

Evaluating a Representational State

Transfer (REST) Architecture

Bruno Costa, Paulo F. Pires

Department of Computer Science - Federal University of Rio de Janeiro (UFRJ)

68.530 – Rio de Janeiro – RJ – Brazil

{brunocosta.dsn, paulo.f.pires}@gmail.com

Abstract. The use of Representational State Transfer (REST) as an

architectural style for integrating services and applications brings several

benefits, but also poses new challenges and risks. Particularly important

among those risks are failures to effectively address quality attribute

requirements such as security, reliability, and performance. An architecture

evaluation can identify and help mitigate those risks. In this work we present

guidelines to assist architecture evaluation activities in REST-based systems.

These guidelines can be systematically used in conjunction with scenario-

based evaluation methods to reason about design considerations and trade-

offs. This work also present the results of a survey conducted with industry

specialists who have performed architecture evaluations in real world REST-

based systems in order to gauge the suitability and utility of the proposed

guidelines.

1. Introduction

Architectural decisions determine the ability of the implemented system to satisfy

functional and quality attribute requirements. Since these architectural decisions affect

several stages of the development process, the impact of architectural mistakes is high.

Therefore, it is important to inspect the architecture to identify and mitigate any risks of

the software solution not satisfying the quality attribute requirements. This inspection

activity is referred to as software architecture evaluation.

 Representational State Transfer (REST) is an architecture style formally defined

as set constraints that aims to drive the design decisions towards improving quality

attributes [Fielding 2000]. Regarded to be used in massively distributed and loosely

coupled hypermedia systems, REST has been a de facto architecture style for web-based

systems [Wilde and Pautasso 2011]. By using REST, some quality attributes of the

system, such as interoperability and modifiability, are positively impacted, whereas

others, such as performance and reliability can be negatively impacted. Architecture

evaluators should identify places and design decisions in the architecture that influence

the ability of the system to meet the quality attribute requirements.

 The purpose of this work is to provide guidance for architecture evaluation

activities in systems that use the REST architectural style. We discuss several design

aspects and provide guidelines on important inspection points. We also discuss how the

architecture can be probed by the evaluation team and propose the types of questions

that should be asked during the evaluation process.

2. Scenario-Based Architecture Evaluation

Scenario-based evaluation methods evaluate the software architecture’s suitability

according to a set of scenarios of interest. A quality attribute scenario is a structured

description of a quality attribute requirement that is unambiguous and testable [Bass et

al. 2012]. Quality attribute requirements can be expressed by two types of scenarios: (i)

general quality attribute scenarios (hereinafter general scenarios), which are generic

and can be applied to any software system, and; (ii) concrete quality attribute scenarios

(or concrete scenarios), which are specific to the particular system under consideration.

3. Research Protocol

The evaluation guide proposed in this research was developed following Evidence-Based

Software Engineering (EBSE) techniques. EBSE aims to provide knowledge about

when, how and in what context technologies, processes, methods, or tools are more

appropriate for Software Engineering practices [Kitchenham 2004]. In our work, we

combined two EBSE techniques: Survey and Systematic Mapping (SM). We conducted

two surveys, with different purposes: (i) collect the evaluators’ concerns about the

architecture evaluation of REST-based solutions; (ii) collect the industry experts’

empirical knowledge about REST foundations and design issues. Besides the surveys, we

performed a systematic mapping in order to create a classification scheme to be used in

the organization of the evaluation guide and collect the available knowledge from

literature. The REST Evaluation Guide presented in Sections 4, 5, and 6 was the end

result of these activities. We then sent the guide to architecture evaluators in order to

assess if it had achieved its goals. The evaluation is presented in Section 7.

 Following a systematic methodology [Oishi 2003; Pfleeger and Kitchenham

2001], the first survey consisted of a set of interviews with experts in architecture

evaluators to gather an initial set of REST-specific architecture evaluation concerns from

a practitioners’ point of view. As the result of the interviews, the experts indicated that a

REST architecture evaluation guide must address three main issues. In our work, we call

these issues REST Architecture Evaluation Concerns (ECs):

EC1- “Explain the architectural foundations of REST from an architecture evaluator’s

point of view”;

EC2- “Discuss quality attributes and general scenarios impacted by REST principles”;

EC3- “Discuss (in detail) how REST contributes to the quality attributes and where

typical tradeoffs are”.

 Based on such ECs and also in light of the methodology proposed by Oishi

(2003), and Pfleeger and Kitchenham (2001), in the next survey we interviewed several

experts, practitioners, and researchers who have long been designing and studying REST

solutions. Their experience about REST design was used as the first source of

knowledge to respond the REST architecture evaluation concerns.

 Finally, we conducted a systematic mapping based on the guidelines as included

in [Petersen et al. 2008] with two objectives: carry on a comprehensive literature review

on REST and to build a classification schema for the empirical knowledge gathered

through interviews aligned to the literature review. We started by searching for

publications from major research databases of Computer Science, such as ACM Digital

Library, IEEE Xplore, SpringerLink, and ScienceDirect using keywords such as rest,

representational state transfer, quality attributes, and design. The search on the

databases retrieved 384 studies that were systematically analysed by their title and

abstract. After this step, 42 scientific papers were selected based on a screening criterion.

In addition, 8 books and 9 technical reports were selected. The result of the systematic

mapping was a schema comprised of five categories: (i) Design of Services; (ii)

Representation and Identification; (iii) Documentation and testing; (iv) Behaviour, and;

(v) Security. With the classification scheme, the relevant papers were sorted into the

scheme. These six categories were later used to classify the design questions that are part

of the architecture evaluation guide and are presented in Section 6.

 In the next sections we present a summary of the REST Evaluation Guide and in

Section 7 we describe the evaluation of the guide made with industry specialists who

have performed architecture evaluations in real world REST-based systems by using our

proposed guidelines. The full version of the guide including a proof of concept that

describes how to use the guidelines in the context of scenario-based evaluation method

can be found in the original dissertation [Costa 2014] and [Costa et al. 2014].

4. Foundations of REST for Architecture Evaluation (Evaluation Concern

EC1)

One of the main goals of an architecture evaluation is to identify risks to address the

quality attribute requirements in software architecture. The next sections describe the

foundations of REST with special attention to the impact in quality attributes. The

foundations are based on interviews and literature review.

4.1 REST Constraints

The creator of the REST style, Roy Fielding, has described six constraints that define the

REST style, each of which promotes a different set of quality attributes. REST can be

described as: REST = (C-S, S, $, U, L, CoD)

 Client-server (C-S) is a frequently found architectural style for network-based

applications. In REST, requests are initiated by user agents (clients) and ultimately

processed by an origin server (server), which provides services through a resource

hierarchy. Evaluators should inspect the definition of the boundary between client and

server according to cohesion and the independent evolution of each one.

 The stateless constraint (S) describes that all information needed to understand

the conversation state data between origin servers and user agents must be included in

the request and response messages. The Stateless constraint enables replication of

servers and hence promotes availability, scalability, and reliability; on the other hand, it

may decrease performance due to the need for sending the conversational state data

embedded in request and response messages.

 The cache constraint ($) is added in order to improve performance. A cache

element acts as a mediator between client and server. Evaluators should identify whether

the client design will include a cache mechanism and what data elements (resources)

should be cacheable. The degree to which the cache will increase network efficiency and

hence performance, depends on the cache strategy. However, the use of a cache may

decrease reliability in cases when the client may consume stale data from the cache.

 Uniform Interface (U) across components is the central feature that distinguishes

REST from other network-based styles. Uniform Interface is closely related to resources,

identifiers, and representations. The uniform interface constraint positively impacts

interoperability and discoverability.

 The layered system (L) constraint as described by Fielding is a multi-tier style.

Multi-tier is an architectural style that is a specialization of the client-server style where

an intermediary tier acts as server to the previous tier and as client to the subsequent tier.

Although simple REST services can be available on the “server-side” of client-server

architectures, REST services are often found on “server-side” tiers of multi-tier

applications developed using Java EE, .NET, or other implementation platform suitable

for multi-tier applications.

 Code-on-Demand (CoD) is an optional constraint that enables a dynamic

architecture where the user agent logic can be extended by code received from the

service. Interoperability may decrease since the downloaded code has to be compatible

among all service consumers. Security is also a concern to prevent malicious code to

reach the clients.

5. REST General Quality Attribute Scenarios (Evaluation Concern EC2)

A quality attribute is a measurable or testable property of a system that is used to

indicate how well the system satisfies the needs of its stakeholders [Bass et al. 2012].

The REST Evaluation Guide provides a set of general scenarios of ten quality attributes

that are important to consider when using the REST style, according to the experts we

interviewed (Section 3). These general scenarios are referenced in the REST design

questions (Section 6) to illustrate how they are affected by design decisions and are used

by architects and evaluators to help, respectively, the specification and evaluation of

concrete quality attribute scenarios. In Table 1 we describe three examples of general

quality attribute scenarios for interoperability, reliability, and discoverability quality

attributes.

Table 1 REST General Scenarios for Interoperability Quality Attribute

Quality

Attribute
Scenario

Interoperability
I1- A service consumer ‘A’ requests a resource ‘R1’ and receives the representation

of the actual state of ‘R1’ in response message.

Reliability

R1- A service consumer ‘A’ requests a resource ‘R1’ in a specific version specified

directly in the URI and receives the representation of the actual state of ‘R1’ in

response message.

Discoverability
D1- A service consumer ‘A’ requests a resource ‘R1’ and receives the URIs to find

resources associated to ‘R1’ inner the response message

 An example of an interoperability concrete scenario based on the general scenario

described above is: “A service consumer Mobile_Application requests the book resource

and receives the representation of the actual state of book in response message”.

6. REST Design Questions That Affect Quality Attributes (Evaluation

Concern EC3)

In architectures based on the REST style, several design decisions bear quality trade-offs

and are driven by the quality attribute requirements. The REST Evaluation Guide

provides several design questions that are particularly relevant when designing REST-

based systems. Such questions are grouped into topics from the classification scheme

that was created in the systematic mapping (Section 3). In each topic we present the

design questions that evaluators should ask referencing to the general scenario that is

impacted. In Table 2 we present five design questions, the complete list followed by the

detailed description of each question and its relation with the affected quality attribute

general scenario is presented in the original dissertation and [Costa et al. 2014].

Table 2 REST Examples of Design Questions and Quality Attribute Affected

Topic Design Question
Quality Attribute

Directly Affected

Design of

Resources

What is the domain model of the application? Interoperability

Are resource representations standardized within the entire

application, department, or enterprise?

Interoperability

and Performance

Representation

and identification
What format is used to represent resources?

Performance and

Interoperability

Documenting and

testing

How resources should be documented? Testability

How service consumers can perform tests in resources? Testability

7. Evaluation

In order to analyse if the guidelines achieved their goals, and collect the criticisms and

suggestions from experts, the guide was sent to several architecture evaluation teams

(from Software Engineering Institute - SEI, Fraunhofer IESE, among others) aiming to

be used in real architecture evaluations performed in REST-based systems. After that,

based on a Likert Scale, we asked them to rate five statements scaling from 1 (strongly

disagree) to 5 (strongly agree), with 3 being neutral. The statements were created based

on the ECs, aiming to analyse how much they were addressed in the guide. Statements 1

and 2 were based on EC1 (“Explain the architectural foundations of REST from an

architecture evaluator’s point of view”); the statement 3 was based on EC2 (“Discuss

quality attributes and general scenarios that benefit from REST”), and statements 4 and 5

were created based on EC3 (“Discuss in detail how REST contributes to the quality

attributes and where typical tradeoffs are”). The survey indicated that the evaluation

concern EC1 was 84% addressed, EC2 was 66% addressed, and; EC3 was 83%

addressed.

8. Conclusions

The main contribution of our work is the collection of general quality attribute scenarios

and design questions that can assist evaluators in REST-based architecture evaluations,

improving the mitigation of risks. The proposed guidelines can be used in scenario-based

methods such as ATAM to help evaluators to probe architectural approaches in order to

identify tradeoffs and risks to addressing quality attribute requirements. In addition,

based on the evaluation of the guide (Section 7) we believe that these results indicate

that the guide provides real value for software architecture evaluations performed on

REST-based systems. Our work was published [Costa et al. 2014] in the top-tier

software architecture conference WICSA 2014 (The Working IEEE/IFIP Conference on

Software Architecture). Furthermore, it was selected as a best paper of the conference

[PPCA 2014; WICSA 2014] and we were invited to publish an extension of the paper in

a special issue of the Journal of Systems and Software (JSS). At the time that this article

is being written, such paper is under evaluation.

 After the publication in WICSA, we have received several requests for the REST

Evaluation Guide, many of them from Brazilian software houses. Thus, we developed a

Web Tool in order to provide the entire guide on-line. The tool can be found at

http://ubicomp.nce.ufrj.br/restguidance.

References

Bass, L., Clements, P. and Kazman, R. (2012). Software Architecture in Practice.

Addison-Wesley.

Costa, B. (2014). Avaliando uma Arquitetura Baseada no Estilo REST. Universidade

Federal do Rio de Janeiro.

Costa, B., Pires, P. F., Delicato, F. C. and Merson, P. (2014). Evaluating a

Representational State Transfer (REST) Architecture - What is the impact of REST in

my architecture? In 2014 IEEE/IFIP Conference on Software Architecture (WICSA),

Australia, pages 105-114.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures. Univ. of California, Irvine.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele

University,

Oishi, S. M. (2003). How to Conduct In-Person Interviews for Surveys. SAGE

Publications.

Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M. (2008). Systematic mapping

studies in software engineering. In Proceedings of the 12th international conference

on Evaluation and Assessment in Software Engineering (EASE), Brazil, pages 68-77.

Pfleeger, S. L. and Kitchenham, B. A. (2001). Principles of survey research. ACM

SIGSOFT Software Engineering Notes, v. 26, n. 6, page 16-18.

PPCA (2014). Prêmio de melhor artigo no WICSA. http://ppca.unb.br/index.php/97-

ultimas-noticias/211-premio-de-melhor-artigo-no-wicsa, [accessed on Apr 7].

WICSA (2014). WICSA 2014 Best Paper Awards.

https://web.archive.org/web/20140818151832/http://wicsa2014.org/index.php/wicsa-

2014-awards/, [accessed on Apr 7].

Wilde, E. and Pautasso, C. (2011). REST: From Research to Practice. Springer Science

& Business Media.

