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Abstract. Natural disasters, such as fires and extreme weather events, have in-
tensified in recent years, driven by climate change and human activities. In
this scenario, it becomes crucial to invest in research to reduce polluting ga-
ses, such as Carbon Dioxide (CO2). However, current studies predominantly
focus on emissions from countries and urban vehicles. The agricultural sec-
tor, however, contributes significantly to CO2 emissions in Brazil. This work
presents a benchmark of artificial intelligence models to predict emissions. We
use data from two tractors, from the fuel, battery, engine and gear systems. We
use pre-processing methods such as LIME, and the estimation of carbon emissi-
ons using fuel type and carbon intensity defined by the Brazilian Association of
Automotive Engineering. Thus, we evaluated sixteen machine learning models,
highlighting the XGBoost model, with the lowest RMSE of 0,01, demonstrating
promising performance for prediction.

Resumo. Os desastres naturais, como queimadas e eventos climáticos ex-
tremos, têm se intensificado nos últimos anos, impulsionados por mudanças
climáticas e atividades antrópicas. Nesse cenário, torna-se crucial investir em
pesquisas para reduzir gases poluentes, como o Dióxido de Carbono (CO2).
Contudo, os estudos atuais focam predominantemente em emissões de paı́ses
e veı́culos urbanos. O setor agropecuário, entretanto, contribui significativa-
mente para as emissões de CO2 no Brasil. Este trabalho apresenta um bench-
mark de modelos de inteligência artificial para prever emissões. Utilizamos da-
dos de dois modelos de tratores, provenientes dos sistemas de combustı́vel, bate-
ria, motor e marcha. Utilizamos métodos de pré-processamento como LIME, e
a estimativa de emissão de carbono usando tipo de combustı́vel e intensidade de
carbono definida pela Associação Brasileira de Engenharia Automotiva. Dessa
forma, avaliamos dezesseis modelos de aprendizado de máquina, destacando-
se o modelo XGBoost, com o menor RMSE de 0,01, demonstrando desempenho
promissor para previsão.

1. Introdução

As mudanças climáticas globais têm se tornado uma preocupação crescente, agra-
vada pelo aumento expressivo das emissões de Dióxido de carbono (CO2) desde



o perı́odo pré-industrial. Estudos indicam que essas emissões quase quadru-
plicaram desde 1990, atingindo aproximadamente 35 bilhões de toneladas por
ano [Ritchie and Roser 2024]. Em resposta a esse cenário, acordos internacionais,
como o Acordo de Paris, impulsionam paı́ses, incluindo o Brasil, a adotarem es-
tratégias rigorosas para a redução de poluentes [Ministério do Meio Ambiente 2015,
Associação Brasileira de Engenharia Automotiva 2025].

Figura 1. Emissões de dióxido de carbono (CO2) de combustı́veis fósseis e
indústria.

Além disso, a emissão de CO2 proveniente de combustı́veis fósseis e atividades
industriais está aumentando gradativamente ao longo dos anos, conforme podemos ver
na Figura 1 [Ritchie et al. 2023]. Como podemos ver, o Brasil tem experimentado um
aumento gradual em sua taxa de emissão, e grande parte dos poluentes são originados
pelos meios de produção agrı́cola.

O Brasil emitiu 2,17 bilhões de toneladas de CO2 em 2019, representando um
aumento de 9,6% em relação a 2018. Destes, 73% são de atividades agropecuárias, tota-
lizando 598,7 milhões de toneladas de CO2 equivalente. Este dado destaca a relevância
do setor agropecuário nas emissões nacionais, embora também evidencie seu potencial
para práticas de sequestro de carbono. A adoção de medidas como eliminação do des-
matamento, recuperação de pastagens e agricultura de baixo carbono (utilizando métodos
de aprendizado de máquina) podem reduzir significativamente a pegada de carbono do
agronegócio [Grilli 2020].

Nesse contexto, o setor agrı́cola destaca-se pela crescente mecanização, impul-
sionada pela demanda global por alimentos. A utilização intensiva de tratores e ou-
tras máquinas pesadas é essencial para garantir a produtividade, mas também representa
uma fonte significativa de emissões de CO2. O desafio, portanto, reside em conciliar a
eficiência operacional com a mitigação dos impactos ambientais.

Para enfrentar esse desafio, torna-se fundamental o desenvolvimento de modelos
computacionais capazes de estimar com precisão as emissões provenientes do uso de ma-
quinário agrı́cola. Mais do que simplesmente prever, esses modelos devem permitir uma
análise aprofundada dos dados operacionais, extraindo padrões relevantes e identificando
as variáveis que mais influenciam as emissões. Essa abordagem orientada por dados (data
mining) possibilita a otimização do desempenho dos modelos, além de fornecer insights
valiosos para a tomada de decisões no campo.



Este trabalho realiza um estudo entre dezesseis modelos diferentes para estimar as
emissões de CO2 geradas por tratores agrı́colas. A metodologia envolve a análise de dados
coletados por sensores embarcados de dois tratores. Cada sensor monitora variáveis como
rotação do motor, nı́vel de combustı́vel, seleção de marchas, carga do motor e temperatura.
A partir dessa base, comparamos o desempenho dos modelos a fim de analisar qual deles
teria o melhor desempenho para capturar as complexas relações não-lineares entre os
fatores operacionais e as emissões.

Além da modelagem, este trabalho enfatiza o papel da interpretabilidade
como elemento central para a confiança e a utilidade prática do sistema pro-
posto. Para tanto, técnicas como o Local Interpretable Model-agnostic Explanations
(LIME) [Ribeiro et al. 2016] são aplicadas, permitindo compreender a contribuição in-
dividual de cada variável nas predições do modelo. Dessa forma, o sistema não apenas
oferece previsões precisas, mas também atua como uma ferramenta explicativa, útil para
operadores, engenheiros e formuladores de polı́ticas.

Ao unir precisão preditiva e interpretabilidade, este trabalho contribui com: i) di-
ferente dos métodos da literatura, não simulamos os dados, mas sim, utilizamos dados
operacionais de campo de duas máquinas agrı́colas reais. ii) Realizamos um benchmark
de dezesseis modelos de aprendizado de máquina para emissão de carbono a fim de com-
preender o melhor método para o cenário. iii) Este trabalho também auxilia no desen-
volvimento de agricultura sustentável proporcionando insights sobre modelos e métricas
relevantes para o problema de emissão de CO2.

As seções subsequentes deste artigo estão organizadas da seguinte forma: a
Seção 2 apresenta os principais trabalhos relacionados, destacando abordagens existen-
tes para a predição e redução de emissões em veı́culos; a Seção 3 detalha a proposta
metodológica, incluindo o processo de coleta e tratamento de dados, seleção de atribu-
tos; Em seguida Seção 4, explicamos o fluxo do benchmark, quais métricas utilizamos e
modelos selecionados; a Seção 5 discute os resultados obtidos, com ênfase na capacidade
preditiva do modelo e nos ganhos decorrentes da aplicação de técnicas de interpretabili-
dade; e, por fim, a Seção 6 apresenta as conclusões do trabalho e propõe direções para
pesquisas futuras.

2. Trabalhos Relacionados
Recentemente, trabalhos têm explorado o uso de técnicas de aprendizado de máquina para
a previsão e mitigação de emissões de CO2, utilizando dados operacionais coletados em
tempo real de veı́culos. Modelos baseados em arquiteturas recorrentes, como as Redes
Long Short-Term Memory (LSTM), e Redes Neurais Profundas (DNNs) têm se destacado
pela capacidade de capturar padrões temporais e relações não lineares entre variáveis,
tais como velocidade, aceleração, temperatura e carga do motor [Vega and Perkins 2023,
Jin 2024, de Souza et al. 2020].

Como observado por Jin et al., a crescente utilização de redes neurais, espe-
cialmente arquiteturas feedforward e recorrentes, tem mostrado resultados promisso-
res na previsão das emissões de carbono, além de contribuir significativamente para a
otimização dos modelos de previsão [Jin et al. 2024]. Outros estudos comparam diferen-
tes técnicas para identificar qual delas melhor atende aos seus objetivos, como o trabalho
de [Silva et al. 2024a], que analisa três abordagens distintas: uma baseada em regras, uma



lógica fuzzy e uma DNN simples. Durante a pesquisa, a DNN se destacou como a mais
eficaz na redução de CO2, evidenciando o potencial dessa tecnologia.

Complementarmente, uma linha de investigação concentra-se na otimização ope-
racional visando à redução de emissões. Estratégias como a troca de marchas em pontos
ideais [Silva et al. 2024b] e o planejamento inteligente de rotas [Banerjee et al. 2024] têm
sido empregadas como soluções práticas para mitigar emissões durante a operação vei-
cular. Tais métodos incorporam variáveis contextuais, como topografia, densidade de
tráfego e consumo de combustı́vel, permitindo recomendações personalizadas em tempo
real. A integração dessas abordagens com sistemas de controle embarcados e sensores
tem demonstrado eficácia em veı́culos comerciais e de carga, contribuindo para a tomada
de decisão autônoma em campo.

Outro aspecto amplamente discutido na literatura é a qualidade e o preparo dos
dados utilizados na modelagem. Técnicas como remoção de outliers, normalização
de variáveis e imputação de valores ausentes são essenciais para garantir a ro-
bustez dos modelos preditivos e prevenir vieses decorrentes do ruı́do dos senso-
res [Smith and Wang 2024, Lee and Zhang 2024]. A ausência de um tratamento sis-
temático pode comprometer a generalização dos modelos, sobretudo em cenários com
alta variabilidade operacional.

Em paralelo, técnicas de interpretabilidade vêm ganhando protago-
nismo no desenvolvimento de modelos preditivos transparentes. Ferramen-
tas como LIME [Ribeiro et al. 2016] e SHAP (Shapley Additive Explanati-
ons) [Lundberg and Lee 2017] têm sido amplamente adotadas em aplicações de
aprendizado de máquina, especialmente na área de transportes. Ao quantificar a
contribuição individual de cada variável para uma previsão, essas técnicas promovem
transparência e aumentam a confiança dos especialistas e operadores na utilização dos
modelos. Estudos recentes demonstram a aplicabilidade dessas ferramentas em domı́nios
industriais e agrı́colas, facilitando a validação e a interpretação de modelos complexos.

Apesar dos avanços, observa-se uma lacuna na literatura quanto à aplicação in-
tegrada dessas abordagens no contexto da agricultura de precisão. Embora trabalhos
como [Ma et al. 2023] proponham abordagens baseadas em deep learning para a previsão
em tempo real das emissões em máquinas agrı́colas, a maioria dos estudos concentra-se
em veı́culos urbanos ou logı́sticos, sem considerar as especificidades operacionais de tra-
tores e demais máquinas agrı́colas - tais como combustı́vel, motor, bateria e marcha.

Neste contexto, este trabalho propõe uma análise da integração sistemática entre
modelos de aprendizado de máquina, pré-processamento rigoroso de dados e técnicas de
interpretabilidade, aplicada ao contexto de tratores agrı́colas. O objetivo é identificar o
melhor modelo para predizer emissão de CO2, preciso e transparente, com potencial para
subsidiar práticas operacionais mais sustentáveis no setor agroindustrial. Diferentemente
de estudos anteriores, nosso trabalho busca não apenas identificar potenciais modelos
preditivo, mas também fornecer insights acionáveis a operadores e engenheiros por meio
de explicações compreensı́veis acerca do comportamento do modelo.

3. Analise de Dados
Os dados coletados dos tratores podem ser divididos em quatro categorias: (i) Fuel
sendo dados contendo informações gerais e especı́ficas, como temperatura, gasto, tipo



e pressão; (ii) Engine os quais são sensores, vinculados à qualidade e estado do motor
do veı́culo, dessa forma, conseguimos não só informações sobre torque e rotação, mas
também informação de óleo, temperatura, pressão, etc.; (iii) Gear representa qual marcha
da transmissão selecionada e qual marcha da transmissão atual; e (iv) Battery represen-
tando a voltagem da bateria.

Embora os dados exatos permaneçam confidenciais, em conformidade com os
acordos da Lei Geral de Proteção de Dados (LGPD), as informações utilizadas neste es-
tudo são tratadas sob rı́gidos protocolos de segurança e acesso restrito, a fim de preservar
a privacidade e a integridade dos dados sensı́veis. Tais medidas garantem que o manu-
seio dos dados esteja em total conformidade com as exigências legais, evitando qualquer
exposição não autorizada e assegurando a proteção das informações dos envolvidos.

Nesta Seção, descrevemos detalhadamente os procedimentos adotados para a
obtenção dos valores de emissão de CO2, o pré-processamento, a análise exploratória
e a seleção de atributos para a modelagem preditiva.

3.1. Como estimar a emissão de CO2

A metodologia de cálculo “do poço à roda” para veı́culos no Brasil, adaptada da cartilha
publicada pela [Associação Brasileira de Engenharia Automotiva ]. Esta cartilha sintetiza
a relação entre consumo energético κ, intensidade de carbono ι e emissões de CO2,
adaptável a tratores agrı́colas mediante integração de telemetria. O consumo energético
pode ser calculado de acordo com a Equação (1):

κ = δA (1)

onde δ e A respectivamente representam a densidade energética do combustı́vel em
(MJ/l) e autonomia em (l/km).

O κ varia de acordo com os parâmetros operacionais (ex.: carga, velocidade,
inclinação do terreno), capturados via telemetria, o que traria a necessidade de cada mo-
delo possuir uma constante diferente.

Contudo, a intensidade de carbono ι é definida pelo combustı́vel (ex.: diesel B7 =
82.40CO2/MJ), o que torna essa variável constante,nesse aspecto, traz-se a possibilidade
de explorar a emissão apenas com a autonomia do combustı́vel. Além disso, também
conseguimos extrair as seguintes informações:

• Coeficientes auditados: IC para etanol, diesel e eletricidade, calculados para a
matriz energética brasileira.

• Alinhamento regulatório: Projeções compatı́veis com o Rota 2030, que poderá
incluir tratores em fases futuras.

Desta forma, conseguimos estimar o consumo de CO2 seguindo a Equação (2):

CO2eq = κι (2)

Desta forma, por meio da Equação (2), estimamos a emissão de carbono para cada
momento da base de dados, considerando atributos do veı́culo, como variáveis mecânicas,
nı́vel de combustı́vel e velocidade. Esses dados permitem treinar um regressor e melhorar
a precisão na previsão de emissões futuras.



3.2. Pré-processamento e Análise Exploratória de Dados
Os dados brutos coletados passaram por diversas etapas de pré-processamento, visando
assegurar sua consistência e qualidade analı́tica. Inicialmente, foi realizada uma Análise
Exploratória de Dados (EDA) utilizando ferramentas visuais como histogramas, box-
plots e mapas de correlação, que permitiram avaliar a distribuição dos dados e identi-
ficar possı́veis anomalias. Para a detecção de valores discrepantes (outliers), utilizou-se o
método do Intervalo Interquartil (IQR):

IQR = Q3 −Q1, (3)

sendo que um valor v é considerado um outlier se:

v < Q1 − 1,5× IQR ou v > Q3 + 1,5× IQR. (4)

(a) Com outliers (b) Sem outliers

Figura 2. Comparação dos dados com e sem outliers.

Os outliers identificados foram removidos para evitar distorções nas análises es-
tatı́sticas subsequentes e na modelagem preditiva. A Figura 2 ilustra, por meio de his-
togramas, a comparação de um atributo Fuel, entre os dados antes e depois da remoção
dos valores extremos. Esse processo foi realizado para todas as variáveis, menos para os
atributos Gear.

3.3. Seleção de Atributos e Análise de Correlação
A análise exploratória evidenciou que nem todas as variáveis disponı́veis possuı́am re-
levância significativa para a predição das emissões de CO2. Assim, procedeu-se a
uma análise de correlação detalhada, empregando tanto a correlação padrão quanto a
correlação cruzada, com o intuito de identificar os atributos mais informativos.

Os resultados indicaram, por exemplo, que variáveis como o engate da marcha
apresentaram forte correlação com o desempenho do motor e com os nı́veis de emissão
de CO2, enquanto atributos como a seleção de marcha demonstraram baixa relevância.
Com base nessa análise, variáveis de baixa correlação — como as horas operacionais do
motor — foram descartadas, visando reduzir a dimensionalidade e aumentar a eficiência
do modelo. A Figura 3(a) apresenta a matriz de correlação das variáveis selecionadas,
oferecendo uma visão abrangente das interdependências entre os atributos.



(a) Matriz de correlação entre os atributos selecio-
nados.

0.0 0.5 1.0 1.5 2.0 2.5
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Fuel F1

Fuel F6

Engine F10

Engine F1

(b) Importância dos atributos para a instância com
menor erro, conforme LIME.

Além disso, Figura 3(a) sugere que, no conjunto de dados analisado, as variáveis
dentro de cada grupo (como Engine, Fuel, Gear e Battery) apresentam correlações mode-
radas entre si, com algumas correlações mais fortes, como observado entre Engine F1-F4.
Contudo, a correlação entre variáveis de diferentes grupos é fraca, o que indica que es-
ses subsistemas funcionam de maneira relativamente independente. Adicionalmente, a
variável Time não exibe correlação significativa com a maioria das outras variáveis, suge-
rindo a ausência de uma dependência temporal clara nos dados. Esses resultados indicam
que, embora haja interdependência dentro de certos grupos, o comportamento geral dos
dados é complexo, com pouca influência direta do tempo e interações limitadas entre os
diferentes subsistemas analisados.

3.4. Aprimoramento da Interpretabilidade com LIME

Considerando que modelos de aprendizado de máquina complexos, como as redes neu-
rais profundas, frequentemente se comportam como caixas-pretas, a interpretabilidade
torna-se essencial para garantir a confiança nas previsões. Para mitigar essa limitação, foi
aplicada a técnica LIME, que visa tornar as decisões do modelo mais transparentes.

O LIME atua gerando perturbações locais nos dados de entrada e construindo
modelos interpretáveis (geralmente lineares) que aproximam o comportamento do modelo
complexo em torno de uma instância especı́fica. Essa abordagem possibilita quantificar
a contribuição de cada atributo para uma previsão individual. Ao aplicar o LIME ao
modelo de predição de emissões de CO2, foi possı́vel identificar quais variáveis, como
a velocidade do motor, a temperatura do combustı́vel ou o engate de marcha, têm maior
influência sobre as previsões. Tal interpretabilidade não só valida a coerência do modelo,
mas também facilita a adoção de suas recomendações por engenheiros e operadores. A
Figura 3(b) ilustra a saı́da do LIME, destacando os atributos que mais contribuı́ram para
aquela predição, seja negativamente ou positivamente. Neste caso, repare que a Engine
F1 tem um impacto positivo grande para a predição do exemplo, enquanto Engine F11
tem um impacto negativo para aquela amostra.

Portanto, podemos resumir os passos necessários para o pré-processamento dos
dados da seguinte forma:

• Coleta de dados: Aquisição de informações operacionais dos sensores dos siste-
mas de combustı́vel, bateria, motor e transmissão.



• Tratamento de outliers: Identificação e remoção de valores extremos utilizando
o método do IQR.

• Análise exploratória: Uso de técnicas visuais para inspecionar a distribuição dos
dados e detectar anomalias.

• Seleção de atributos: Análise de correlação para identificar os atributos mais
relevantes para a modelagem preditiva.

• Interpretabilidade do modelo: Aplicação da técnica LIME para aprimorar a
transparência nas decisões do modelo.

A combinação de visualizações e técnicas explicativas forneceu uma base sólida
para assegurar a qualidade dos dados e a eficácia da modelagem preditiva subsequente.

4. Benchmark
Para isso, analisamos dados operacionais coletados por sensores embarcados com o in-
tuito de identificar padrões que orientem ajustes operacionais visando à otimização do
consumo de combustı́vel. Esta Seção descreve a metodologia adotada pelo nosso compa-
rativo, com foco no tratamento e seleção de atributos, definição da arquitetura dos mode-
los e avaliação do impacto de variáveis crı́ticas nas previsões.

4.1. Visão Geral do Processo

A Figura 3 apresenta o fluxo de processamento dos dados. Inicialmente, os dados dos
veı́culos foram recebidos em formato bruto, com atributos distribuı́dos de forma desorga-
nizada (1). Após a transformação estrutural, foi aplicado um filtro individual de atributos
(2), reduzindo a dimensionalidade do conjunto de dados. Em seguida, o conjunto foi di-
vidido em subconjuntos de treinamento e teste (3), com base em experimentos orientados
por explicabilidade. Por fim, aplicou-se a normalização Min-Max (4), assegurando que
todos os atributos permanecessem em escala compatı́vel, sem vazamento de dados.
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Figura 3. Visão geral do fluxo de dados utilizado na construção do modelo.

Métricas. Para avaliação dos modelos utilizamos, quatro métricas distintas, como
MSE (Erro Quadrático Médio), MAE (Erro Absoluto Médio), RMSE (Raiz do Erro
Quadrático Médio) e R2 (Coeficiente de Determinação). O MSE calcula a média dos
quadrados das diferenças entre os valores reais e os previstos, penalizando grandes erros,
o que pode ser útil para identificar discrepâncias significativas na previsão de CO2. Já o



MAE mede a média dos erros absolutos, oferecendo uma visão mais direta da precisão
do modelo sem amplificar os erros maiores, o que é útil para avaliações mais equilibra-
das. O RMSE é uma versão do MSE que, ao tirar a raiz quadrada, retorna os erros em
uma unidade de medida mais próxima da variável original, facilitando a interpretação dos
erros em contextos como a quantidade de CO2 emitido. Por fim, o R2 mede a proporção
da variabilidade nos dados que o modelo consegue explicar, ajudando a entender o quão
bem o modelo consegue capturar a dinâmica das emissões de CO2 e sua capacidade de
generalização. Essas métricas são fundamentais para ajustar e validar modelos preditivos
que visam estimar com precisão os nı́veis de CO2, auxiliando na tomada de decisões para
mitigação das mudanças climáticas.

Nesta abordagem, foram exploradas diversas técnicas para prever as emissões
de CO2, abrangendo desde métodos estatı́sticos simples até estratégias avançadas de
aprendizado profundo. Inicialmente, modelos lineares como a Regressão Linear (LR)
foram considerados, dada sua capacidade de ajustar uma relação direta entre as variáveis
preditoras e a emissão de CO2, proporcionando uma interpretação clara dos resultados.
Para lidar com possı́veis problemas de multicolinearidade e reduzir o risco de overfitting,
também foram aplicadas variações como a Ridge Regression (RR) e a Lasso Regression
(Lasso), esta última auxiliando na seleção automática das variáveis mais relevantes, além
do ElasticNet, que combina as vantagens dos métodos de penalização L1 e L2.

Adicionalmente, métodos baseados em árvores de decisão foram avaliados. O
Decision Tree Regressor (DTR) segmenta os dados em regiões homogêneas, enquanto
técnicas ensemble, como o Random Forest Regressor (RFR), o Gradient Boosting Regres-
sor (GBR) e o AdaBoost Regressor, aumentam a robustez das previsões ao combinar os
resultados de múltiplas árvores, sendo especialmente eficazes na modelagem de relações
não lineares complexas.

Também foram investigadas abordagens baseadas em instâncias, como o K Nea-
rest Neighbors Regressor (KNN), que realiza previsões com base na similaridade dos ca-
sos, e métodos probabilı́sticos, exemplificados pelo Gaussian Process Regressor (GPR),
que modela a distribuição dos dados de maneira não paramétrica, proporcionando estima-
tivas precisas mesmo em cenários de alta incerteza.

Por fim, técnicas de aprendizado profundo, como o MLP Regressor e o XGBo-
ost, foram incorporadas para capturar relações intrincadas em grandes volumes de dados.
Além disso, arquiteturas especializadas, como as Deep Neural Networks (DNN), as Re-
current Neural Networks (RNN) e suas variantes com Gated Recurrent Units (GRU), fo-
ram utilizadas para modelar dependências temporais e padrões evolutivos, aprimorando a
capacidade de previsão em séries temporais.

Esta diversidade de modelos permite uma análise abrangente, contribuindo para
identificar a abordagem mais adequada para a previsão das emissões de CO2, bem como
para compreender melhor as nuances e complexidades dos dados analisados.

5. Resultados

Nesta Seção, analisamos todos os resultados coletados acerca dos modelos explorados,
assim como o impacto que a mineração inicial dos dados e o tratamento de interpretabili-
dade trouxeram.



Na Tabela 1, observamos que os modelos lineares, como KR, RR, Lasso e Elas-
ticNet, apresentaram um desempenho insatisfatório, com R2 variando de −0.23 a −0.04,
indicando que não foram capazes de capturar bem os padrões dos dados. As Redes Neu-
rais também obtiveram os piores resultados dentre os modelos avaliados, com RNN, GRU
e DNN apresentando os piores valores de R2, chegando a −15.46, −5.34 e −7.06, res-
pectivamente, além de métricas de erro elevadas. Em contraste, o KNN e o GPR tiveram
desempenhos intermediários, com R2 variando entre −0.04 e 0.41, sendo o primeiro supe-
rior ao segundo. A DTR obteve um R2 de 0.13, superando os modelos lineares, mas com
valores inferiores aos métodos de ensemble. Os modelos RFR e AdaBoost se destacaram
com R2 de 0.52 e 0.49, respectivamente, enquanto o GRB apresentou um desempenho
inferior, com R2 negativo. O melhor desempenho foi obtido pelo XGBoost, que alcançou
os menores valores de MSE, MAE e RMSE, além do maior R2 (0.54), destacando-se
como a abordagem mais eficaz entre as avaliadas.

Tabela 1. Sumarização das métricas dos melhores modelos e seus desvios
padrões.

Modelos
Métricas

MSE MAE RMSE R2

LR 0.00063 ± 0.00118 0.01877 ± 0.01694 0.02528 ± 0.01694 -0.22731 ± 0.02461

RR 0.00062 ± 0.00112 0.01857 ± 0.01667 0.02495 ± 0.01667 -0.19552 ± 0.02391

Lasso 0.00054 ± 0.00094 0.01548 ± 0.01732 0.02324 ± 0.01732 -0.03666 ± 0.02282

ElasticNet 0.00054 ± 0.00094 0.01548 ± 0.01732 0.02324 ± 0.01732 -0.03666 ± 0.02282

DTR 0.00045 ± 0.00125 0.01481 ± 0.01536 0.02134 ± 0.01536 0.12578 ± 0.02033

RFR 0.00025 ± 0.00077 0.01089 ± 0.01148 0.01583 ± 0.01148 0.51897 ± 0.01582

GRB 0.00063 ± 0.00132 0.02122 ± 0.01374 0.02528 ± 0.01374 -0.22707 ± 0.01914

AdaBoost 0.00026 ± 0.00093 0.00980 ± 0.01309 0.01635 ± 0.01309 0.48644 ± 0.01590

SVR 0.00302 ± 0.00391 0.04735 ± 0.02789 0.05496 ± 0.02789 -4.79790 ± 0.02935

KNN 0.00030 ± 0.00103 0.00974 ± 0.01460 0.01755 ± 0.01460 0.40819 ± 0.01752

GPR 0.00054 ± 0.00112 0.01662 ± 0.01634 0.02331 ± 0.01634 -0.04345 ± 0.02321

MLP 0.00115 ± 0.00194 0.02562 ± 0.02231 0.03398 ± 0.02231 -1.21666 ± 0.03201

XGBoost 0.00023 ± 0.00077 0.01001 ± 0.01175 0.01544 ± 0.01175 0.54229 ± 0.01539

DNN 0.00420 ± 0.00445 0.05554 ± 0.03341 0.06482 ± 0.03341 -7.06498 ± 0.03625

GRU 0.00332 ± 0.00171 0.05502 ± 0.01719 0.05764 ± 0.01719 -5.34121 ± 0.02033

RNN 0.00862 ± 0.00896 0.07913 ± 0.04860 0.09287 ± 0.04860 -15.45995 ± 0.05612

Para os modelos de redes neurais RNN e GRU, foram testados cinco tamanhos
de contextos (5, 10, 15, 20 e 30), conforme apresentado na Tabela 2. O tamanho do
contexto determina quantos passos anteriores são utilizados para realizar a previsão. De
modo geral, observa-se que o aumento do contexto tende a melhorar o desempenho, mas
contextos excessivamente grandes podem degradar a performance.



Na Tabela 2, observamos que, para contextos com tamanho menor, como 5 e 10,
os erros permanecem elevados e o R2 assume valores fortemente negativos, sugerindo
que os modelos não conseguem capturar bem a estrutura dos dados. Para a GRU, o R2
melhora de −4.48 (contexto 5) para −2.20 (contexto 10), enquanto na RNN, a variação
é de −2.67 para −2.08, indicando um ganho de desempenho, mas ainda insuficiente para
serem melhores que apenas escolher a média. Com contextos de tamanho intermediário,
entre 15 e 20, há melhoria significativa na performance da GRU, com o R2 subindo para
−0.61 e −0.39, respectivamente, acompanhada pela redução nos erros. Já na RNN, a
variação apresenta comportamento sem padrão, com piora expressiva para contexto 15
(−7.34) e uma leve recuperação para 20 (−1.45). No entanto, ao expandir a contexto para
30, ambos os modelos sofrem uma deterioração severa no desempenho: a GRU atinge
um R2 de −11.27, enquanto a RNN retorna a −4.35, acompanhados por um aumento
significativo no MSE e RMSE. Esses resultados indicam um problema de Vanishing Gra-
dients, ou seja, quando os gradientes ficam tão pequenos que impedem o aprendizado do
modelo. Já para contextos intermediários tendem a oferecer um melhor equilı́brio entre
erro e capacidade preditiva.

Tabela 2. Resultados variando o tamanho do contexto para RNN e GRU

Modelo Contexto MSE MAE RMSE R2

GRU

5 0.00287 ± 0.00242 0.05035 ± 0.01839 0.05360 ± 0.01839 -4.48430 ± 0.01839

10 0.00167 ± 0.00197 0.03296 ± 0.02425 0.04092 ± 0.02425 -2.19625 ± 0.04057

15 0.00084 ± 0.00141 0.02312 ± 0.01758 0.02905 ± 0.01758 -0.61045 ± 0.02736

20 0.00072 ± 0.00113 0.02055 ± 0.01742 0.02695 ± 0.01742 -0.38606 ± 0.02568

30 0.00642 ± 0.00302 0.07759 ± 0.02017 0.08017 ± 0.02017 -11.26690 ± 0.02046

RNN

5 0.00192 ± 0.00367 0.03266 ± 0.02922 0.04383 ± 0.02922 -2.66607 ± 0.04280

10 0.00161 ± 0.00269 0.03190 ± 0.02446 0.04020 ± 0.02446 -2.08469 ± 0.03700

15 0.00437 ± 0.00352 0.05950 ± 0.02882 0.06611 ± 0.02882 -7.34189 ± 0.06267

20 0.00128 ± 0.00225 0.02869 ± 0.02148 0.03584 ± 0.02148 -1.45162 ± 0.03150

30 0.00280 ± 0.00324 0.04452 ± 0.02865 0.05295 ± 0.02865 -4.35052 ± 0.05103

A Figura 4 apresenta a porcentagem de erros relativos de emissão real de CO2, cal-
culada através da Equação (2), obtidas pelos quatro melhores modelos treinados. Em Fi-
gura 4(a), observa-se que o modelo DTR apresenta maior instabilidade entre os modelos
avaliados, devido à sua natureza baseada em divisões discretas dos dados, sendo incapaz
de representar em completude os valores reais. Ou seja uma dificuldade em capturar as
pequenas variações contı́nuas da emissão real de CO2, resultando em uma representação
menos suave e com perda de nuances importantes.

Por outro lado, ao analisarmos o GRB em Figura 4(b), pode-se notar uma melhoria
na predição, comparada a obtida pelo DTR. Perceba que a porcentagem de erro é mais
próxima de zero, ainda que apresente picos no erro, o modelo começa a responder melhor
às flutuações sutis do sinal real. Por conta da sensibilidade às variações torna a curva mais
próxima da realidade.

Ao observar as figuras 4(c) e 4(d), RFR e XGBoost respectivamente, nota-se uma
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Figura 4. Previsão dos dados de teste para os 4 melhores modelos ao longo do
tempo (segundos).

estabilidade maior das predições. RFR apresenta um ruı́do maior que o XGBoost, que por
sua vez, demonstra menores picos no erro relativo, além de todos valores serem abaixo
de 50% do erro real. Isso sugere que o XGBoost não apenas tem uma maior sensibilidade
às variações locais, mas também é capaz de modelar a emissão de CO2 de forma mais
contı́nua e coerente com o comportamento real do sistema.

Em conclusão, os modelos de ensemble, em particular o XGBoost, demonstraram
ser os mais eficazes para prever as emissões de CO2, superando outros métodos tanto em
precisão quanto em sensibilidade às flutuações dos dados. A análise detalhada das pre-
visões confirmou que o XGBoost apresenta o melhor equilı́brio entre ajuste aos picos e
suavidade nas transições, sendo o modelo mais robusto para capturar as complexidades do
sistema. Embora a GRB tenha mostrado um desempenho satisfatório, os métodos de en-
semble, especialmente o XGBoost, mostraram-se superiores em termos de performance,
validando sua escolha como o melhor modelo para as previsões em nosso estudo.

6. Conclusão
Este trabalho apresentou a análise de uma abordagem baseada em inteligência artificial
para estimar e reduzir as emissões de CO2 em dois tratores, com foco na integração entre
técnicas de aprendizado profundo, pré-processamento rigoroso de dados e interpretabili-
dade por meio do LIME. A partir da coleta e análise de dados operacionais de sensores
embarcados, conseguimos construir um benchmark de experimentos e identificar peculi-
aridades de dezesseis modelos diferentes para tarefa de predição de CO2.

Os experimentos demonstraram que a seleção adequada de atributos é fundamen-
tal para a qualidade das previsões. Modelos treinados com conjuntos reduzidos e bem



escolhidos de variáveis apresentaram desempenho superior em termos de generalização,
especialmente quando guiados por ferramentas de interpretabilidade. Adicionalmente, os
experimentos demonstraram que embora modelos complexos sejam úteis parar maioria
dos casos, soluções como XGBoost ultrapassam por conta da sua natureza e robustez
contra ruı́dos.

Os resultados obtidos reforçam o papel da IA como aliada estratégica na
construção de soluções sustentáveis para o setor agrı́cola, permitindo não apenas prever
emissões com alta acurácia, mas também compreender os fatores que mais as influen-
ciam. A transparência proporcionada por técnicas como o LIME aumenta a confiança no
uso dos modelos e abre espaço para decisões mais embasadas por parte de operadores,
engenheiros e formuladores de polı́ticas públicas.

Como trabalho futuro, pretende-se explorar abordagens mais sofisticadas para pre-
visão em horizontes temporais maiores, como modelos hı́bridos e técnicas baseadas em
séries temporais, além de expandir a base de dados com diferentes tipos de máquinas
e condições operacionais. A incorporação de estratégias adaptativas de otimização em
tempo real também se mostra promissora para reduzir emissões de forma contı́nua e per-
sonalizada.
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em: 31 mar. 2025.

Ritchie, H. and Roser, M. (2024). Co2 emissions.

Silva, F. L., Eckert, J. J., Miranda, M. H., da Silva, S. F., Silva, L. C., and Dedini, F. G.
(2024a). A comparative analysis of optimized gear shifting controls for minimizing
fuel consumption and engine emissions using neural networks, fuzzy logic, and rule-
based approaches. Engineering Applications of Artificial Intelligence, 135:108777.

Silva, F. L. et al. (2024b). Optimized gear shifting controls for emission reduction. Engi-
neering Applications of Artificial Intelligence, 95:104–112.
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