performance are semantically connected to what is expected to affect
the static free-flow time: the average degree, the average streets per node (i.e., street in-
tersections), the edge length, legal speed distribution, and travel-time distribution. This
result adds up to [Jepsen et al. 2020] findings, since RFNs present the behavior of weight-
ing semantically connected features for the explored regression task.

The average edge length (in meters) presents a relevant positive correlation with



Figure 8. Heatmap of average extrapolation-test regression error (MAE) of each
RFN variant when trained for one city (row label) and tested with data of
another city (column label)

additive RFN performance for both tests. A positive correlation means that as the average
edge length increases also does the test MAE value. Additive RFNs then, might perform
better on regressions when trained with road networks with narrow edge length distribu-
tion around smaller values. On the contrary, interactional RFNs will extrapolate better
when trained with lower average edge length networks, yet its self-test presents a rele-
vant negative correlation with such feature. That is, the higher the average edge length,
the lower the MAE value for self-test .

The average degree and the average streets per node correlate negatively with the
travel-time regression performance for both additive RFN tests and for the interactional
RFNs extrapolation test. There is though a slight positive correlation between such fea-
tures and the interactional RFNs self-test . Results show that interactional RFNs can bene-
fit from road networks’ low-density characteristics for the self-test , but will be negatively
affected by it when trying to extrapolate learned knowledge. Additionally, results indicate
that additive RFNs may not benefit from road networks’ low-density characteristics.

The legal speed, indistinctly for median or average (both in kilometers per hour),
does not present a relevant correlation with any RFNs extrapolation test performance but
correlates negatively with all RFNs self-test average performances. The magnitude of the
correlation is smaller for interactional than for additive RFNs, but both seem to benefit



Figure 9. Heatmap of Pearson correlations between a road network feature (col-
umn label) and the corresponding regression error of cities for self-test
and extrapolation-test in each RFN variant (row label).

from legal speed distributions centered on higher values. It is important to highlight that
for urban road networks, the scale of legal speed distribution will usually be concentrated
between 10 and 80 kilometers per hour, hardly exceeding 100 or 120 kph.

The Major Highway Class Rate does not present a relevant correlation for additive
RFNs. This indicates that additive RFNs performance are not affected by the distribution
of edge classes. However, it presents a medium positive correlation of 0.41 for RFN-
AI and RFN-NAI, particularly for self-test . Therefore, although interactional RFNs do
specialize the learned knowledge to the training set (i.e., good self-test performance), they
are not overfitting towards the edge class information, since the higher the concentration
towards a class group, the higher the self-test MAE value.

While the travel time (in seconds) is not a road network feature considered for
training (i.e., it is the feature being predicted), the correlation between cities average travel
time and the RFNs performance demonstrates that the distribution of travel time values
does not affect the interactional RFNs self-test performance. It negatively affects (i.e.,
positive correlation) interactional RFNs extrapolation test performance though, similarly
to how it affects additive RFNs self-test performance. That is, the higher the average
travel time (i.e., the travel time values distribution wideness), the higher the MAE value
for self-test (i.e., the performance decreases).



5. Conclusion

The present work explored four Relational Fusion Networks variants in a regression task
(predicting the travel time of roads for 12 different cities). It tested two RFNs using
additive and two using interactional fusions. The comparison between RFNs using inter-
actional fusion and those employing additive fusion revealed that both variations present
much higher errors when trying to extrapolate knowledge than when applying it to the
same city used for training. However, additive fusion exhibited lower mean absolute er-
rors when extrapolating the learned knowledge to other cities. The experiments also show
that, regardless of the fusion operator employed, the attentional aggregator does not en-
hance RFN’s learning capacity compared to the non-attentional approach in the regression
task.

Also, RFN-AI and RFN-NAI presented relevant and negative correlations between
self-test and the extrapolation test, indicating that RFNs with interactional fusion oper-
ators tend to specialize better to the training dataset and will not extrapolate well for
different cities. The same does not apply to RFN-AA or RFN-NAA (additive fusion),
where there is a medium and positive correlation between self and generalization test per-
formances. When trying to find correlations between road network global features and
their learning and generalization powers, results show that RFNs do weight road network
global features that are semantically connected to the predicted edge feature (free-flow
travel time), adding up to the results on RFNs for road network learning.

Future work can explore different training approaches that can help diversify road
network information available on training, possibly creating datasets of road networks
and considering each city as a dataset entry. This might be beneficial for models’ extrapo-
lation performance. Further exploration of road network features, including a wider range
of cities, is important to better understand which characteristics affect the regression and
extrapolation capacity of RFNs. Advancements towards this direction can serve various
goals, such as city-specific specialization or extrapolation across different urban environ-
ments of distinct cities. Once the same experimental setup is a limitation, different setups
for different RFN variants should also be tested. The enhanced models can then be fine-
tuned for static edge regression tasks. Moreover, they can serve as structural components
in spatiotemporal graph neural networks, enabling road network latent representations to
enhance the performance of temporal regression, such as traffic prediction.
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