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Abstract. Image segmentation, such as to extract an object from a backd,
is very useful for medical and biological image analysis. this work, we
propose new segmentation methods for interactive segtmmts multidimen-
sional images, based on the Image Foresting Transform (IBy gxploiting for
the first time non-smooth connectivity functions (NSCH) witrong theoretical
background. The new algorithms provide global optimumtsmiis according to
an energy function of graph cut, subject to high-level b@rgadonstraints (po-
larity and shape). Our experimental results indicate sabsal improvements
in accuracy in relation to other state-of-the-art methoglsing medical images,
by allowing the customization of the segmentation to a giseget object.

1. Introduction

Image segmentation is one of the most fundamental and olgatig problems in im-
age processing and computer vision. In medical image asalgscurate segmenta-
tion results commonly require the user intervention beeaafsthe presence of struc-
tures with ill-defined borders, intensity non-standardr@siong images, field inhomo-
geneity, noise, artifacts, partial volume effects, andrtirgerplay. The high-level,
application-domain-specific knowledge of the user is aldenorequired in the digital
matting of natural scenes, because of their heterogenesiugen These problems mo-
tivated the development of several methods for semi-auioreagmentation, aiming to
minimize the user involvement and time required without posmising accuracy and
precision [Mansilla 2014].

One important class of interactive image segmentation ceep seed-based
methods, which have been developed based on differentiésesupposedly not related,
leading to different frameworks, such watershedrandom walksfuzzy connectedness
graph cuts distance cutimage foresting transforriFT) [Falcao et al. 2004], angrow
cut The study of the relations among different frameworks|uding theoretical and
empirical comparisons, has a vast literature. Howevesedimeethods in most studies are
restricted to undirected graphs, and the most time-efficiegthods, including the IFT,
present a lack of boundary regularization constraints.

The main contribution of this work is a theoretical devel@mnto support the
usage ofhon-smooth connectivity functions (NSCF) in the IFT, opening new perspec-
tives in the research of image processing using graphse $W8CF were, until now,
avoided in the literature. More specifically, we prove th@ne NSCF can lead to opti-
mum results according to a graph-cut measure on a digraptafidia and Mansilla 2014,



Mansilla and Miranda 2013a]. This oriented energy allows ihcorporation of the
boundary polarity and shape constraints, to eliminatefdéineations, as discussed later
on Sections 3 and 4. We have as main results:

1. The customization of the segmentation by IFT to match tbbaj features of a
target object(a) The orientation of the object’s intensity transitions,,il®ight to
dark or the opposite (boundary polarity), afix) shape constraints to regularize
the segmentation boundary (geodesic star convexity aingtr

2. The development of an interactive segmentation tooliwitie software, called
Brain Image Analyze(BIA), to support research in neurology involving volumet-
ric magnetic resonance images of a 3T scanner from the FARESApCe.

3. Four conference papers were published [Mansillaandida®013a,
Mansilla et al. 2013b, Mansilla and Miranda 2013b, Manstial. 2013a],
and one journal paper was published in tHeEE Transactions on Image
Processindimpact factor: 3.111) [Miranda and Mansilla 2014].

2. Image Foresting Transform (1FT)

An image 2D/3D can be interpreted as a weighted digraph (V = I, £, w) whose
nodesy are the image pixels in its image domalh ¢ Z”", and whose arcs are the
ordered pixel pairgs,t) € & The digraphG is symmetric if for any of its arcss, ¢),
the pair(t, s) is also an arc ofy. We use(s,t) € £ to indicate that is adjacent to
s. Each ard(s,t) € £ may have a weight'(s,t) > 0, such as a dissimilarity measure
between pixelss andt (e.g.,w(s,t) = |I(t) — I(s)| for a single channel image with
values given byi(¢)). For a given image grap&y, a pathr, = (t1,1s,...,t, =t) is a
sequence of adjacent pixels with terminus at a pixeh path istrivial whenm, = (t).

A pathm, = 7, - (s, t) indicates the extension of a path by an arc(s, ¢t). The notation
Tswt = (t1 = 8,19, ..., 1, = t) may also be used, whesestands for the origin andfor
the destination node. A&onnectivity functiorcomputes a valug(r;) for any pathm,,
usually based on arc weights. A pathis optimumif f(m,) < f(r;) for any other path
7; In G. The IFT takes an image gragh and a path-cost functiofi; and assigns one
optimum pathr, to every pixelt € V such that aroptimum-path foresP is obtained,
i.e., a spanning forest where all induced paths are optiniowever,f must besmooth
otherwise, the paths may not be optimum [Falcao et al. 20@4the forest, each object
is represented by the optimum-path trees rooted at itsnakseeds.

3. Boundary Polarity via NSCF

In order to resolve between very similar nearby boundary mesgs,
in [Miranda and Mansilla 2014, Mansilla and Miranda 2013ale veuccessfully in-
corporated the boundary polarity constraint in the IFT gSCF in digraphs, resulting
in a novel method calle@riented | mage Foresting Transform (OIFT).

In the case of digraphs, there are two different types of outefach object
boundary: an inner-cut boundary composed by arcs that powsrd object pixels
Ci(L)={(s,t) € &| L(s) =0, L(t) = 1} 1, and an outer-cut boundary with arcs from
object to background pixel6,(L) = {(s,t) € £ | L(s) = 1, L(t) = 0}. Consequently,

1L(t) = 1 andL(t) = 0 represent object and background pixels in a labeled infagespectively.



we consider two different types of enerdy, (Eqg. 1) andF, (Eq.2).

E(L,G) = i N 1
(L,G) (Sﬁt)rreugi@)w(s ) (1)
E(L,G) = i t 2

(L,G) (S’t)rglgo(mw(s ) (2)

We use a digraph, where(s, t) is a combination of a regular undirected dissimilarity
measure) (s, t), multiplied by an orientation factor (i.ey(s,t) = (s, t) x (1 + «) if
I(s) > I(t) andw(s,t) = ¥(s,t) x (1 — a) otherwise). Several different procedures can
be adopted for)(s, t), such as the absolute value of the difference of image iiiesis
(i.e., (s, t) = |I(t) — I(s)|). Note that we have (s, t) # w(t, s) whena > 0.

The OIFT is build upon the IFT framework by considering onehe following
path functions in a symmetric digraph:

5.5, -1 ifte8SUS,
faax () = {+oo otherwise

.5, B max{ fS152(m, ), 2 x w(t,s) + 1} ifre S,
FoaS2 (Mrs - (s,1)) = { max{ fEL5 (), 2 X w(s, 1)} ifre S, ©
IR ((1) = a2 )
[ (- (s,1)) = { S e )

The segmentation using®e:5» or 5S¢ favors transitions from dark to bright
pixels, andfSv.5e or S-S favors the opposite orientation, according to Theorem 1,
whereS, is a set of object’s seeds aft}, are seeds selected in the background. In the
case of multiple candidate segmentations with the sameggngf-52 produces a better
handling of the tie zones thaff1;52 [Mansilla and Miranda 2013a].

Theorem 1 (Inner/outer-cut boundary optimality) For two given sets of seedk, and
Ss, any spanning forest computed by the IFT algorithm for fiamctfSe:Se or fSv-Se
defines an optimum cut that maximiZzeg L, G) among all possible segmentation results
satisfying the hard constraints. Any spanning forest caegbby the IFT algorithm for
function fS2:5» or fS-Se defines an optimum cut that maximizeg L, G) among all

possible segmentation results satisfying the hard coimga

In our experiments, we used 20 volumetric images from reaMd®images of
the foot. We computed the mean performance curve (Dice casff) for the meth-
ods: lterative Relative Fuzzy Connectedness (IRFC), IKR Wij,.. [Falcao et al. 2004]
(IFTRe ), Power WatershedAW,—,), and OIFT usingfSe:5e (OITFTmax ), fSeSe
(OIFTmax), fSoSe (OIFTY,,..) andfSeSe (OITFT%, ) [Mansilla 2014]. We used dif-
ferent seed sets obtained by eroding and dilating the groutid(Figure 1). The experi-
mental accuracy curves with the Sobel gradient (Figure @vghat whenever the object
presents transitions from dark to bright pixels, as it isthge with the bonegS-S» and
[Se:50 give the best accuracy results. Note also > and f5»S- present the worst

max

accuracy values, by specifying the wrong orientation.

4. Shape Constraintsvia NSCF

Shape constraints, such as the star-convexity prior inted by Veksler [Veksler 2008],
can limit the search space of possible delineations to alemsalbset, thus eliminating
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Figure 1. (a) True segmentation of the talus bone in an MR image of a foot. (b)
Seed sets obtained by eroding and dilating the ground truth. (c) Segmentation
by IRFC. (d) An improved result by exploiting the boundary polarity using fSe;5¢.
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Figure 2. The mean accuracy curves (Dice) using the Sobel gradient for the 3D
segmentation of: (a) talus, and (b) calcaneus.

false candidate boundaries. In this context, a ppiatsaid to be visible te via a setO if
the line segment joining to c lies in the set®. An objectO is star-convex with respect
to centerc, if every pointp € O is visible toc via O (Figure 3). In the case of multiple
stars, a computationally tractable definition, was progas¢Gulshan et al. 2010], using
aGeodesic Star Convexi{sSC) constraint in the segmentationioyn-cut/max-flow
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Figure 3. For any point p within the object and the star center ¢, we have: (a) a
star-convex object and (b) a non-star-convex object.

In [Mansilla et al. 2013b], we proposed an IFT extension thabrporates the
GSC constraint, favoring the segmentation of objects withewegular shape, resulting
in a novel method calletFT with Geodesic Star Convexity Constraints (GSC—IFT). In
this method, the set of star centers is taken as the set ohaiteeeds§,), and the line
segments are the paths that form a spanning forest rootkd atternal seeds. The forest
topology is controlled by a parametér For lower values of3 (3 ~ 0.0), the method
imposes more star regularization to the boundary of thecbbged for higher values of
3, it allows a better fit to the curved protrusions and indeores of the boundary.

Thereafter, in [Mansilla and Miranda 2013b] we proposed tiowel method
calledOIFT with Geodesic Star Convexity (GSC—OIFT), which incorporate Gulshan’s



geodesic star convexity prior in the OIFT approach for iatéve image segmentation,
in order to simultaneously handle boundary polarity angsh@nstraints (Theorem 2).
We constrain the search for optimum result, that maximizegraph-cut measurés;
(Eq. 1) orE, (Eg. 2), only to segmentations that satisfy the geodesiastavexity con-
straint. We compute an optimum foreRy,,,, for f,.., [Falcao et al. 2004] by the regular
IFT algorithm, using onl\S,, as seeds, for the given digraph obtaining two sets of arcs
53‘331”” = {(87t> S | s = Psum(t)} andé%sum = {<Svt) €§ ‘ t= Psum(s)}'

Theorem 2 (Inner/outer-cut boundary optimality) For a given image graph
G = (T,&,w), consider a modified weighted grapghl’ = (Z,&,w’), with weights
W'(s,t) = —oo forall (s,t) € €3, andw'(s,t) = w(s,t) otherwise. For two given
sets of seeds, and S;, the segmentation computed ow@t by the IFT algorithm
for function fS»:5- defines an optimum cut in the original gragh, that maximizes
E,(L,G) among all possible segmentation results satisfying th@elcanstraints by the
geodesic star convexity, and the seed constraints. Siyiklie segmentation computed
by the IFT algorithm for functiorySe:5, over a modified graplt’ = (Z, ¢, w’); with
weightsw’(s,t) = —oc for all (s,t) € &5, andw/(s,t) = w(s,t) otherwise; defines
an optimum cut in the original grapl, that maximizes”;(L,G) among all possible
segmentation results satisfying the shape constraintedgéodesic star convexity.

In our experiments, we used 40 image slices of 10 thoracict@dies to segment
the liver. Figure 4a shows the mean accuracy curves foralhtilages assuming different
seed sets obtained by eroding and dilating the ground tiutite that for higher values
of 3, GSC-OIFT imposes less shape constraints, so that theaagciends to decrease
(Figures 4b-c). Figure 5 shows some results in the case ofsesected markers.
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Figure 4. The mean accuracy curves of all methods for the liver segmentation for
various values of g: (a) 5 = 0.0, (b) 3 =0.5,and (c) 8 = 0.7.

(d)

Figure 5. Results for user-selected markers: (a) IRFC, (b) OIFT (fSt;5¢ with

max

a = 0.5), (¢) GSC-IFT (8 = 0.7, a = 0.0), and (d) GSC-OIFT (8 = 0.7, a = 0.5).

5. Conclusion

The proposed extension GSC-OIFT includes the IFT viith,, OIFT and GSC-IFT as
particular cases, depending on the configuration of itsrpatersa and 5. Other result



of our work was the design of more adaptive and flexible cotivigcfunctions, with the
use of dynamic weights, that allow better handling of imagéhk strong inhomogene-
ity [Mansilla et al. 2013a]. The theoretical foundation poged in this work has also al-
lowed new achievements that were recently published, ssifBraz and Miranda 2014]
and [Bejar and Miranda 2014].

The authors thank FAPESP grant #2011/50761-2 #2012/089CNPq, CAPES,
NAP eScience - PRP - USP and Dr. J.K. Uduapa (MIPG-UPENN heirmages.
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