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Abstract. The Kneser graph K(n, k) has as vertices the k-subsets of the set

{1,...,n} and two vertices are adjacent if the k-subsets are disjoint. The bi-
partite Kneser graph B(n, k) has as vertices the k and the (n — k)-subsets of
{1,...,n} and two vertices are adjacent if one is a subset of the other. It was

proved that a particular hamiltonian path in a reduced graph of B(2k + 1, k)
gives a hamiltonian path in K (2k+1, k) and a hamiltonian cycle in B(2k+1, k).
We use a structural property in K(2k + 1, k) to devise a parallel algorithm and
to improve a known algorithm, both to search for such a particular hamiltonian
path in the reduced graph of B(2k + 1, k).

1. Introduction

Let Z, be the set {1, ..., n} and let (") be the family of all k-subsets of Z,. The Kneser
graph K (n, k) has (ZI:) as its vertex set, and two k-subsets are adjacent if they are disjoint
(Figures 1(a) and 1(b)). The Kneser graph K (2k + 1, k) is called the odd graph and it is
denoted by Oy, (Figure 1(a)). Notice that O, is the well-known Petersen graph.
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Figure 1. For k = 1, the graphs: (a) Oy; (b) K(2k + 2, k), and; (c) By

The bipartite Kneser graph B(n, k) has (Zk") U (nzjk) as its vertex set and an undi-
rected edge {u, v} represents that u either contains or is contained into v (Figure 1(c)).
The graph B(2k + 1, k) is isomorphic to the subgraph of the (24 + 1)-cube graph induced
by the vertices having exactly k or (k + 1) ones. Hence, B(2k + 1, k) is also called the
middle levels graph, and it is denoted by By.

[Lovdsz 1970] conjectured that every connected vertex-transitive graph has a
hamiltonian path. For n > 2k + 1, the graphs K(n, k) and B(n, k) form well-studied
families of connected vertex-transitive graphs, both ("2’“) -regular. However, a direct com-
putation of hamiltonian paths or cycles in K (n, k) and B(n, k) is not feasible for large
values of k, because K (n, k) has (}) vertices and B(n, k) has 2(}}) vertices. Apart from

*Research partially supported by Brazilian agencies CNPq and CAPES.

442



XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

the Petersen graph, K (n, k) and B(n, k) are hamiltonian if n > 2.62k+ 1 [Chen 2003], or
if n < 27 (see [Shields and Savage 2004] and references therein). [Johnson 2011] showed
how to construct hamiltonian cycles in K (2k + ¢, k) for k < 2] + 1 using hamiltonian cy-
cles from K (2k+%, k) for k < I. Since Oy, is hamiltonian for k < 13, then K (2k+2, k) is
hamiltonian for k < 27 and, consequently, K (2k +4, k) is hamiltonian for k£ < 55, and so
on. Notice that O, and By, are the sparsest among all of the graphs K (n, k) and B(n, k),
respectively. It was proved that By is hamiltonian for £ < 19, and Oy has a hamilto-
nian path or a hamiltonian cycle for £ < 19 [Bueno et al. 2009, Shields and Savage 1999,
Shields and Savage 2004, Shields et al. 2009, Shimada and Amano 2011].

For a reduced graph of By and Oy, denoted by R(By) and R(Oy) respectively,
it was proved that R(By) = R(Oy) [Dejter 1985, Bueno et al. 2009]. Also, a partic-
ular hamiltonian path — we shall call it a useful path — in R(Bj) provides a hamilto-
nian cycle and a hamiltonian path in By, and Oy, respectively [Shields and Savage 1999,
Bueno et al. 2009]. Later, it was proved that R(K (n, k)) = R(B(n, k)) and that a useful
path in the reduced graph of B(2k + 2, k) implies a hamiltonian cycle in both graphs
B(2k + 2, k) and K(2k + 2, k) [Bueno et al. 2011].

At the moment, all known useful paths have been determined by heuristic al-
gorithms. First, [Shields and Savage 1999] proposed a heuristic based on Pésa’s path
reversal strategy [Pésa 1976] to search for useful paths in R(By), and had its running
time further improved in [Shields et al. 2009]. They determined useful paths for £ < 17.
Later, [Shimada and Amano 2011] partitioned the vertices of R(Bj) such that the exis-
tence of a path in each set of vertices implies a useful path. They used the algorithm of
[Shields and Savage 1999] to determine useful paths for k£ = 18, 19.

In our work, we have proved that a useful path in R(K (2k+3, k)) gives a hamilto-
nian path in K (2k + 3, k). By applying the algorithm in [Shields and Savage 1999] to the
graph R(K (2k + 3, k)), we have found two new results: a hamiltonian path in £(29, 13)
and in K (31, 14). Also, we have used a property in O and By, to develop a parallel algo-
rithm [Gusmao et al. 2013a] and an improvement [Gusmao et al. 2013b] of the algorithm
in [Shields and Savage 1999] to search for useful paths in R(By). The second algorithm
is faster than the algorithms in [Shields and Savage 1999, Shields et al. 2009].

The present text is meant to be a brief introduction to the basic ideas underlying the
proofs and algorithms contained in the Master’s thesis [Gusmado 2013] and in the papers
[Gusmao et al. 2013a, Gusmao et al. 2013b]. Obviously, it does not delve too much into
the details due to space constraints.

2. The Algorithms

Consider Z,, with arithmetical operations modulo n, and the vertices of K (n = 2k + i, k)
as k-subsets of Z,. Letr; = {1,2,...,k} and ro = {2,4,6,..., 2k = n — i} be two
k-subsets of Z,. Given a set A C Z, and an integer 6 € Z, define A + ¢ as the set
{a+6:a€ A} and A as the set Z, \ A. Define the equivalence relation ~ as follows:
given A,B C Z,, B ~ Aifeither: i) B = A+ ¢ or (i) B = A + 6. Refer to the
equivalence class of A under ~ as o(A). The reduced graph R(G) of a graph G has
the equivalence classes o(v) as vertices, for each v € V(G), and if {u,v} € F(G) then

{o(u),0(v)} € E(R(G)).

We refer to a hamiltonian path starting with o (71 ) and ending with o (ry) as a useful
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path. [Shields and Savage 1999] showed that the existence of a useful path in R(B})
implies that By, is hamiltonian. A useful path in R(K (n, k)) which implies a hamiltonian
cycle or path in the correspondent connected graphs K (n, k) and/or B(n, k) seems to
be true whenever k£ and n are relatively prime. [Bueno et al. 2011, Bueno et al. 2009]
proved this implication for n = 2k + 1 and for n = 2k + 2 if k is odd. We extended
[Gusmao et al. 2013b] this result for K (2k + 3,k) and k = 1 or 2 (mod 3).

A j-factor of a graph G is a j-regular spanning subgraph of (. For instance, an
1-factor is a perfect matching and a 2-factor is a covering of the vertices of the graph
by disjoint cycles. A graph G is j-factorable if GG is the union of disjoint j-factors.
[Duffus et al. 1994] determined a 1-factorization of By hoping that the union of two suit-
able 1-factors would provide a hamiltonian cycle of Bj. Unfortunately, it turned out not
to be the case for that 1-factorization. However, that 1-factorization were used to find a 2-
factorization of Oy, [Johnson and Kierstead 2004]. We showed that the 2-factorization in
[Johnson and Kierstead 2004] gives a 2-factorization in R(By) = R(Oy) as well (Lemma
2 in [Gusmao 2013]). This is the main property used by our algorithms.

2.1. The Parallel Algorithm

Searching for a useful path, the parallel algorithm tries to concatenate the cycles from
a 2-factor in R(By). At the end, if there are vertices that are not in the path, we use
an implementation of the algorithm in [Shields and Savage 1999], henceforth denoted by
SS99, to add the remaining vertices to the path.

The algorithm’s idea is: repeatedly, each process receives two or more paths and
return a single path and the vertices that could not be added — we call them loss. Since the
vertex o (7) must be the last vertex of a useful path, it is a loss in order to be added only
at the end. Naturally, the objective is minimizing the number of loss. However, the vertex
o(ry) is the first vertex of a useful path. Therefore, only concatenations with ¢(r;) in the
first position are verified. Notice that the loss can be paths, not only a single vertex.

At the end, the first vertex of Pis o (ry), and o(rg)isaloss. If | P| = |[V(R(Ok))|—
1 and the last vertex of P is adjacent to o(rs), then P with o(ry) is a useful path of
R(Oy). Otherwise, we use the algorithm SS99 to properly add the loss to P, since SS99
works adding vertices at the end of a path. The parallel algorithm in details is given in
[Gusmao 2013, Gusmao et al. 2013a].

2.2. The Improved SS99 Algorithm

A backtracking search is guaranteed to find a hamiltonian path in R(By) from a vertex
o(ry) to a vertex o (r3) if such a path exists. However, it is an exhaustive search that runs in
exponential time in the worst case and, therefore, impracticable except for relatively small
graphs. [Pésa 1976] noticed that reaching a dead end in a backtrack search could be used
as an opportunity to modify the current path by a rotation, and then possibly continuing.
If P = (vq,09,...,v,)is apath in R(By) and there is an edge {v,, v;} for some 1 < j <
r — 1, then a rotation at v; is the path P' = (v, v, ..., v, 0, Vp_1, ..., vj41) Obtained by
removing the edge {v;, v;;1 } and inserting the edge {v;, v, }. Pésa’s path reversal strategy
tries to extend a path P until no longer possible and avoiding the last vertex o(r9) until
the end. At this point, it selects a neighbor of the last vertex of P and performs a rotation.
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The heuristic SS99 uses Pésa’s strategy until all neighbors of the last vertex of
P are already on the path. If the path is not a hamiltonian path, the algorithm performs
a breadth-first search to search for a sequence of rotations resulting in a path that can be
further extended. If no such sequence is found, it ends without finding a hamiltonian path.

Let m; be a modular matching in By, for [ = 1,...,k+ 1, and let I1(m,) be the 2-
factor in R(By,) constructed from m;. We proposed a modification of Shields and Savage’s
algorithm which speeds up the construction of a useful path — this algorithm is denoted
by MM. We choose one of the 2-factors in R(By), say II(m;) for 1 <1 < k+ 1 and, at
the point the algorithm SS99 adds a vertex v in the path, we extend the cycle C' € II(m;)
containing v into a path P, starting in v. Then, instead of adding only the vertex v, we
add the whole path P, to the useful path being constructed. If reversals are necessary, we
proceed as in SS99. Determining the cycle which contains a vertex v € R(By,) requires
constant time, so the time complexity of the algorithm SS99 does not increase.

In general, the 2-factor II(my), for [ &~ [%], has the smallest number of cycles
and, therefore, longer cycles (see Table 1 in [Gusmao et al. 2013b]). Since longer cycles
collaborate to a faster running time of our algorithm, we have chosen the 2-factor I1(rn;)
of R(By) with the smallest number of cycles as a starting point for the algorithm MM.
For further details, we refer to [Gusmao et al. 2013b].

3. Experimental Results

The running times of the algorithms that search for useful paths in R(B)) are summa-
rized in Table 1. Our implementation of SS99 is denoted by SS99*. The algorithms
MM and SS99* were implemented in C++ and executed on a computer with a 3.20 GHz
Intel(R) Core(TM) i5 processor, 4GBytes of RAM and 32-bit GNU/Linux operating sys-
tem. [Shields et al. 2009] have improved the algorithm SS99, resulting in the algorithm
denoted by SSSO09 in this paper. The running times of the algorithms SS99 and SSS09
in Table 1 are presented in [Shields et al. 2009] and were obtained on a 2.4 GHz Intel
Pentium 4 system with 512 MB of RAM. The parallel algorithm — denoted by Par —
was implemented in C/MPI and executed on an Altix supercomputer 4700 Itanium Intel
1.4GHz processor and 257GBytes of RAM.

The parallel algorithm tries to concatenate the cycles by comparing almost all
possibilities, that affected its running time. However, notice that, for £ = 17, the time of
execution of the algorithm MM is about 41 times faster than the algorithm SSS09, which
cannot be attributed only to the difference in the hardware. In SS99*, our implementation
of SS99, we made some code optimizations which made it slightly faster, so the difference
between the times of SS99 and SS99* cannot be attributed only to the difference of system
configuration. However, SS99%* is still slower than SSS09. On the other hand, even though
both MM and SS99* have been executed on the same computer, MM is noticeably faster.
For k = 14,15, the algorithm MM is more than 50 times faster than SS99* and, for
k = 16, 118 times faster.

Since modular matchings are defined only for the graphs Bj and Oy, we have
modified SS99* to search for useful paths in R(K (2k+3, k)). [Shields and Savage 2004]
showed that K (2k + 3, k) is hamiltonian for £ < 12. Our results [Gusmao et al. 2013b]
show that K (2k+3, k) has a hamiltonian path for £ = 13, 14 as well, since we have found
a useful path for £ < 14 and £ = 1 or 2 (mod 3) (Table 3 in [Gusmao et al. 2013b]).
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Table 1. Running time to find a useful path in R(B;,)

Time (s)
ko n  |V(R(Bg))| SS99 SSS09 SS99* MM Par
8 17 1,430 0 0 0 0 0
9 19 4,862 0 0 0 0 1
10 21 16,796 1 0 0 0 7
11 23 58,786 5 2 2 1 83
12 25 208,012 105 10 18 2 1,800
13 27 742,900 1,732 99 180 (3m) 9 8h
14 29 2,674,440 24,138 (6,7h) 799 (13,31m) 2,460 (41m) 44 3,69d
15 31 9,694, 845 307,976 9,446 36, 450 692 -
(3, 5d) (2,62h) (10, 12h) (11,53m) -
16 33 35,357,670 - 106,118 463,260 3,910 -
- (1,2d) (5,04d) (65, 16m) -
17 35 129,644,790 - 1,765,497 - 42,204 -
(20, 4d) (11, 72h) -

4. Conclusion and Future Work

In the research leading to our Master’s thesis research, we proved that a useful path in
R(K(2k + 3, k)) implies a hamiltonian path in K (2k + 3, k) for k = 1 or 2 (mod 3)
[Gusmao et al. 2013b]. By applying the algorithm in [Shields and Savage 1999] to the
graph R(K(2k + 3, k)), we found two new results: a hamiltonian path in K (29, 13) and
in K(31,14).

We also devised a parallel algorithm [Gusmao 2013, Gusmado et al. 2013a] to
search for useful paths in the reduced graph R(By). The algorithm tries to concatenate
the cycles from a 2-factor in R(By,) in order to obtain a useful path. Using this algorithm,
we have determined useful paths for £ < 14.

For n = 2k+1, we improved the algorithm in [Shields and Savage 1999] by using
the 2-factors in R(Bj) [Gusmao et al. 2013b], which makes it faster than the algorithms
in [Shields and Savage 1999, Shields et al. 2009].

Using the idea of our two proposed algorithms, it is feasible to devise an even
faster algorithm for Bj. [Shields et al. 2009] have noticed that a large portion of the
time of the algorithm in [Shields and Savage 1999] is used to perform rotation opera-
tions instead of finding promising sequences of rotations. They made some changes
that significantly improved the running time of their previous algorithm. Since our al-
gorithm is a modification of the algorithm in [Shields and Savage 1999], the modifica-
tions in [Shields et al. 2009] should improve the running time of our algorithm as well.
Also, [Shimada and Amano 2011] proposed a strategy to partition the vertices of R(By)
into three sets, such that if there exists a particular path in each set, then a useful path in
R(By,) can be constructed. This allows a parallel search to be performed on the graph.
The authors adapted the algorithm in [Shields and Savage 1999] to search for that partic-
ular path in each set. Since the cycles in the modular matchings in R(By,) contain vertices
of more than a set, our algorithm MM cannot run on each set separately. However, we
are working in a new parallel algorithm, in which the cycles of a 2-factor in R(By) are
partitioned into several sets, and also on adapting our algorithm MM to run on each set
separately.
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