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Abstract. Automatic detection of planar regions in point clouds is an important
step for many graphics, image processing, and computer vision applications.
While laser scanners and digital photography have allowed us to capture in-
creasingly larger datasets, previous approaches for planar region detection are
computationally expensive, precluding their use in real-time applications. We
present an O(n log n) technique for plane detection in unorganized point clouds
based on an efficient Hough-transform voting scheme. It works by clustering
sets of approximately co-planar points and by casting votes for these clusters
on a spherical accumulator using a trivariate Gaussian kernel. A comparison
with competing techniques shows that our approach is considerably faster and
scales significantly better than previous ones, being the first practical solution
for deterministic plane detection in large unorganized point clouds.

1. Introduction

Automatic plane detection in point clouds is a key component in many graphics, image
processing, and computer vision applications. These include, among others, model re-
construction for reverse engineering, camera calibration, object recognition, augmented
reality, and segmentation. The recent popularization of laser scanners has led to an
increasingly growth in the sizes of the available datasets, and point clouds containing
tens of millions of samples are now commonplace. Software applications like SynthEx-
port [Hausner 2010] and Photosynth [Photosynth 2008] also allow us to extract point
clouds from large collections of digital images. However, previous techniques for de-
tecting planar regions in point clouds are computationally expensive and do not scale
well with the size of the datasets. For performance improvement, they often exploit non-
deterministic strategies, such as working on a randomly-selected sub-set of the original
samples. While this can reduce execution time, these techniques are still unable to achieve
real-time performance even on datasets containing just tens of thousands of points. More
importantly, their results depend on the selected sample sub-sets and, therefore, there is
no guarantee that all relevant planes will be detected, or that such results will be consistent
across multiple executions.

We present an efficient technique to perform deterministic plane detection in un-
organized point clouds. Our approach scales well with the size of the datasets, is robust
to the presence of noise, and handles point clouds with different characteristics in terms
of dimensions and sampling distributions. While the actual running times depend on spe-
cific characteristics of the dataset (e.g., the number of planar regions and noise level), our
technique is several orders of magnitude faster than previous ones.



Our approach is based on a robust and fast algorithm to segment point clouds into
approximately planar patches, even in the presence of noise or irregularly distributed sam-
ples. We then use the identified sample clusters to obtain an efficient Hough-transform
voting scheme by casting votes for each of these clusters (instead of for individual sam-
ples) on a spherical accumulator. For voting, we use a Gaussian kernel obtained from the
cluster’s covariance matrix and centered at the cluster’s best fitting plane. In this sense,
our approach extends the kernel-based voting scheme proposed by Fernandes and Oliveira
[Fernandes and Oliveira 2008] using a trivariate Gaussian distribution defined over spher-
ical coordinates (θ, φ, ρ). While plane detection in unorganized point clouds might seem
as an immediate extension of line detection in images, the lack of explicit neighborhood
information among samples imposes significant challenges, requiring new clustering and
accumulation-management strategies.

An article describing our contributions, entitled Real-Time Detection of Planar
Regions in Unorganized Point Clouds [Limberger and Oliveira 2015a], was published in
Pattern Recognition journal, one of the most important in the field.

2. Efficient Plane Detection in Point Clouds
The Standard Hough transform (SHT) for plane detection iterates over each sample in the
point cloud casting votes in a 3-D accumulator for all possible planes passing through
that sample [Hough 1962, Duda and Hart 1972]. Although deterministic, this brute-force
strategy results in a high computational cost. The optimizations introduced in this thesis
allow a software implementation to operate in real-time for sufficiently large point clouds
(up to 105 samples) using current hardware.

2.1. Clustering of Approximately Coplanar Samples
Clustering of approximately coplanar samples is key to our technique as it optimizes the
voting procedure, which is the Hough transform’s bottleneck. For efficiency, we perform
clustering through spatial subdivision using an octree. This has proven to be a good choice
both in terms of efficiency and quality of the results.

The clustering procedure starts at the root node, which includes the entire point
cloud. At each octree node, the procedure checks for approximate coplanarity among its
samples using principal component analysis (PCA). If the test is successful, the node is
marked as an approximately coplanar cluster and the subdivision process stops for that
node. If the number of samples inside the node is smaller than a given threshold, the node
is marked as not containing a coplanar cluster and it is no further refined. Otherwise, the
subdivision process continues. Figure 1 illustrates the octree-based clustering process.

2.2. Computing Gaussian Trivariate Kernels for Cluster Voting
We use a Gaussian trivariate kernel to cast votes for a cluster on the 3-D spherical accu-
mulator. To obtain such a kernel, we compute the cluster’s covariance matrix Σ(θ,φ,ρ) in
the (θ, φ, ρ) spherical space from its covariance matrix Σ(x,y,z) in the (X, Y, Z) Euclidean
space. Using first-order uncertainty propagation analysis, Σ(θ,φ,ρ) = JΣ(x,y,z)J

T , where
J is the Jacobian matrix of the transformation:
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Figure 1. Adaptive octree refinement and sample clustering for the Museum
dataset. From left to right, top to bottom, the first five images show the 6th,
7th, 8th, 9th, and 10th levels of the octree. The image at the bottom right shows
all nodes at different octree levels containing coplanar samples. Note that once
a planar patch is found the subdivision stops for that branch. Each color repre-
sents one detected plane, whose reconstructions are shown in Fig. 3.

The Gaussian kernel used for voring for a given sample cluster is then obtained as:

G(x|µ,Σ(θ,φ,ρ)) =
1

(2π)3/2|Σ(θ,φ,ρ)|1/2
exp

(
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2
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)
, (1)

where |Σ(θ,φ,ρ)| is the determinant of Σ(θ,φ,ρ), and µ and x are, respectively, the (θ, φ, ρ)
coordinates of the cluster’s best-fitting plane and of an accumulator cell receiving votes.

2.3. Cluster Voting using 3D Gaussian Distributions

Given the Gaussian distribution in Eq. (1), we cast votes on an adapted version of the ball
accumulator of Borrmann et al. [Borrmann et al. 2011]. The number of votes cast by a
plane on the cells of a spherical accumulator decreases as one moves from the equator
to the poles. This is illustrated in Fig. 2 (left), which compares the distribution of votes
cast by a cluster as it is rotated around the origin. Note that the number of votes cast
on cells around the poles are significantly smaller than the ones near the equator. Fig. 2
(center) shows two instances of the rotated point cloud: one near the north pole and the
other near the equator. The noise in the point cloud lends to some uncertainty on the
plane’s orientation, which is represented by a cone of normals around the normal of the
best-fitting plane (shown in red). On the equator, such uncertainty causes some votes
to be cast in a small θ and φ neighborhood around the (θ, φ, ρ) coordinates of the best
fitting plane. There, equal angular steps in θ and in φ correspond to arc lengths of equal
sizes, resulting in an isotropic Gaussian kernel in the (θ, φ) subspace. Such a Gaussian is
illustrated on the top portion of Fig. 2 (right). Near a pole, the uncertainty on the plane’s
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Figure 2. The number of votes cast by a cluster as it is rotated varies with the
position on the spherical accumulator (left). The color scale indicates the num-
ber of votes, while the thumbnail image on its right shows the best-fitting planes
corresponding to the rotated clusters. (center) On the equator, the uncertainty
on the plane orientation lends to votes on a small isotropic neighborhood in the
(θ, φ) subspace. At (next to) a pole, the same uncertainty on the plane orientation
lends to a small uncertainty in the φ dimension, but to a big uncertainty in the θ
dimension, as θ can range from 0 to 360 degrees. (right) isotropic (top) and trun-
cated anisotropic (bottom) Gaussian kernels in the (θ, φ) subspace associated to
the cluster near the equator and near the pole, respectively.

normal lends to a small uncertainty in the parameter φ, but to a huge uncertainty in the
parameter θ, as at the pole the value of θ varies from 0 to 360 degrees. This results in
a highly anisotropic Gaussian kernel in the (θ, φ) subspace, as shown by the truncated
kernel at the bottom of Fig. 2 (right). This explains the smaller number of votes per cell
as a cluster approaches a pole.

2.4. Peak Detection

The last stage of a Hough-transform consists of detecting peaks of votes in the accu-
mulator, which are interpreted as the detected planes. We apply a low-pass filter to the
accumulator to smooth the voting map, consolidating adjacent peaks. As discussed in the
previous sub-section, for the same relative sample distribution, the amount of votes cast
to individual accumulator cells near a pole tends to be smaller than the amount of votes
cast to cells in other regions of the accumulator (Fig. 2 (left)). Thus, the list of detected
planes is sorted in decreasing order based on the sum of the weights (i.e., importance) of
all clusters that voted for each plane. The importance of a cluster is computed based on
its number of samples and on its spatial coverage relative to the entire point cloud.

3. Results
To evaluate the efficiency and effectiveness of our approach, we have tested our tech-
nique on different types of point clouds, varying in size (number of points), sampling
density, and complexity (number of underlying planes). The point clouds were extracted
from sets of photographs using SynthExport and Photosynth, except Computer which is
from [Borrmann et al. 2011]. To evaluate its accuracy, we created a synthetic dataset by
sampling the faces of a cube containing around 1 million points and 2.5% of uniformly-
distributed noise. To evaluate robustness to missing samples and noise, we downsampled
this dataset to 48,000 points and added 1% of Gaussian noise. For this experiment, each
face of the cube corresponds to three discontinuous stripes of samples covering approxi-
mately 60% of its original area. We then detected planes in both versions of the cube after



rotating them by arbitrary amounts and around arbitrary axes. In all cases, our technique
accurately detected the six planes of the cube.

We compared the performance of our technique to the state-of-the-art ap-
proaches for plane detection in point clouds: the optimized RANSAC of Schnabel et
al. [Schnabel et al. 2007], the RANSAC implementation for plane detection in point
clouds available in the Point Cloud Library (PCL) v1.7 [Rusu and Cousins 2011], and
to Borrmann et al.’s [Borrmann et al. 2011] implementation of the Randomized Hough
Transform (RHT) (an efficient non-deterministic Hough transform). These implementa-
tions proved to be the most efficient ones for plane detection using RANSAC and RHT,
respectively. All experiments were performed on an Intel i7-2600 3.4 GHz CPU with 16
GB of RAM. Reported results are shown in Table 1. They reveal that our approach (KHT)
processes the Computer dataset with its 68 thousand samples in approximately 22 mil-
liseconds, and the Museum dataset, which contains 179 thousand samples, in 25 millisec-
onds. For larger point clouds (e.g., Bremen, with 20 million samples) the octree creation
dominates the execution time of our method. Still, our technique processes the Bremen
dataset 353 faster than Schnabel et al.’s RANSAC technique [Schnabel et al. 2007], and
3,586 times faster than PCL’s RANSAC [Rusu and Cousins 2011]. The available imple-
mentation of the RHT could not handle the entire dataset. Working on the full dataset,
our technique is still 20 times faster than RHT working on a subset containing only 10%
of the original samples. The most representative planes detected by our method on each
dataset can be seen in Fig. 3.

Table 1. Performance comparison of our approach (3D KHT) against RANSAC and
RHT for various datasets. The entries of the table show the execution times (in
seconds) of the three techniques for these datasets. (*) The RHT was computed
with a simplified version of Bremen dataset containing only 2 million samples,
because the available implementation did not support larger inputs.

Computer Room Utrecht Museum Bremen

Point Cloud Size 68 852 112 586 160 256 179 744 20 332 246

3D KHT 0.022 0.041 0.040 0.025 2.105
RANSAC [Schnabel et al. 2007] 0.340 0.774 0.919 1.200 745.055
RANSAC [Rusu and Cousins 2011] 0.424 3.293 15.412 302.610 7,531.010
RHT 0.121 6.313 2.814 11.96 42.824 *

Figure 3. Datasets used for performance comparisons. Point clouds (top) and
the most representative planes detected by our technique (bottom). From left to
right, the datasets are: Computer, Room, Utrecht, Museum, and Bremen.



4. Conclusion
This work presented an efficient Hough-transform technique to perform deterministic
plane detection in unorganized point clouds. Our approach uses a fast and robust al-
gorithm to segment clusters of approximately coplanar samples, and casts votes for indi-
vidual clusters, instead of for individual samples, on a spherical accumulator. For this,
we use a trivariate Gaussian kernel that models the uncertainty about the position and
orientation of the plane represented by the cluster.

While previous approaches for plane detection have basically resorted to randomly
selecting a subset of the samples as a way to reduce execution time, we have undertaken
the more fundamental strategy of designing an efficient algorithm with lower asymptotic
cost. Our experiments have shown that our approach is several orders of magnitude faster
than existing (non-deterministic) techniques for plane detection in point clouds, such as
RANSAC and RHT, and scales better with the size of the datasets. It is also robust to
noise, and handles point clouds with different characteristics in terms of dimensions and
sampling distributions. As such, our technique provides the first practical solution for de-
terministic plane detection in large unorganized point clouds. For more information about
the method and the source code we refer the reader to [Limberger and Oliveira 2015b].
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