
Image Segmentation by Image Foresting Transform with
Boundary Polarity and Shape Constraints

Lucy A. C. Mansilla1

Supervisor: Paulo A. V. Miranda1

1 Department of Computer Science – University of São Paulo (USP)
05508-090 – São Paulo – SP – Brazil

{lucyacm,pmiranda}@vision.ime.usp.br

Abstract. Image segmentation, such as to extract an object from a background,
is very useful for medical and biological image analysis. Inthis work, we
propose new segmentation methods for interactive segmentation of multidimen-
sional images, based on the Image Foresting Transform (IFT), by exploiting for
the first time non-smooth connectivity functions (NSCF) with a strong theoretical
background. The new algorithms provide global optimum solutions according to
an energy function of graph cut, subject to high-level boundary constraints (po-
larity and shape). Our experimental results indicate substantial improvements
in accuracy in relation to other state-of-the-art methods,using medical images,
by allowing the customization of the segmentation to a giventarget object.

1. Introduction

Image segmentation is one of the most fundamental and challenging problems in im-
age processing and computer vision. In medical image analysis, accurate segmenta-
tion results commonly require the user intervention because of the presence of struc-
tures with ill-defined borders, intensity non-standardness among images, field inhomo-
geneity, noise, artifacts, partial volume effects, and their interplay. The high-level,
application-domain-specific knowledge of the user is also often required in the digital
matting of natural scenes, because of their heterogeneous nature. These problems mo-
tivated the development of several methods for semi-automatic segmentation, aiming to
minimize the user involvement and time required without compromising accuracy and
precision [Mansilla 2014].

One important class of interactive image segmentation comprises seed-based
methods, which have been developed based on different theories, supposedly not related,
leading to different frameworks, such aswatershed, random walks, fuzzy connectedness,
graph cuts, distance cut, image foresting transform(IFT) [Falcão et al. 2004], andgrow
cut. The study of the relations among different frameworks, including theoretical and
empirical comparisons, has a vast literature. However, these methods in most studies are
restricted to undirected graphs, and the most time-efficient methods, including the IFT,
present a lack of boundary regularization constraints.

The main contribution of this work is a theoretical development to support the
usage ofnon-smooth connectivity functions (NSCF) in the IFT, opening new perspec-
tives in the research of image processing using graphs, since NSCF were, until now,
avoided in the literature. More specifically, we prove that some NSCF can lead to opti-
mum results according to a graph-cut measure on a digraph [Miranda and Mansilla 2014,



Mansilla and Miranda 2013a]. This oriented energy allows the incorporation of the
boundary polarity and shape constraints, to eliminate false delineations, as discussed later
on Sections 3 and 4. We have as main results:

1. The customization of the segmentation by IFT to match the global features of a
target object:(a) The orientation of the object’s intensity transitions, i.e., bright to
dark or the opposite (boundary polarity), and(b) shape constraints to regularize
the segmentation boundary (geodesic star convexity constraint).

2. The development of an interactive segmentation tool within the software, called
Brain Image Analyzer(BIA), to support research in neurology involving volumet-
ric magnetic resonance images of a 3T scanner from the FAPESP-CInApCe.

3. Four conference papers were published [Mansilla and Miranda 2013a,
Mansilla et al. 2013b, Mansilla and Miranda 2013b, Mansillaet al. 2013a],
and one journal paper was published in theIEEE Transactions on Image
Processing(impact factor: 3.111) [Miranda and Mansilla 2014].

2. Image Foresting Transform (IFT)

An image 2D/3D can be interpreted as a weighted digraphG = 〈V = I , ξ, ω〉 whose
nodesV are the image pixels in its image domainI ⊂ Z

N , and whose arcs are the
ordered pixel pairs(s, t) ∈ ξ. The digraphG is symmetric if for any of its arcs(s, t),
the pair(t, s) is also an arc ofG. We use(s, t) ∈ ξ to indicate thatt is adjacent to
s. Each arc(s, t) ∈ ξ may have a weightω(s, t) ≥ 0, such as a dissimilarity measure
between pixelss and t (e.g.,ω(s, t) = |I(t) − I(s)| for a single channel image with
values given byI(t)). For a given image graphG, a pathπt = 〈t1, t2, . . . , tn = t〉 is a
sequence of adjacent pixels with terminus at a pixelt. A path istrivial whenπt = 〈t〉.
A pathπt = πs · 〈s, t〉 indicates the extension of a pathπs by an arc(s, t). The notation
πs t = 〈t1 = s, t2, . . . , tn = t〉 may also be used, wheres stands for the origin andt for
the destination node. Aconnectivity functioncomputes a valuef(πt) for any pathπt,
usually based on arc weights. A pathπt is optimumif f(πt) ≤ f(τt) for any other path
τt in G. The IFT takes an image graphG, and a path-cost functionf ; and assigns one
optimum pathπt to every pixelt ∈ V such that anoptimum-path forestP is obtained,
i.e., a spanning forest where all induced paths are optimum.However,f must besmooth,
otherwise, the paths may not be optimum [Falcão et al. 2004]. In the forest, each object
is represented by the optimum-path trees rooted at its internal seeds.

3. Boundary Polarity via NSCF

In order to resolve between very similar nearby boundary segments,
in [Miranda and Mansilla 2014, Mansilla and Miranda 2013a] we successfully in-
corporated the boundary polarity constraint in the IFT using NSCF in digraphs, resulting
in a novel method calledOriented Image Foresting Transform (OIFT).

In the case of digraphs, there are two different types of cut for each object
boundary: an inner-cut boundary composed by arcs that pointtoward object pixels
Ci(L) = {(s, t) ∈ ξ | L(s) = 0, L(t) = 1} 1, and an outer-cut boundary with arcs from
object to background pixelsCo(L) = {(s, t) ∈ ξ | L(s) = 1, L(t) = 0}. Consequently,

1L(t) = 1 andL(t) = 0 represent object and background pixels in a labeled imageL, respectively.



we consider two different types of energy,Ei (Eq. 1) andEo (Eq.2).

Ei(L,G) = min
(s,t) ∈ Ci(L)

ω(s, t) (1)

Eo(L,G) = min
(s,t) ∈ Co(L)

ω(s, t) (2)

We use a digraph, whereω(s, t) is a combination of a regular undirected dissimilarity
measureψ(s, t), multiplied by an orientation factor (i.e.,ω(s, t) = ψ(s, t) × (1 + α) if
I(s) > I(t) andω(s, t) = ψ(s, t)× (1− α) otherwise). Several different procedures can
be adopted forψ(s, t), such as the absolute value of the difference of image intensities
(i.e.,ψ(s, t) = |I(t)− I(s)|). Note that we haveω(s, t) 6= ω(t, s) whenα > 0.

The OIFT is build upon the IFT framework by considering one ofthe following
path functions in a symmetric digraph:

fS1,S2

max (〈t〉) =

{

−1 if t ∈ S1 ∪ S2

+∞ otherwise

fS1,S2

max (πr s · 〈s, t〉) =

{

max{fS1,S2

max (πr s), 2× ω(t, s) + 1} if r ∈ S1

max{fS1,S2

max (πr s), 2× ω(s, t)} if r ∈ S2

(3)

fS1,S2

ω (〈t〉) = fS1,S2

max (〈t〉)

fS1,S2

ω (πr s · 〈s, t〉) =

{

ω(t, s) if r ∈ S1

ω(s, t) if r ∈ S2

(4)

The segmentation usingfSo,Sb

max or fSo,Sb

ω favors transitions from dark to bright
pixels, andfSb,So

max or fSb,So

ω favors the opposite orientation, according to Theorem 1,
whereSo is a set of object’s seeds andSb are seeds selected in the background. In the
case of multiple candidate segmentations with the same energy, fS1,S2

ω produces a better
handling of the tie zones thanfS1,S2

max [Mansilla and Miranda 2013a].

Theorem 1 (Inner/outer-cut boundary optimality) For two given sets of seedsSo and
Sb, any spanning forest computed by the IFT algorithm for function fSb,So

max or fSb,So

ω

defines an optimum cut that maximizesEo(L,G) among all possible segmentation results
satisfying the hard constraints. Any spanning forest computed by the IFT algorithm for
functionfSo,Sb

max or fSo,Sb

ω defines an optimum cut that maximizesEi(L,G) among all
possible segmentation results satisfying the hard constraints.

In our experiments, we used 20 volumetric images from real 3DMR images of
the foot. We computed the mean performance curve (Dice coefficient) for the meth-
ods: Iterative Relative Fuzzy Connectedness (IRFC), IFT with fmax [Falcão et al. 2004]
(IFTmax

FIFO), Power Watershed (PWq=2), and OIFT usingfSo,Sb

max (OIFTmax
inner), f

Sb,So

max

(OIFTmax
outer), f

So,Sb

ω (OIFT ω
inner) andfSb,So

ω (OIFT ω
outer) [Mansilla 2014]. We used dif-

ferent seed sets obtained by eroding and dilating the groundtruth (Figure 1). The experi-
mental accuracy curves with the Sobel gradient (Figure 2) show that whenever the object
presents transitions from dark to bright pixels, as it is thecase with the bones,fSo,Sb

ω and
fSo,Sb

max give the best accuracy results. Note also thatfSb,So

max andfSb,So

ω present the worst
accuracy values, by specifying the wrong orientation.

4. Shape Constraints via NSCF
Shape constraints, such as the star-convexity prior introduced by Veksler [Veksler 2008],
can limit the search space of possible delineations to a smaller subset, thus eliminating



(a) (b) (c) (d)

Figure 1. (a) True segmentation of the talus bone in an MR image of a foot. (b)
Seed sets obtained by eroding and dilating the ground truth. (c) Segmentation
by IRFC. (d) An improved result by exploiting the boundary polarity using fSo,Sb
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(a) (b)

Figure 2. The mean accuracy curves (Dice) using the Sobel gradient for the 3D
segmentation of: (a) talus, and (b) calcaneus.

false candidate boundaries. In this context, a pointp is said to be visible toc via a setO if
the line segment joiningp to c lies in the setO. An objectO is star-convex with respect
to centerc, if every pointp ∈ O is visible toc via O (Figure 3). In the case of multiple
stars, a computationally tractable definition, was proposed in [Gulshan et al. 2010], using
aGeodesic Star Convexity(GSC) constraint in the segmentation bymin-cut/max-flow.

(a) (b)

Figure 3. For any point p within the object and the star center c, we have: (a) a
star-convex object and (b) a non-star-convex object.

In [Mansilla et al. 2013b], we proposed an IFT extension thatincorporates the
GSC constraint, favoring the segmentation of objects with more regular shape, resulting
in a novel method calledIFT with Geodesic Star Convexity Constraints (GSC–IFT). In
this method, the set of star centers is taken as the set of internal seeds (So), and the line
segments are the paths that form a spanning forest rooted at the internal seeds. The forest
topology is controlled by a parameterβ. For lower values ofβ (β ≈ 0.0), the method
imposes more star regularization to the boundary of the object, and for higher values of
β, it allows a better fit to the curved protrusions and indentations of the boundary.

Thereafter, in [Mansilla and Miranda 2013b] we proposed thenovel method
calledOIFT with Geodesic Star Convexity (GSC–OIFT), which incorporate Gulshan’s



geodesic star convexity prior in the OIFT approach for interactive image segmentation,
in order to simultaneously handle boundary polarity and shape constraints (Theorem 2).
We constrain the search for optimum result, that maximize the graph-cut measuresEi

(Eq. 1) orEo (Eq. 2), only to segmentations that satisfy the geodesic star convexity con-
straint. We compute an optimum forestPsum for fsum [Falcão et al. 2004] by the regular
IFT algorithm, using onlySo as seeds, for the given digraphG, obtaining two sets of arcs
ξi

Psum
= {(s, t) ∈ ξ | s = Psum(t)} andξo

Psum
= {(s, t) ∈ ξ | t = Psum(s)}.

Theorem 2 (Inner/outer-cut boundary optimality) For a given image graph
G = 〈I, ξ, ω〉, consider a modified weighted graphG′ = 〈I, ξ, ω′〉, with weights
ω′(s, t) = −∞ for all (s, t) ∈ ξo

Psum
, andω′(s, t) = ω(s, t) otherwise. For two given

sets of seedsSo and Sb, the segmentation computed overG′ by the IFT algorithm
for function fSb,So

max defines an optimum cut in the original graphG, that maximizes
Eo(L,G) among all possible segmentation results satisfying the shape constraints by the
geodesic star convexity, and the seed constraints. Similarly, the segmentation computed
by the IFT algorithm for functionfSo,Sb

max , over a modified graphG′ = 〈I, ξ, ω′〉; with
weightsω′(s, t) = −∞ for all (s, t) ∈ ξi

Psum
, andω′(s, t) = ω(s, t) otherwise; defines

an optimum cut in the original graphG, that maximizesEi(L,G) among all possible
segmentation results satisfying the shape constraints by the geodesic star convexity.

In our experiments, we used 40 image slices of 10 thoracic CT studies to segment
the liver. Figure 4a shows the mean accuracy curves for all the images assuming different
seed sets obtained by eroding and dilating the ground truth.Note that for higher values
of β, GSC–OIFT imposes less shape constraints, so that the accuracy tends to decrease
(Figures 4b-c). Figure 5 shows some results in the case of user-selected markers.
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Figure 4. The mean accuracy curves of all methods for the liver segmentation for
various values of β: (a) β = 0.0, (b) β = 0.5, and (c) β = 0.7.

(a) (b) (c) (d)

Figure 5. Results for user-selected markers: (a) IRFC, (b) OIFT (fSb,So

max
with

α = 0.5), (c) GSC-IFT (β = 0.7, α = 0.0), and (d) GSC-OIFT (β = 0.7, α = 0.5).

5. Conclusion
The proposed extension GSC–OIFT includes the IFT withfmax, OIFT and GSC–IFT as
particular cases, depending on the configuration of its parametersα andβ. Other result



of our work was the design of more adaptive and flexible connectivity functions, with the
use of dynamic weights, that allow better handling of imageswith strong inhomogene-
ity [Mansilla et al. 2013a]. The theoretical foundation proposed in this work has also al-
lowed new achievements that were recently published, such as [Braz and Miranda 2014]
and [Bejar and Miranda 2014].

The authors thank FAPESP grant #2011/50761-2 #2012/06911-2, CNPq, CAPES,
NAP eScience - PRP - USP and Dr. J.K. Uduapa (MIPG-UPENN) for the images.
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