
A Framework for Scalable Data Analysis and Model
Aggregation for Public Bus Systems

Mayuri A. Morais1, Raphael Y. de Camargo1

1Centro de Matemática, Computação e Cognição – Universidade Federal do ABC
(UFABC)

Rua Arcturus, 03 – 09606-070 – São Bernardo do Campo – SP – Brazil

{mayuri.morais,raphael.camargo}@ufabc.edu.br

Abstract. Urban mobility through quality public transportation is one of the
major challenges for the consolidation of smart cities. Researchers developed
different approaches for improving bus system reliability and information qual-
ity, including travel time prediction algorithms, network state evaluations, and
bus bunching prevention strategies. The information provided by these ap-
proaches are complementary and could be aggregated for better predictions.
In this work, we propose the architecture and a present a prototype implementa-
tion of a framework that enables the integration of several approaches, which we
call models, into scalable and efficient composite models. For instance, travel
time prediction models can use estimators of bus position, network state, and
bus headways to deliver more accurate and reliable predictions. We evaluate
the scalability of the framework, the CPU usage of the framework components,
and the predictions of the travel time models. We show that real-time predictions
using this framework can be feasible in large metropolitan areas, such as São
Paulo city.

1. Introduction
Providing efficient urban mobility is one of the major challenges facing large metropoli-
tan centers today. An efficient way to reduce congestion is with the provision of quality
public transport systems. Rail transport systems using trains and subways are very ef-
ficient, cover long distances, can connect cities close to capitals, are fast and generally
suffer few delays and loss of time. However, the investments required for the creation or
expansion of a railway line are high, with long maturation and grace periods (until the
first line operation occurs). Thus, although rail transport is very efficient, its cost of im-
plementation and extension is very high, so that most of the demand for travel in public
transport is served by urban bus systems, which are more straightforward to implement
and with lower cost.

Public transport systems using buses in Metropolis, such as São Paulo, are com-
plex systems that continuously interact with the dynamics of the city [Cascetta 2009].
Buses are delayed due to congestion and overcrowding, as well as having their flow
interrupted by traffic lights. Understanding the behavior of this system in differ-
ent contexts, such as weekdays, hours of the day and holidays, is vital for better

This research is part of the INCT of the Future Internet for Smart Cities funded by CNPq proc.
465446/2014-0, Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) – Fi-
nance Code 001, FAPESP proc. 14/50937-1, and FAPESP proc. 15/24485-9.

planning of these systems. Dealing with this complexity is difficult and may re-
quire sophisticated models that encompass different aspects of the bus system, such
as bus network state [Zhang et al. 2016], bus position estimation [Adachi et al. 2015],
travel time predictions [Mori et al. 2015, Choudhary et al. 2016] and bus headway evolu-
tion [Yu et al. 2017]. Existing studies evaluate these aspects separately, despite the clear
interactions between them, such as the influence of headway evolution on travel time pre-
dictions. There are only a few efforts in this direction of combining aspects of bus system
analysis [Mazloumi et al. 2011].

One way to improve this interaction is by providing a framework for bus data
collection, analysis, and visualization, which contains a set of models, each contemplating
a specific aspect of the bus system. Such a system contain some lower level models,
such as the graph representing the bus network and the estimation of the network link
states (congestion level), bus positions and bus headways. On top of these, higher level
predictions models, such as for travel time, bus headway evolution, and network link state
evolution, can be built. Moreover, the framework should allow the deployment of different
types of models for each aspect, with different computational complexities, which can be
selected based on available computational resources and processing time requirements.

In this work we propose the architecture and a prototype implementation of this
framework, containing a network model of one hundred bus routes from São Paulo city, an
estimator for bus positions, and three travel time prediction models, which use historical
and real-time data on bus positions. We evaluate the scalability of the framework with
three workstations, the CPU usage of the framework components, and the predictions of
the travel time models. We show that real-time predictions using this framework can be
feasible even for large metropolitan areas, such as São Paulo city.

2. Related Work

In the literature we find two distinct types of predictions for bus travel time:
predictions of total travel time and predictions of time / arrival time at a spe-
cific point, where efforts are more concentrated in this second type of predic-
tion. Proposals for the prediction of total bus travel time were developed using
Kalman filter [Chen et al. 2004], non-parametric regression [Chang et al. 2010] and SVM
[Yu et al. 2010]. One of the first methodologies for predicting bus arrival time was
proposed by [Lin and Zeng 1999] using regression and real-time GPS data. After this
study, several other studies developed methods and models for the prediction of ar-
rival time, using neural networks [Chien et al. 2002, Jeong and Rilett 2004], Kalman
filter [Chen et al. 2004, Shalaby and Farhan 2004], Support Vector Machine (SVM)
[Bin et al. 2006, Yu et al. 2008], crowdsourcing [Zhou et al. 2012] and Finite State Ma-
chine [Zuo and Wang 2013, Fu et al. 2014].

Some works propose combining different methods to achieve better predictions.
[Mazloumi et al. 2011] proposed a framework using data from different sources to pre-
dict mean travel time and its variability with two neural networks, using these values to
compose a Gaussian distribution. [Zhenliang et al. 2011] combined SVM and H-Filter
to combine historical and real-time data to predict bus arrival time. [Kumar et al. 2017a]
used the k-NN classification algorithm to identify typical patterns in historical data. The
results of this algorithm were used in a Kalman filter to predict travel times. Similarly,

[Kumar et al. 2017b] used k-NN and Kalman filter for travel time predictions, but now
applying an exponential smoothing factor to the model used in the Kalman filter. The
smoothing factor parameters were dynamically estimated and updated using recent mea-
sures. Still extending the latter work, [Kumar et al. 2017c] developed a model using equa-
tions of velocity conservation in terms of the flow theory, applying a spatiotemporal dis-
cretization to these equations. The discretized model is applied in the Kalman filter to
predict the speed in a connection.

All of the above works use a single bus line to carry out predictions.
[Yu et al. 2011] proposed a model considering eight lines that go through a common link
to make the prediction using SVM and data only in real time. [Yin et al. 2017] used his-
torical travel time information from two bus lines on a common link to predict arrival time
at a bus stop. [Gal et al. 2017] investigated the combination of methods of the Theory of
Queues and Decision Trees for the prediction of travel times considering historical data
and real-time for four lines simultaneously. They also considered dividing the bus route
into links according to the bus stops.

These works all focus on travel time predictions and use ad-hoc integration of
different types of models. Recently, [Zhang et al. 2016] proposed a complex citywide
network of 261 bus lines but focusing their work on analyzing the static topological prop-
erties of the city bus network, and without travel time prediction method.

In our approach, we do not focus on a specific model for bus network modeling
or travel time prediction. Instead, we propose a general framework for the integration
of models, which allows easy development of new models that can be built over existing
ones and that can scale over multiple machines.

3. Framework architecture

We propose a general framework for scalable and distributed processing of large amounts
of historical and real-time data from thousands of bus lines. This framework would be
useful for different applications, such as predicting bus travel times, evaluation of the
flow along the bus routes, and preventing the occurrence of bus bunching.

3.1. Models

The core framework concept are Models (Figure 1), which can represent: (i) different
views of the bus system state, pre-processed by some data analysis algorithm, such as
estimated bus position, estimated links states, estimated bus headways; or (ii) predictions
of future developments, such as travel time predictions in each link, evolution of link
states, and likelihood of bus bunching occurrences.

There can be interdependence between models, such as the bus bunching preven-
tion algorithm, which requires a model of the evolution of bus headways and estimation
of bus positions and distances. In these cases, the model that requires the result from
other models can use the results of the last execution of these models, or request a new
execution of these models and wait for the results.

Models maintain information that can be used by other models and keeps this
data in shared databases. After finishing its estimation or prediction algorithm, the model
updates its state and writes the new state in shared databases, from which other models

can read. These shared databases improve processing scalability since it decouples the
executions of different models.

Network

Graph

Simple TT

Prediction

Updated

AVL Data

Historical

Data

Bus PositionLink States

Link State

Evolution

Headway

Evolution

Advanced TT

Prediction

Historical

Link TT

Mon 9am 35s

Mon 10am 30s

...

Tue 9am 32s

ID Time Position

01 9:25 4.1 1.5

04 9:26 3.2 2.6

...

07 9:27 2.7 3.2

ID Time Position

01 9:25 4.1 1.5

04 9:26 3.2 2.6

...

07 9:27 2.7 3.2

Current

Headways

Figure 1. Set of models with direct data dependencies depicted with arrows. Historical
Data and Network Graph models are used by several models and are showed separately.
The models in blue are part of a possible sequence of model executions, triggered by an
update in the AVL Data model.

3.2. Model Execution

The execution of each model is independent of other models, as each can have differ-
ent execution schedules. This independence permits the execution of models of different
complexities. For instance, there can be bus travel time prediction using simple heuristics,
such as the mean travel time of the last three buses in the line, to more computationally
demanding ones, such as executing deep neural networks models for predicting the evo-
lution of link states in the following two hours.

The framework updates these models periodically, respecting some updating
schedule, which can be periodical, for example, every 10 minutes, or started by some
event, such as the retrieval of updated bus position information.

Large cities such as São Paulo may have tens of thousands of buses and to generate
real-time predictions and estimations requires large computational power. The organiza-
tion of the framework as independent tasks that updates models allows the processing to
occur in distributed machines, which can also access distributed databases. The types of
models that can be executed in real-time will depend on the hardware available, but the
framework permits a natural expansion of processing capabilities by adding new compu-
tational resources, located in a private cluster or the cloud.

3.3. Bus System as a Graph

The Network Graph model maintains the representation of the bus system as a graph,
with vertices representing points of interest, such as bus stops, and edges (links) represent-
ing the path between these points of interest. It keeps a list of links and their properties,
such as length, position, and list of bus lines that use it.

Most models use this graph representation. For instance, the Bus Position
model maps position estimations into graph links. Other models establish link properties,
such as the mean historical travel time, the travel time of the last k-buses, the current link
state, among others.

3.4. Types of Models

There are two main types of models: estimation and prediction models. Estimation mod-
els deal with the evaluation of the bus system current state and include models on bus
positions, bus headways, and link states. Estimation models usually are fast to evaluate
and, if required, can be computed whenever the bus positions are updated.

Predictions models deal with the prediction of future states of the model, such as
bus travel times, bus bunching predictions and link state evolution. The framework can
schedule the update of some simpler prediction models, such as the prediction of travel
times from the current link state or from mean travel times, whenever bus positions are
updated. However, for other models, such as predictions on the evolution of the link states
or more complex bus travel time predictions, using neural networks or Hidden Markov
Models, the framework may schedule their updates less frequently.

Additional models can also be added, such as trip planning models, which could
generate trip proposals based on bus routes and schedules and travel time predictions, and
data analysis models, which can gather bus bunching information and generates useful
statistics of these events.

3.5. Composite Model Dependency Graph

Composite models can be constructed from simple models using shared databases. The
framework updates the models when updated position data arrives. It then follows a de-
pendency graph of model updates, respecting the dependencies in processing. It first up-
dates the bus position estimation, then the models that depend on it, such as the link states
and the bus headways. It then updates other models, such as bus travel time estimates that
depend on this information.

The dependency graph can be long and contain branches, but not all models must
update their state on every bus position update. For instance, complex models can gener-
ate new predictions about the evolution of links states in the next hours or about the city-
wide evolution of bus headways. The framework can schedule these models for updating
with a minimum interval of 10 minutes or more. If these models appear in a dependency
graph but have updated their state more recently than the minimum update interval, the
downstream models in the dependency graph use the data from the last update of these
models. This design provides more flexibility for constructing dependency graph with
models of different complexities and different update frequencies.

3.6. Input and Output Data

Real-time data can be obtained directly from APIs available at transit authorities and fed
into the framework models. These data can generate updates in the bus position estimation
model, which in turn can generate new updates to the states of the links, which causes new
travel time estimates for buses.

Historical data usually is available as data files or in databases formats and contain
several inconsistencies, missing fields, and other errors. At this moment, we are not
dealing with the initial treatment of this data, but instead, consider that they have been
already cleaned.

The framework can be accessed by external clients, which can request, for in-
stance, predictions of travel times for bus lines, or the state of all the links from the city
for visualization purposes. However, the purpose of the proposed framework is not to
deal with individual requests from millions of users. In this case, we consider that an
external system would perform this task, by periodically requesting the full model data to
the framework and treating the individual requests locally.

4. Implementation

4.1. Distributed Execution using Dask

For the framework implementation we used Python with Dask.distributed, a lightweight
library for distributed computing. This library consists of a centralized scheduler and
distributed workers which can communicate with each other. Dask provides scalability
by permitting the inclusion of more workers as demanded by the framework and supports
complex workflows dependency graphs beyond those of map/filter/reduce.

The scheduler sends each task to a different worker which can be running on one
or more machines (Figure 2a). Dask manages data transfer from the coordinator process
to each worker. Each model stores the data it generates in a local or remote database,
and models that use this data can access it directly on the databases. The databases are
the primary interaction point among models, and we are using MongoDB non-relational
database in the current implementation. Writes to single documents are atomic in Mon-
goDB, preventing race conditions.

We implemented dependency graphs using future objects, which hold a promise
of a result from a task. Each task executes a complete model or parts of it (Figure 2b).
Tasks that depend on the results from other tasks wait for all upstream tasks to complete
and then start its computation. Notice that the framework can execute many dependency
graphs concurrently, exploiting the available computational resources. Moreover, when
constructing the dependency graph, multiple workers can be assigned to a single task,
improving the parallelization of the execution. Finally, models that have a minimum
interval between executions can, if necessary, skip their execution, and the downstream
tasks then get the results from the last execution from the shared database.

4.2. Implemented Models

We already implemented some models in the framework, which we used as a prototype
implementation to validate the framework architecture.

Bus Position

Link States

Network

Graph

Simple TT

Prediction

Historical

Link TT

Mon 9am 35s

Mon 10am 30s

...

Tue 9am 32s

Updated

AVL Data

ID Time Position

01 9:25 4.1 1.5

04 9:26 3.2 2.6

...

07 9:27 2.7 3.2

Worker 1 Worker 2 Worker N

Coordinator

Process MongoDB

b) Sample Pipelinea) Framework Implementation

Figure 2. Distributed task execution and management using Dask. a) A coordinator
process launches the tasks that are executed by workers (solid lines). The worker read
data from other models and write their updated results in the MongoDB database (dashed
lines). b) A sample graph of models. Models downstream can wait for other models
to finish their execution (solid lines) or obtain data from other models that were already
present in the database (dashed lines).

Bus Position: This model estimates the distance traveled by each bus in its predeter-
mined route, interpolate this data and estimate the passing time at any arbitrary point of
the bus route.

Graph Model: This model transform general transit feed specification (GTFS) files into
a citywide graph containing all bus routes from a city. It defines the midpoints between
bus stops of a bus route as vertices and the paths between consecutive vertices as links.
The model first defines subgraphs for individual bus routes and then concatenates them
into a citywide graph, identifying common links to multiple bus routes.

K-last Buses Model: This model determines the mean travel time of the last k buses that
crossed a link in the city graph. The model retrieves data from the Bus Position model,
querying for the positions of all buses in the last few hours. It then finds the last k travels
on each link and calculates their mean travel times. Each call to this model evaluates a
different link in the graph.

Mean Travel Time Model: This model evaluates the historical mean travel time of
buses in all graph links. The model retrieves data from the Bus Position model, querying
for the positions of all buses for a specific time range (e.g., from 9 am to 10 am), a specific
weekday (e.g., Mondays), and a specific calendar range (e.g., from January 2017 to July
of 2017). From this data, it estimates the time required for each bus to transverse the path

between the vertices of a link and then evaluates the mean travel time on the link for all
buses. Each call to this model evaluates a different link in the graph.

Combined Model: This model combines the results of the Mean Travel Time and K-last
Buses models by calculating a weighted mean between these two values, giving weight 1
do the historical mean as weight 2 to the K-last mean. In the current implementation, it
waits for the futures from the Mean Travel Time and K-last Buses models.

Total Travel Time Model: This model predicts the total travel time in a bus route by
summing the individual link travel times from the complete route. Each call to this model
evaluates a single bus line, and in the current implementation, it waits for the futures from
the corresponding models used for link travel time estimation.

4.3. Extending the Framework

One can include new models by writing new Dask tasks that perform the required model
computations and access data from other models through the shared databases. Devel-
opers can create dependency graphs for composite models by making downstream tasks
wait for the results of previous tasks in the graph using Dask futures.

The current framework prototype does not yet contain a model to collect real-time
AVL data, although we easily implement an AVL Data model task that accesses an online
API, such as SPTrans Olho Vivo1. We could then construct a dependency graph, which
would call the tasks that execute the Bus Position model, the link travel time models, and
the Total Travel Time model.

We will also implement in the framework an API that permits external clients to
perform queries to obtain model results, including travel time predictions and bus arrival
times. The responses to the queries will be asynchronous to the model updates since they
will only return the most up to date results.

5. Experimental Setup
We performed an experimental evaluation over the implemented prototype. We simulated
a real-time travel time prediction scenario, using three travel time prediction algorithms,
implemented in the K-last Buses Model, Mean Travel Time Model, and Combined Model,
described in the Implementation section. We used k = 3 buses in the K-last Buses Model.

In the experiments, we did not execute the online retrieval of AVL data and the
Bus Position estimation model. The models obtained the interpolated bus position data di-
rectly from a shared MongoDB database. These steps of obtaining AVL data and updating
the bus positions should not take longer than the travel time predictions steps.

We executed a simulated real-time prediction of the total travel time of each bus,
considering a set of 110 routes. We consider a single business weekday, from 6:00 am.
to 11:50 pm., and generated a new prediction every 10 minutes. We used three machines,
each with 2 CPUs model Intel(R) Xeon(R) CPU E5-2620v2@2.10GHz with 6 (12) phys-
ical (virtual) cores per CPU and 128GB of RAM. One machine held the shared database

1http://www.sptrans.com.br/desenvolvedores/

and the dask scheduler, with the workers distributed in up to the three machines (A, B,
and C), depending on the evaluated scenarios.

First experiment: Execution time. We executed the framework with different setups to
evaluate the processing time, CPU usage, and scalability of the framework. In all setups,
we executed MongoDB and the scheduler in machine A. We considered scenarios with 6
to 72 workers, distributed as follows:

1. Machine A, with 6 workers;
2. Machine A, with 12 workers;
3. Machine A, with 24 workers;
4. Machines A and B with 48 workers, 24 on each;
5. Machines B and C with 48 workers, 24 on each;
6. Machines A, B, and C with 72 workers, 24 on each.

Note that in configuration 5 we used 3 machines since machine A was executing
MongoDB and the scheduler.

We measured the execution time for the combined prediction of the bus travel
from all lines. We evaluated predictions for a single time, an hour interval (6 predictions),
and a complete day. The last two were used to evaluate the scalability better. We repeated
the execution of each setup five times. During the execution, we also collected the total
machine CPU usage and the MongoDB Server CPU usage.

Second Experiment: total travel time prediction accuracy. Besides the execution
times, we also collected the predictions generated by the framework and compared with
the actual bus travel times to measure the quality of the predictions. We collected the
following predictions for 110 bus lines (to a total of 1977 links):

• Mean Travel Time Model: the model estimated the mean travel time (MTT) on
each link using historical data from 7 months (January to July of 2017). For each
link, the model gathered data from the corresponding weekday and full hour from
MongoDB, and generated a mean predictor for every hour from 6:00 am. to 11:00
pm. for all graph links.
• K-last Buses Model: the model estimate the travel time on each link by obtaining

the last k = 3 bus travels to cross each link in a 2-hour time frame. It then
evaluated the k-last mean travel time (KTT) of all links. Different from the MTT,
we generate a KTT prediction every 10 minutes from 6:00 am. to 11:50 pm.
• Combined Model: this model combines both MTT and KTT predictions using a

weighted mean, with mttweight = 1 and kttweight = 2 to calculate the final
prediction for every link.

We compared all bus travel time predictions to actual bus travel times from 110
bus lines in the August, 1st, chosen as the first weekday in August.

6. Experimental Results
6.1. Execution Time and Scalability
Our evaluations show that the processing time decreased as we increased the number of
workers, except for 72 workers (Figure 3). When evaluating travel times at full hours (e.g.,

6 12 24 48-2mac48-3mac 72
Number of Concurrent Processes

0

10

20

30

40

50

60

70

80
Ti

m
e

(s
)

Processing Time (Minute 0) x # of processes

(a)

6 12 24 48-2m 48-3m 72
Number of Concurrent Processes

0

2

4

6

8

10

12

14

Ti
m
e
(s
)

Processing Time (Minutes 10-50) x # of processes
10 minutes
20 minutes
30 minutes
40 minutes
50 minutes

(b)

6 12 24 48-2m 48-3m 72
Number of Concurrent Processes

0

20

40

60

80

100

120

140

Ti
m
e
(s
)

Processing Time (Hour) x # of processes

(c)

6 12 24 48-2m 48-3m 72
Number of Concurrent Processes

0

500

1000

1500

2000

2500

Ti
m

e
(s

)

Processing Time (Day) x # of processes

(d)

Figure 3. Execution time for predicting the travel times of 110 bus lines, using one ma-
chine (6, 12, and 24 workers), two machines (48 workers), and three machines (48 and 72
workers).

at 7 am), the framework executed both MTT and KTT models and required 40 seconds
with using 24 workers (Figure 3a) or 30 seconds with 48 workers and three machines
(48-3mac). When evaluating minutes 10 to 50, it executes only KTT and the processing
time can be lower than 8 seconds for every 10 minutes (Figure 3b). We also evaluated the
total time to calculate a whole hour (Figure 3c) and day (Figure 3d). We can see that it
follows the same trend as the smaller computations.

The improvement in processing time is less evident when using more than 24
workers. To evaluate this phenomenon, we monitored the overall CPU usage on Machine
A and Mongo CPU usage. The collected data shows that with up to 24 workers, running
in the same machine, the CPU usage is slightly below 100% (Figure 4c), where 100%
represent full usage of the 24 virtual cores in the machine, with MongoDB using about 75

The most interesting case is when machine A only executes MongoDB and the
scheduler (Figure 4f), which was the configuration with the smallest total execution time.
In this case, MongoDB used almost all CPU resources. When executing 72 workers
(Figure 4d), MongoDB had to divide the CPU of machine A with workers and the total
execution time increased.

0 100 200 300 400
Time (s)

0

20

40

60

80

100
CP

U
Us

ag
e
(%

)
Total CPU x MongoDB CPU Usage (6 proc)

CPU
MongoDB

(a)

0 100 200 300 400
Time (s)

0

20

40

60

80

100

CP
U
Us

ag
e
(%

)

Total CPU x MongoDB CPU Usage (12 proc)
CPU
MongoDB

(b)

0 100 200 300 400
Time (s)

0

20

40

60

80

100

CP
U
Us

ag
e
(%

)

Total CPU x MongoDB CPU Usage (24 proc)

(c)

0 100 200 300 400
Time (s)

0

20

40

60

80

100
CP

U
Us

ag
e
(%

)
Total CPU x MongoDB CPU Usage (72 proc)

(d)

0 100 200 300 400
Time (s)

0

20

40

60

80

100

CP
U
Us

ag
e
(%

)

Total CPU x MongoDB CPU Usage (48 proc - 2 mac)

(e)

0 100 200 300 400
Time (s)

0

20

40

60

80

100

CP
U
Us

ag
e
(%

)

Total CPU x MongoDB CPU Usage (48 proc - 3 mac)

(f)

Figure 4. CPU usage measurement for machine A in the six experiments setups: (a) 6
workers, (b) 12 workers, (c) 24 workers, (d) 72 workers, (e) 48 workers in 2 machines,
and (f) 48 workers in 3 machines

6.2. Travel Time Prediction Accuracy
In the third experiment, we collected the predictions generated by our prediction algo-
rithms and compared to real travel time data, to evaluate the accuracy of these models.
Note that our focus in this paper is the architecture and prototype implementation of the
distributed framework and the prediction algorithms used here are rather simple. We
calculated three measures: Rooted Mean Squared Error (RMSE), Mean Absolute Error

(MAE) (in minutes) and Mean Absolute Percentage Error (MAPE).

The model KTT performed slightly worse than MTT and combined models (Table
1). This performance probably happened because KTT used a few data points to make
each prediction (only the latest three travels before the target travel). Although it captures
better the real-time state of each link, it is more sensitive to errors in GPS measurements
and unexpected behaviors, for instance, from an unusual delay in one of the latest three
buses. Combining both MTT and KTT models with a weighted mean improved RMSE
the predictions by a minimal margin.

Table 1. Error Measures
Algorithm RMSE (min.) MAE (min.) MAPE (%)

MTT 9.21 6.70 11.12
KTT 12.05 8.37 13.95

COMBINED 8.97 6.68 11.22

7. Discussion

We presented a framework for the scalable execution of composite models of public bus
systems, describing its general architecture and a prototype implementation using Dask
and MongoDB. We showed that it could successfully process data from more than one
hundred routes in São Paulo in near real time, using a single node with 12 physical cores.

The experimental results indicate that the database can be a significant bottleneck
in data dependent models, such as determining the historical mean travel times on network
links. However, on more CPU-bound models, such as neural networks or hidden Markov
models, the database may not be a critical bottleneck.

There are several possible solutions for improving the scalability of the database.
A simpler one is to replicate MongoDB in multiple machines, with multiples copies of
data that is highly accessed. For static data this extension is simple, but dynamic data may
require updates on multiple sites to guarantee consistency. However, since the results of
model processing generate smaller amounts of data, this may not be an issue. Another
approach is to use columnar databases for storing data for some models that depend on
the data aggregation, such as the mean travel times model. We are evaluating these ap-
proaches for applying in the framework.

References

Adachi, H., Suzuki, H., Asahi, K., Matsumoto, Y., and Watanabe, A. (2015). Estimation
of bus traveling section using wireless sensor network. In 2015 Eighth International
Conference on Mobile Computing and Ubiquitous Networking (ICMU), pages 120–
125. IEEE.

Bin, Y., Zhongzhen, Y., and Baozhen, Y. (2006). Bus arrival time prediction using support
vector machines. Journal of Intelligent Transportation Systems, 10(4):151–158.

Cascetta, E. (2009). Transportation Systems Analysis: Models and Applications, vol-
ume 29. Springer US.

Chang, H., Park, D., Lee, S., Lee, H., and Baek, S. (2010). Dynamic multi-interval bus
travel time prediction using bus transit data. Transportmetrica, 6(1):19–38.

Chen, M., Liu, X., Xia, J., and Chien, S. I. (2004). A dynamic bus-arrival time predic-
tion model based on apc data. Computer-Aided Civil and Infrastructure Engineering,
19(5):364–376.

Chien, S. I.-J., Ding, Y., and Wei, C. (2002). Dynamic bus arrival time prediction with
artificial neural networks. Journal of Transportation Engineering, 128(5):429–438.

Choudhary, R., Khamparia, A., and Gahier, A. K. (2016). Real time prediction of bus
arrival time: A review. Proceedings on 2016 2nd International Conference on Next
Generation Computing Technologies, NGCT 2016, (October):25–29.

Fu, J., Wang, L., Pan, M., Zuo, Z., and Yang, Q. (2014). Bus arrival time prediction and
release: System, database and android application design. In International Conference
on Algorithms and Architectures for Parallel Processing, pages 404–416. Springer.

Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., and Weidlich, M. (2017). Trav-
eling time prediction in scheduled transportation with journey segments. Information
Systems, 64:266–280.

Jeong, R. and Rilett, R. (2004). Bus arrival time prediction using artificial neural network
model. In Intelligent Transportation Systems, 2004. Proceedings. The 7th International
IEEE Conference on, pages 988–993. IEEE.

Kumar, B. A., Jairam, R., Arkatkar, S. S., and Vanajakshi, L. (2017a). Real time bus travel
time prediction using k-NN classifier. Transportation Letters, 7867(August):1–11.

Kumar, B. A., Vanajakshi, L., and Subramanian, S. C. (2017b). A hybrid model based
method for bus travel time estimation. Journal of Intelligent Transportation Systems,
2450(December):1–17.

Kumar, B. A., Vanajakshi, L., and Subramanian, S. C. (2017c). Bus travel time prediction
using a time-space discretization approach. Transportation Research Part C: Emerging
Technologies, 79:308–332.

Lin, W.-H. and Zeng, J. (1999). Experimental study of real-time bus arrival time predic-
tion with gps data. Transportation Research Record: Journal of the Transportation
Research Board, 1666:101–109.

Mazloumi, E., Rose, G., Currie, G., and Sarvi, M. (2011). An integrated framework to
predict bus travel time and its variability using traffic flow data. Journal of Intelligent
Transportation Systems, 15(2):75–90.

Mori, U., Mendiburu, A., Álvarez, M., and Lozano, J. A. (2015). A review of travel time
estimation and forecasting for Advanced Traveller Information Systems. Transport-
metrica A: Transport Science, 11(2):119–157.

Shalaby, A. and Farhan, A. (2004). Prediction model of bus arrival and departure times
using avl and apc data. Journal of Public Transportation, 7(1):3.

Yin, T., Zhong, G., Zhang, J., He, S., and Ran, B. (2017). A prediction model of bus
arrival time at stops with multi-routes. Transportation Research Procedia, 25:4627–
4640.

Yu, B., Lam, W. H., and Tam, M. L. (2011). Bus arrival time prediction at bus stop with
multiple routes. Transportation Research Part C: Emerging Technologies, 19(6):1157–
1170.

Yu, B., Yang, Z. Z., and Wang, J. (2010). Bus travel-time prediction based on bus speed.
In Proceedings of the Institution of Civil Engineers-Transport, volume 163, pages 3–7.
Thomas Telford Ltd.

Yu, B., Yang, Z.-Z., and Zeng, Q.-C. (2008). Bus arrival time prediction model based on
support vector machine and kalman filter. China Journal of Highway and Transport,
2:016.

Yu, H., Wu, Z., Chen, D., and Ma, X. (2017). Probabilistic prediction of bus headway
using relevance vector machine regression. IEEE Transactions on Intelligent Trans-
portation Systems, 18(7):1772–1781.

Zhang, X., Chen, G., Han, Y., and Gao, M. (2016). Modeling and analysis of bus weighted
complex network in qingdao city based on dynamic travel time. Multimedia Tools and
Applications, 75(24):17553–17572.

Zhenliang, M., Jianping, X., Shihao, Y., and Yubing, W. (2011). An Aggregation Method
for Dynamic Bus Arrival Time Prediction. Traffic, 3(July):37–48.

Zhou, P., Zheng, Y., and Li, M. (2012). How long to wait?: predicting bus arrival time with
mobile phone based participatory sensing. In Proceedings of the 10th international
conference on Mobile systems, applications, and services, pages 379–392. ACM.

Zuo, Z. and Wang, L. (2013). Bus arrival time forecasting and real-time information pub-
lication technology. Journal of Transportation Systems Engineering and Information
Technology, 1:012.

