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Abstract. Urban traffic safety is one of the main challenges faced by smart ci-
ties, especially given the increasing number of accidents caused by driver dis-
tractions. Identifying and mitigating distracted and unsafe driving behaviors in
real time remains an open problem due to scene complexity and the limitations
of existing solutions. To address this scenario, this work proposes Safe-Drive,
a hybrid computer vision solution based on two YOLO convolutional architec-
tures: one dedicated to detecting distracted behaviors and another focused on
segmenting seat belt usage. When compared to other approaches in the litera-
ture, Safe-Drive achieved a high accuracy rate and a 52% reduction in inference
time in the worst-case scenario. These results highlight Safe-Drive as an effec-
tive and scalable solution for real-time detection of distracted and unsafe driver
behaviors.

Resumo. A segurança no trânsito urbano é um dos principais desafios enfren-
tados por cidades inteligentes, especialmente diante do crescente número de
acidentes causados por distrações ao volante. Identificar e mitigar compor-
tamentos distraı́dos e inseguros de motoristas em tempo real ainda representa
um problema em aberto, devido à complexidade das cenas e às limitações das
soluções existentes. Para enfrentar esse cenário, este trabalho propõe o Safe-
Drive, uma solução hı́brida de visão computacional baseada em duas arquite-
turas convolucionais do YOLO: uma dedicada à detecção de comportamentos
distraı́dos e outra voltada à segmentação do uso do cinto de segurança. Quando
comparado com outros trabalhos da literatura, o Safe-Drive mostrou alta taxa
de acertos com uma redução no tempo de inferência de 52% no pior caso. Es-
ses resultados destacam o Safe-Drive como uma solução eficaz e escalável na
detecção de comportamentos distraı́dos e inseguros de motorista em tempo real.



1. Introdução

O trânsito urbano permanece um dos maiores desafios para cidades inteli-
gentes, com implicações significativas para a segurança pública e os custos
econômicos [Rocha Filho et al. 2020, Ribeiro Jr et al. 2023]. Estima-se que comporta-
mentos distraı́dos estejam entre as principais causas de acidentes, especialmente com o
aumento do uso de dispositivos móveis ao volante [Bouhsissin et al. 2023, Qu et al. 2024,
Kumar and Raja 2025]. De acordo com a Organização Mundial da Saúde (OMS), moto-
ristas que utilizam o celular enquanto dirigem têm aproximadamente quatro vezes mais
chances de se envolver em um acidente [World Health Organization 2022]. Mesmo os
dispositivos com viva-voz não oferecem segurança significativa, e o ato de enviar mensa-
gens de texto aumenta consideravelmente o risco de colisões.

O avanço das arquiteturas baseadas em visão computacional, como as re-
des neurais convolucionais (CNNs), representa uma alternativa promissora para o
desenvolvimento de soluções inteligentes voltadas ao monitoramento de comporta-
mentos de motoristas. Dentre esses modelos, destaca-se o You Only Look Once
(YOLO) [Redmon et al. 2016, Ferrante et al. 2024] cujo objetivo é realizar a detecção
de objetos em tempo real com precisão e eficiência computacional. O YOLO foi desen-
volvido para identificar múltiplos objetos em uma única passada pela imagem, tornando-
o adequado para aplicações que exigem respostas rápidas. Entretanto, no contexto da
detecção de distrações ao volante, um desafio reside na sua dependência de caixas deli-
mitadoras do YOLO, as quais podem não são precisas para identificar elementos visuais
mais sutis, por exemplo, o uso adequado do cinto de segurança. Esse desafio é explorado
nesta pesquisa por meio da integração de mecanismos de segmentação semântica, com o
intuito de aprimorar a capacidade de análise comportamental do modelo.

Diversos trabalhos têm sido propostos para lidar com o problema da
detecção de comportamentos distraı́dos ao volante. A maioria desses tra-
balhos [Zhao et al. 2011, Abouelnaga et al. 2017, Du et al. 2023, Debsi et al. 2024,
Abbass and Ban 2024, Shirole et al. 2025] foca na classificação de distrações especı́ficas,
utilizando modelos baseados em algoritmos tradicionais ou arquiteturas convolucionais.
Embora tais trabalhos tragam avanços, eles geralmente tratam o problema de maneira
isolada, desconsiderando elementos complementares à segurança, como o uso adequado
do cinto de segurança. Estudos mais recentes [Bouhsissin et al. 2023, Shen et al. 2024]
exploram modelos de detecção mais robustos, como o Single Shot multibox Detector
(SSD) [Liu et al. 2016] e o Faster Region-based Convolutional Neural Network (Faster
R-CNN) [Ren et al. 2015, Kshatri and Rathore 2025], priorizando a acurácia da detecção
de posturas de risco, mas sem incorporar mecanismos de segmentação ou análise com-
binada de múltiplos comportamentos. Ainda, trabalhos como [Elshamy et al. 2024,
Al-Mahbashi et al. 2025] destacam a eficácia do YOLO para tarefas de detecção de
distrações, mas não abordam sua aplicação integrada com segmentação semântica para
análise do uso do cinto de segurança, caracterı́stica presente nesta pesquisa.

É válido salientar, entretanto, que apesar dos avanços no problema da detecção de
comportamentos distraı́dos ao volante, a integração de múltiplas formas de análise visual,
tais como a classificação de distrações e a verificação do uso do cinto de segurança, ainda
impõe desafios, os quais esta pesquisa busca explorar. Destacam-se, entre esses desafios,
dois principais: (i) como garantir precisão na detecção de diferentes comportamentos do



condutor; e (ii) como assegurar a eficiência do processamento em tempo real, mesmo em
dispositivos com recursos computacionais escassos, sem comprometer a capacidade de
resposta do sistema.

Este trabalho apresenta o Safe-Drive, uma solução voltada à detecção de compor-
tamentos distraı́dos e inseguros de motoristas em tempo real. O Safe-Drive foi modelado
com base em duas arquiteturas do YOLO: o YOLO-Detect, responsável pela classificação
de posturas de distração ao volante; e o YOLO-Seg, responsável pela segmentação
semântica para identificar o uso do cinto de segurança. Essa solução hı́brida visa su-
perar as limitações das abordagens anteriores que se baseiam exclusivamente em caixas
delimitadoras. Para validar o Safe-Drive, foram conduzidos experimentos utilizando o da-
taset State Farm Distracted Driver Detection [StateFarm 2016], contemplando diferentes
aspectos do problema, como a precisão por classe e o tempo médio de inferência. Os re-
sultados obtidos demonstram que o Safe-Drive alcançou nı́veis satisfatórios de acurácia,
com tempos de inferência reduzidos mesmo em ambientes com restrições computacio-
nais, destacando-se como uma solução eficiente e escalável para aplicações embarcadas
em veı́culos inteligentes.

O restante deste artigo está organizado da seguinte maneira. Na Seção 2, são apre-
sentados os principais trabalhos relacionados à detecção de comportamentos inseguros e
distraı́dos. A Seção 3 apresenta como o Safe-Drive foi modelado, enquanto a Seção 4
apresenta os resultados obtidos dos experimentos realizados. Por fim, a Seção 5 apresenta
as considerações finais e os trabalhos futuros.

2. Trabalhos Relacionados

A detecção de comportamentos distraı́dos no trânsito tem se consolidado como uma
área de pesquisa essencial, especialmente diante do impacto desses comportamentos na
segurança urbana. Esta seção apresenta a evolução das principais abordagens propostas
na literatura, destacando os avanços obtidos, os desafios enfrentados e as lacunas exis-
tentes. Em [Zhao et al. 2011], é proposta uma abordagem baseada em aprendizado de
máquina para a classificação automática de comportamentos de motoristas, com foco na
identificação de diferentes posturas ao volante. Para tanto, foi utilizado o Support Vector
Machine (SVM). Os resultados foram comparados com quatro classificadores tradicio-
nais: perceptron linear, k-nearest neighbor (k-NN), Multi-Layer Perceptron (MLP) e o
classificador de Parzen. Apesar dos avanços, o estudo apresenta limitações como o uso
de apenas quatro categorias de comportamento e baixa robustez em condições dinâmicas
e em tempo real.

Já em [Sajid et al. 2021], é proposto um framework de aprendizado profundo para
detecção de comportamentos distraı́dos de motoristas, com o objetivo de aumentar a
segurança no trânsito por meio da identificação automatizada de posturas inadequadas
ao volante. O framework é baseado no uso das redes EfficientDet, com backbone Effici-
entNet, treinadas por meio de aprendizado por transferência. Com foco na detecção em
tempo real, o trabalho de [Fresta et al. 2025] propõe um sistema voltado à identificação
de distração cognitiva. Para isso, foi conduzida uma campanha de coleta de dados com
42 participantes em um simulador de direção, enquanto os sujeitos realizavam uma tarefa
cognitiva composta por vinte perguntas. Ambos os estudos apresentam limitações, como
a ausência de análise multimodal, a exclusividade do uso de imagens estáticas e a restrição



das classes comportamentais a categorias visuais especı́ficas, o que pode comprometer a
generalização dos modelos para contextos mais dinâmicos e variados de direção.

Os autores no trabalho [Du et al. 2023] propõem uma arquitetura baseada no mo-
delo YOLO para detecção em tempo real de comportamentos de direção distraı́da, com
foco na redução do custo computacional e na ampliação da aplicabilidade em sistemas
embarcados. A proposta se baseia na integração de estratégias de lightweight design ao
YOLOv8, inspiradas na GhostConv, que tem se destacado por seu desempenho eficiente
em computação de borda. Para isso, o trabalho introduz o módulo GhostC2f, que aplica
transformações lineares para gerar mapas de caracterı́sticas adicionais sem aumentar a
carga computacional. No entanto, o estudo apresenta limitações. Há forte dependência
de um conjunto especı́fico de dados, o que pode limitar a generalização do modelo para
outros contextos geográficos ou condições adversas não contempladas no treinamento.
Além disso, o foco exclusivo na classificação de distrações visuais desconsidera aspec-
tos importantes da segurança veicular, como o uso do cinto de segurança. Diferente do
Safe-Drive, que combina detecção e segmentação para avaliar múltiplos fatores de risco,
a abordagem de [Du et al. 2023] não utiliza segmentação semântica, o que pode afetar a
acurácia em situações com sutilezas visuais.

O trabalho de [Abbass and Ban 2024] propõe uma arquitetura leve para a detecção
de distração de motoristas, com foco em aplicações embarcadas em diferentes nı́veis de
veı́culos autônomos. Para alcançar este objetivo, a arquitetura foi baseada no uso da
MobileNet como extratora de caracterı́sticas, seguida por uma camada de pooling global,
múltiplas camadas densas e camadas de dropout para reduzir overfitting. Como limitação,
há dificuldades especı́ficas na classificação correta entre algumas classes visuais seme-
lhantes. Além disso, o modelo ainda não foi avaliado em cenários reais com sensores
integrados em tempo de execução contı́nua.

Com foco em um conjunto de dados multimodal, o trabalho de [Wang et al. 2024]
apresentou o MultiFuser, um modelo baseado em transformadores para integrar dados
RGB, profundidade e infravermelho. O objetivo é aprimorar a identificação precisa de
comportamentos no interior de veı́culos e, consequentemente, reforçar a segurança no
trânsito e a interação entre condutor e sistema veicular. A abordagem é baseada em
um transformador de fusão multimodal que realiza a modelagem das relações espaço-
temporais e a integração adaptativa de diferentes modalidades sensoriais. No entanto, uma
limitação do estudo é a dependência de sensores especializados, como câmeras de profun-
didade, que ainda não são amplamente integrados em veı́culos comerciais. Além disso, o
estudo não discute o desempenho do modelo em condições adversas como ruı́dos senso-
riais, falhas de sincronização entre modalidades ou ambientes externos mais dinâmicos.

Embora os trabalhos analisados apresentem contribuições relevantes para a
detecção de comportamentos distraı́dos ao volante, muitos ainda se limitam à análise iso-
lada de ações visuais, dependem de sensores especializados ou enfrentam dificuldades de
generalização para contextos reais e dinâmicos. Nesse cenário, o Safe-Drive se diferencia
por integrar, de forma eficiente, a detecção de distrações com a segmentação semântica
do uso do cinto de segurança, promovendo uma análise mais completa e precisa do com-
portamento do condutor. Essa combinação não apenas amplia a cobertura dos fatores de
risco monitorados, como também assegura desempenho compatı́vel com aplicações em-
barcadas e em tempo real, posicionando o Safe-Drive como uma alternativa promissora



frente às limitações observadas nas abordagens existentes.

3. Safe-Drive

Esta seção apresenta o Safe-Drive, uma solução para tratar do problema de detecção de
comportamento de motoristas em tempo real, com foco na identificação de distrações ao
volante e no uso adequado do cinto de segurança. Para tanto, foi modelado um mecanismo
de detecção de comportamento com base em duas arquiteturas convolucionais do YOLO.
O objetivo é aumentar a precisão na identificação de comportamentos de risco, ao mesmo
tempo em que se assegura baixa latência na resposta do sistema, viabilizando alertas
imediatos e ações preventivas que contribuam para uma direção mais segura e eficiente.

A Figura 1 apresenta uma visão geral do funcionamento do Safe-Drive, desta-
cando desde a captura das imagens pela câmera até a detecção do comportamento do mo-
torista em nı́veis de risco. Assume-se que cada veı́culo esteja equipado com uma câmera
interna, responsável por registrar imagens do condutor em tempo real. Por meio das ima-
gens capturadas por uma câmera instalada no interior do veı́culo, o Safe-Drive processa
e detecta os comportamentos do motorista com base em duas arquiteturas convolucio-
nais do YOLO. Para tanto, o Safe-Drive integra o YOLO-Detect e YOLO-Seg em sua
arquitetura. O YOLO-Detect realiza a detecção de caixas delimitadoras e a classificação
associada às categorias de distração do motorista de forma a otimizar o tempo de pro-
cessamento. Já o YOLO-Seg é responsável pela segmentação, focando na identificação
da presença do cinto de segurança através da análise de regiões especı́ficas da imagem.
Essa combinação permite ao Safe-Drive abordar diferentes aspectos do comportamento
do motorista de forma eficiente em tempo real, detectando comportamentos como uso
de celular, operação do rádio ou condução sem cinto de segurança, classificados em três
escalas de riscos: Seguro, Distraı́do e Inseguro. As categorias utilizadas são apresentadas
na Tabela 1, que relaciona cada classe identificada à respectiva escala de risco.

Figura 1. Cenário de funcionamento do sistema Safe-Drive.



Tabela 1. Classificação do comportamento do motorista e escala de risco do
comportamento

Classe Descrição do Comportamento Escalas de Risco
c0 Condução adequada - sem distração (mãos ao volante e olhar frontal) Seguro
c1 Uso do celular Inseguro
c2 Interação com rádio Distraı́do
c3 Consumo de bebida enquanto dirige Inseguro
c4 Movimentos exagerados para alcançar objetos Inseguro
c5 Cuidado com aparência enquanto dirige Distraı́do
c6 Conversa que reduz a atenção ao trânsito Distraı́do
c7 Uso do cinto de segurança Seguro
c8 Ausência de cinto de segurança Inseguro

3.1. Formulação da Solução

Para a construção do mecanismo de avaliação de risco do sistema Safe-Drive, é ne-
cessário formalizar a forma como os comportamentos do condutor e o uso do cinto de
segurança são interpretados a partir das imagens capturadas no interior do veı́culo. Essa
interpretação combina duas fontes de informação: (i) a classificação do comportamento
do motorista, realizada pelo modelo YOLO-Detect, e (ii) a verificação do uso do cinto de
segurança, realizada pelo modelo YOLO-Seg.

Define-se que o conjunto de comportamentos detectados é formado por nove clas-
ses, denotadas de c0 a c8, conforme apresentado na Tabela 1. Para fins de avaliação de
risco, essas classes são organizadas em três subconjuntos principais. O primeiro conjunto,
Dseguro, é composto apenas pela classe c0, que representa a condução adequada, sem si-
nais de distração. O segundo conjunto, Ddistraı́do, agrupa os comportamentos que desviam
parcialmente a atenção do condutor e é composto pelas classes c2, c5 e c6. Já o conjunto
Dinseguro representa comportamentos de alto risco à segurança e inclui as classes c1, c3 e
c4. Adicionalmente, o uso do cinto de segurança é avaliado a partir das classes c7, que
representa a presença do cinto, e c8, que representa sua ausência.

Com base nessas definições, o mecanismo de avaliação de risco pode ser modelado
como uma função f(C, S) que recebe como entrada a classe de comportamento C e a
classe de segurança S (relativa ao cinto de segurança), retornando como saı́da um dos
nı́veis de risco:

f(C, S) =


Seguro, se C ∈ Dseguro ∧ S = c7

Distraı́do, se C ∈ Ddistraı́do ∧ S = c7

Inseguro, se C ∈ Dinseguro ∨ S = c8

Indefinido, caso contrário

(1)

Essa função reflete diretamente a lógica heurı́stica implementada no Safe-Drive,
permitindo avaliar o nı́vel de risco associado à condição do condutor.

3.2. Mecanismo de Detecção e Avaliação de Risco do Safe-Drive

O objetivo do mecanismo de detecção do sistema Safe-Drive é identificar comportamen-
tos de risco do motorista em tempo real, por meio da análise de imagens capturadas no



interior do veı́culo. Para isso, são utilizados dois modelos distintos baseados na arqui-
tetura convolucional YOLO: o YOLO-Detect, responsável pela detecção e classificação
de comportamentos distraı́dos, e o YOLO-Seg, destinado à segmentação semântica com
foco na verificação do uso do cinto de segurança. O funcionamento do mecanismo de
detecção do Safe-Drive é apresentado no Algoritmo 1.

Algorithm 1 Mecanismo de Detecção e Avaliação de Risco do Safe-Drive
Entrada: Imagem I capturada do interior do veı́culo
Saı́da: Nı́vel de risco: Seguro, Distraı́do, Inseguro ou Indefinido

Dseguro ← {c0}
Ddistraı́do ← {c2, c5, c6}
Dinseguro ← {c1, c3, c4}
Iproc ← PREPROCESSARIMAGEM(I)
featdet ← BACKBONEDETECT(Iproc)
neckdet ← NECKDETECT(featdet)
outdet ← HEADDETECT(neckdet)
featseg ← BACKBONESEG(Iproc)
neckseg ← NECKSEG(featseg)
outseg ← HEADSEG(neckseg)
C ← None
S ← None
if CONFIANÇA(outdet) > 0.25 then
C ← CLASSIFICARCOMPORTAMENTO(outdet)

end if
if CONFIANÇA(outseg) > 0.20 then
S ← CLASSIFICARCINTO(outseg)
if C = None then
C ← S

end if
end if

risco←


Seguro, se C ∈ Dseguro e S = c7

Distraı́do, se C ∈ Ddistraı́do e S = c7

Inseguro, se C ∈ Dinseguro ou S = c8

Indefinido, caso contrário
return risco

O Algoritmo 1 é iniciado a partir da chegada de uma imagem capturada no interior
do veı́culo. Essa imagem é inicialmente submetida a um processo de pré-processamento e,
em seguida, analisada simultaneamente por dois modelos especializados: o YOLO-Detect
e o YOLO-Seg, ambos estruturados em três estágios. O estágio de Backbone realiza a
extração inicial de caracterı́sticas visuais relevantes, como contornos, formas e texturas.
Em seguida, o estágio de Neck promove a fusão multiescala dessas caracterı́sticas, oti-
mizando a representação semântica da imagem. Por fim, o estágio de Head executa a
detecção final, associando as regiões identificadas às suas respectivas classes. No YOLO-
Detect, essa estrutura é empregada para classificar o comportamento do motorista em uma



das categorias c0 a c6, desde que a confiança da predição ultrapasse o limiar de 0,25. Para-
lelamente, o YOLO-Seg utiliza a mesma estrutura para realizar a segmentação semântica,
determinando a presença ou ausência do cinto de segurança, rotulando a imagem como
c7 ou c8 com base em uma confiança mı́nima de 0,20. É válido salientar que os valores
0,25 e 0,20 foram selecionados com base em estudos empı́ricos. Os limiares de 0,25 e
0,20 foram definidos com base em estudos empı́ricos, de forma a equilibrar sensibilidade
e precisão nos módulos de detecção e segmentação. Caso o comportamento do condu-
tor não seja identificado com precisão, a informação da segmentação torna-se o principal
critério de análise.

Na etapa final, os resultados produzidos pelos modelos YOLO-Detect e YOLO-
Seg são combinados por uma heurı́stica integrada (Equação 1), que avalia conjuntamente
o comportamento do condutor e o uso do cinto de segurança. Com base nessa análise, o
Safe-Drive classifica o motorista em três categorias de risco:

• Seguro: motorista com uso adequado do cinto de segurança (c7) e sem indı́cios
de distração (c0);

• Distraı́do: motorista utilizando o cinto (c7), mas executando ações que desviam
parcialmente sua atenção, como interagir com o rádio, conversar ou cuidar da
aparência (c2, c5, c6);

• Inseguro: motorista sem o cinto de segurança (c8) ou envolvido em comporta-
mentos de alto risco, como uso de celular, ingestão de bebidas ou movimentos
bruscos para alcançar objetos (c1, c3, c4).

4. Avaliação de Desempenho
Nesta seção, é avaliado o desempenho do Safe-Drive na identificação de comportamen-
tos de distração do motorista. Para fins comparativos, o Safe-Drive foi confrontado
com dois algoritmos utilizados na literatura: Faster R-CNN [Kshatri and Rathore 2025] e
SSD [Liu et al. 2016]. A seguir, são apresentados o cenário modelado, as métricas utili-
zadas, os parâmetros adotados e os resultados obtidos.

4.1. Configurações dos Experimentos
Para avaliar o desempenho do Safe-Drive, foi utilizado o conjunto de dados State Farm
Distracted Driver Detection Dataset [StateFarm 2016], que contém mais de 22 mil ima-
gens organizadas em 10 categorias de distração de motoristas. Neste trabalho, optou-se
por utilizar sete classes, com o objetivo de consolidar categorias semelhantes. Por exem-
plo, as classes que distinguem o uso do celular na mão direita ou esquerda foram unifi-
cadas na categoria “dirigindo usando celular”. Adicionalmente, um subconjunto do con-
junto de dados foi anotado manualmente para identificação do uso do cinto de segurança.
Essa amostragem consistiu em 200 imagens, sendo 100 com cinto e 100 sem cinto, ano-
tadas com a ferramenta LabelImg1. Para viabilizar a detecção baseada em segmentação
semântica, um segundo conjunto de 109 imagens foi anotado manualmente com máscaras
que representassem a presença do cinto de segurança, utilizando a ferramenta Roboflow2.

Com o objetivo de aumentar a diversidade dos dados e melhorar o treinamento,
foram aplicadas técnicas de data augmentation, incluindo inversão horizontal, rotações de

1https://pypi.org/project/labelImg/
2https://roboflow.com/



90 graus e operações de ampliação. Todas as imagens foram redimensionadas para 640 ×
640 pixels. O treinamento foi realizado em uma GPU Tesla T4 com 15 GB de memória
dedicada, utilizando as seguintes configurações: 200 épocas, tamanho de lote (batch size)
de 16 e taxa de aprendizado inicial de 0,01. A técnica de hold-out foi empregada para a
divisão dos dados, sendo 70% para treinamento, 20% para validação e 10% para teste. O
objetivo dos experimentos foi validar a capacidade do Safe-Drive em detectar comporta-
mentos distraı́dos e o uso (ou não) do cinto de segurança em tempo real, avaliando tanto
a acurácia do modelo quanto sua viabilidade computacional para aplicação embarcada. A
Tabela 2 apresenta o conjunto de parâmetros utilizados para realizar os experimentos com
o Safe-Drive.

Para avaliar o desempenho do Safe-Drive, foram utilizadas as seguintes métricas:

• Acurácia: Esta métrica avalia a proporção de predições corretas em relação ao
total de predições realizadas.

• Precisão: Esta métrica mede a proporção de predições positivas corretas entre
todas as predições positivas feitas pelo modelo.

• Recall: Esta métrica indica a proporção de comportamentos de risco corretamente
identificados pelo modelo entre todos os casos reais dessa classe.

• mAP (mean Average Precision): Esta métrica combina precisão e recall ao longo
de diferentes limiares de confiança. Isto é, avalia o desempenho considerando uma
sobreposição mı́nima entre predição e anotação real.

• Tempo médio de inferência: Esta métrica representa o tempo médio necessário
para o modelo processar uma imagem e produzir uma predição.

Tabela 2. Parâmetros utilizados nos experimentos com o Safe-Drive
Parâmetro Valor padrão
Conjunto de dados State Farm Distracted Driver Detection
Número de classes utilizadas 7 distrações + 2 para o uso do cinto
Técnicas de data augmentation Inversão, rotação de 90°, ampliação
Tamanho das imagens 640 × 640 pixels
Divisão dos dados 70% treino, 20% validação, 10% teste
Épocas de treinamento 200
Tamanho do batch 16
Taxa de aprendizado 0,01
Ambiente de execução Google Colab Pro
Hardware utilizado GPU Tesla T4 com 15 GB de memória

4.2. Impactos dos Resultados Obtidos

A Figura 2 apresenta as métricas Precisão, Recall e mAP durante o treinamento das duas
arquiteturas que compõem o Safe-Drive: o YOLO-Detect e o YOLO-Seg. Observa-se
que o YOLO-Detect (Figuras 2(a), 2(b), e 2(c)) responsável pela classificação dos com-
portamentos distraı́dos, atingiu precisão superior a 0.85 (Figura 2(a)) e recall estabilizado
em torno de 0.75 (Figura 2(b)). A métrica de mAP também demonstrou resultado ade-
quado, com valores próximos de 0.80 (Figura 2(c)), indicando que o modelo foi capaz de
generalizar sob critérios mais rigorosos de sobreposição. Isso significa que o Safe-Drive



não apenas reconhece corretamente os comportamentos, mas também consegue locali-
zar com precisão as regiões especı́ficas na imagem onde esses comportamentos ocorrem.
Isso é um fator essencial para diferenciar ações visuais semelhantes, como manusear o
celular ou interagir com o rádio. Por sua vez, o YOLO-Seg (Figuras 2(d), 2(e), e 2(f)),
responsável pela segmentação do cinto de segurança, também apresentou desempenho
consistente. A precisão se manteve acima de 0.85 ao longo das épocas (Figura 2(d)), com
recall próximo de 0.75 (Figura 2(e)). As métricas de mAP demonstraram estabilidade,
com aproximadamente 0.78 em mAP. Esses resultados reforçam a eficácia da abordagem
integrada do Safe-Drive, demonstrando que ambos os modelos foram capazes de aprender
representações visuais para seus respectivos objetivos, mantendo desempenho estável.
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Figura 2. Desempenho das métricas Precisão, Revocação, mAP para as arquite-
turas YOLO-Detect e YOLO-Seg.

A Tabela 3 apresenta os resultados de desempenho do Safe-Drive discriminados
por classe, destacando a efetividade do modelo na identificação de diferentes comporta-
mentos ao volante. O módulo YOLO-Detect, responsável pela classificação das distrações
visuais (classes c0 a c6), demonstrou desempenho consistente, com valores de precisão
e recall superiores a 0,96 em todas as classes. O mAP médio de 0,96 reforça a ca-
pacidade do modelo em não apenas identificar corretamente os comportamentos, mas
também localizar com precisão as regiões da imagem associadas a esses comportamen-
tos. Esse resultado é particularmente relevante em aplicações de segurança veicular, em
que a correta delimitação espacial do comportamento é essencial para evitar falsos po-
sitivos. Por exemplo, diferenciar o uso de celular da simples movimentação das mãos
próximas ao volante. Já o YOLO-Seg voltado à segmentação semântica do uso do cinto
de segurança (classe c7), apresentou desempenho considerado satisfatório, com precisão
de 0,884, recall de 0,759 e mAP de 0,799. Embora esses valores sejam ligeiramente in-
feriores aos observados no YOLO-Detect, eles refletem a maior complexidade inerente
à tarefa de segmentação, que exige o reconhecimento de padrões visuais sutis, como a
presença parcial do cinto, variações de ângulo da câmera, roupas sobrepostas e condições



de iluminação adversas. Ainda assim, ao combinar as duas arquiteturas, o Safe-Drive
apresentou uma média geral de precisão de 0,973, recall de 0,965 e mAP de 0,969, o que
ratifica sua efetividade e confiabilidade para uso em tempo real.

Tabela 3. Desempenho do Safe-Drive por classe
Classe Precisão Recall mAP
c0 0.942 1.000 0.990
c1 1.000 0.997 0.995
c2 0.996 0.982 0.989
c3 0.995 1.000 0.995
c4 0.998 1.000 0.995
c5 0.995 1.000 0.995
c6 0.978 0.982 0.994
c7 0.884 0.759 0.799
Média Geral 0.973 0.965 0.969

A Figura 3 apresenta a comparação do Safe-Drive, comparando-o com outros dois
modelos da literatura o Faster R-CNN e o SSD. O Safe-Drive apresenta o menor tempo
médio de inferência (Figura 3(a)), com 0,0346 segundos por imagem, sendo aproximada-
mente 52% mais rápido que o SSD (0,0724 s) e cerca de 62% mais rápido que o Faster
R-CNN (0,0911 s). Esse desempenho superior em tempo de resposta pode ser atribuı́do
à arquitetura eficiente do Safe-Drive, que realiza a detecção de objetos em uma única
etapa (one-stage detector), diferentemente do Faster R-CNN, que adota uma abordagem
em duas etapas (two-stage detector), o que naturalmente introduz maior latência. Além
disso, o Safe-Drive foi projetado com otimizações que reduzem a complexidade computa-
cional sem comprometer a precisão, como a especialização dos modelos YOLO-Detect e
YOLO-Seg para tarefas especı́ficas, simplificando cada rede. Essas caracterı́sticas tornam
o Safe-Drive eficiente para uso em dispositivos embarcados, destacando sua aplicabili-
dade na identificação de comportamentos de risco em tempo real no contexto veicular.

Em termos de precisão (Figura 3(b)), o Safe-Drive atingiu 98,7%, superando o
Faster R-CNN (86,36%) e mantendo desempenho similar com o SSD (97,6%). Esse re-
sultado pode ser atribuı́do à capacidade do Safe-Drive de realizar detecções mais refinadas
com menor taxa de falsos positivos devido a sua arquitetura otimizada com camadas de
detecção ancoradas em múltiplas escalas. Já no quesito recall (Figura 3(c)), o SSD ob-
teve uma leve vantagem com 98,5%, seguido do Safe-Drive com 98,2%. Isso demonstra
que ambos os modelos são eficazes em recuperar os comportamentos relevantes, sendo o
desempenho do Safe-Drive impulsionado por sua estrutura de detecção unificada.

Quanto à acurácia (Figura 3(d)), o Faster R-CNN alcançou o melhor resultado
(98,95%), seguido do Safe-Drive (98,67%). Isso ocorre pois o Faster R-CNN aproveita a
abordagem em duas etapas que tende a ser mais criteriosa na seleção e refinamento das
regiões de interesse. No entanto, essa vantagem vem com o custo de maior tempo de
processamento e inferência como pode ser revisto na Figura 3(a). Portanto, o Safe-Drive
apresenta um equilı́brio entre desempenho e eficiência computacional, consolidando-se
como uma alternativa promissora para aplicações em tempo real de detecção de compor-
tamentos de risco no trânsito.
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Figura 3. Comparando o Safe-Drive com o Faster R-CNN e SSD

5. Conclusão e Trabalhos Futuros

Este artigo apresentou o Safe-Drive, uma solução hı́brida baseada em visão computaci-
onal para detecção de comportamentos inseguros e distraı́dos ao volante. O Safe-Drive
integra duas arquiteturas convolucionais. O YOLO-Detect voltado à detecção de compor-
tamentos visuais e o YOLO-Seg voltado à segmentação semântica para identificação do
uso do cinto de segurança. Essa abordagem combinada permite uma análise mais abran-
gente do estado do condutor, indo além da simples classificação de ações e incorporando
aspectos essenciais de segurança que são frequentemente negligenciados, como o uso do
cinto.

Os resultados obtidos demonstram que o Safe-Drive alcançou desempenho supe-
rior quando comparado com outros algoritmos da literatura, como Faster R-CNN e SSD.
O Safe-Drive obteve uma precisão média de 98,7%, recall de 98,2% e acurácia de 98,67%,
com tempo médio de inferência de apenas 0,0346 segundos por imagem. Esse tempo re-
presenta uma redução de aproximadamente 62% em relação ao Faster R-CNN e 52% em
relação ao SSD, evidenciando sua superioridade em cenários que exigem respostas em
tempo real. Com base nesses resultados, o Safe-Drive se mostra uma solução promissora
para identificar distrações de motoristas em tempo real, oferecendo precisão, velocidade
e escalabilidade.



Como trabalhos futuros, pretende-se ampliar o conjunto de dados utilizado na
segmentação do cinto de segurança, especialmente para cenários com iluminação des-
favorável, diferentes ângulos de câmera e oclusões parciais. Planeja-se adaptar o Safe-
Drive para realizar a detecção simultânea de múltiplos ocupantes no veı́culo. Isso inclui a
identificação de comportamentos de risco tanto do condutor quanto de passageiros. Além
disso, a integração de dados oriundos de sensores embarcados, tais como velocı́metro,
acelerômetro ou informações do painel do veı́culo, poderá possibilitar uma fusão multi-
modal que enriqueça a análise contextual e reduza falsos positivos.
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