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1. Introduction

When a computer is used for a generic task, a mouse and a keyboard are predominantly
employed as interfaces between the user and the machine. Despite being popular, they
may not be adequate for a variety of applications, implying that other ways of human-
machine interaction might be more promising (such an example is the touchscreen in
tablets and smartphones). Combining this fact to the constant advances of computer tech-
nologies, it is natural to exist high interests in developing digital forms of interaction that
are similar to those of common use between humans. Particularly, speech represents a
vast part of the information exchanged during those interactions [Jaimes and Sebe 2007].
Therefore, once computers are able to efficiently comprehend human-like communica-
tion, human-computer interaction (HCI) becomes more convenient and effective.

However, differently from human-human interaction, HCI still presents many
challenges. As an example, in automatic speech recognition (ASR), which is one of the
main branches of HCI [Thiran et al. 2010], it is necessary to recognize words in audio
signals that may have been corrupted, such as by environmental noise, reverberation and
other competing speech sources. Therefore, to compensate for these degradations, user-
level systems require front-end techniques to function robustly. To diminish this problem,
Voice Activity Detection (VAD) and Sound Source Localization (SSL) arise as two of
the most important preprocessing tools in speech-based HCI. In VAD, the main goal is to
distinguish segments of a signal that contain speech from those that do not, so that any pro-
cessing effort may be focused only on information consisted of speech. In SSL, the main
idea is to explore the spatial information of the acoustic signals through microphone array
beamforming techniques, to enhance the speech of a source of interest while suppressing
those of competing sources and lowering environment noise [Brandstein and Ward 2001].

In most existing works, VAD and SSL are approached for a single speech source
case, what might not be appropriate for a number of situations. In applications such as
multi-conferences, gaming scenarios, automatic information retrieval, and also HCI, it is
often desirable to distinguish between different users that might overlap their speeches.
This ends up extending both VAD and SSL to more complex problems than in cases
where a single speaker is considered. Our methods, however, are able to address such ad-
verse situations by using joint audio-video (multimodal) signal processing. Our original
work (Master’s Dissertation) has presented a collection of previously produced articles
that have been published [da Silveira et al. 2010, Blauth et al. 2012, Minotto et al. 2012,
Minotto et al. 2013] or that are already accepted for publication [Minotto et al. 2014].
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The referred works have dealt with VAD and SSL of one and multiple speakers in differ-
ent ways. We have explored distinct methods for fusing audio and video data, achieving,
in all works, above 90% accuracy for VAD, and below 11 cm error for three-dimensional
SSL. Additionally, due to the necessity for real-time processing of HCI applications, we
have also developed an efficient GPU version of the Steered Response Power with Phase
Transform (SRP-PHAT), which is a key audio processing technique used in our algo-
rithms [Minotto et al. 2012].

At this point, it is important to illustrate the employed data capture system in our
works. Figure 1 shows a photo and a schematic representation of it. A linear microphone
array and a common color camera are used, from which multi-channel sound and VGA
images are acquired, respectively, and then used as primary inputs for our algorithms. It
is important to mention that from this setup, a constraint arises: the users must be facing
the capture hardware. We consider this to be a reasonable assumption, since it is typically
the case of HCI applications.
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Figure 1: (a) Scheme of our prototype system. (b) Photo of the capture hardware.

The remainder of this document is organized as follows. Section 2 summarizes
the contributions of our work. In Section 3 we present some of the results obtained in
our most recent developed technique, and final considerations and acknowledgments are
made in Section 4.

2. Contributions of our Work

In general, our work reflects as contributions to various research fields. The produced
methods deal with VAD and SSL of single and multiple speech sources in a typical HCI-
like acoustic scenario. For such, we have integrated several audio and video signal pro-
cessing techniques through different multimodal fusion approaches and machine learning
techniques. A detailed description of each work’s contribution is presented next.

In [Blauth et al. 2012], we presented an approach that performs single speaker
VAD using audio information only (video is included for SSL). We have developed a
Hidden Markov Model (HMM) competition scheme, through which VAD is performed
by analyzing the output of the SRP-PHAT microphone array beamforming technique. The
SRP-PHAT is mainly an SSL algorithm, and is known to be robust in realistic conditions.
We extend it to a VAD method by assessing the spatio-temporal behavior of the domi-
nating sound source against two HMMs, one that models speech situations and one that
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models silence. The dominant speaker is classified as active or inactive by comparing the
likelihood of the spatial features generated from the HMMSs. For the SSL step, video cues
are included from the results of a face-tracking algorithm [Bins et al. 2009], by weighting
the SRP-PHAT result based on the tracked faces positions. This technique has shown
robustness when applied in realistic conditions, for it achieved average accuracies of 92%
for VAD and 96.3% for SSL even under situations with purposely generated noise.

The mentioned work is then expanded to a multimodal technique,
in [Minotto et al. 2013]. We combine our audio-based approach [Blauth et al. 2012] to
the video-based approach of [Lopes et al. 2011] through a decision fusion scheme. We
study many supervised classification algorithms for merging the results of the individual
unimodal classifiers. The well known Machine Learning software Weka [Hall et al. 2009]
is used for exploring a variety of approaches, through which it is concluded that a C4.5
decision tree [Quinlan 1993] presents the best benefits in this scenario (trade-off between
accuracy and speed, besides also being robust against overfitting). Our results suggest
the proposed features are stable enough to suit many classification algorithms, outputting
a VAD accuracy above 93%. As another contribution of the work, we also analyze the
robustness of our approach to adverse situations (intentionally generated), confirming
that one modality in fact properly compensates for the other’s flaws. Therefore, besides
increasing the overall accuracy of the previous technique, this multimodal approach also
provides stability to cases where one of the data streams becomes unreliable.

In [Minotto et al. 2014], a multimodal approach for simultaneous speakers VAD
and SSL is developed, by extending the ideas from both previously mentioned papers.
The HMM competition scheme is altered in order to deal with multiple speakers cases.
An optical-flow algorithm is used to assess lip movements of each participant, which
generates visual features as inputs to a Support Vector Machine (SVM) classifier. The
SVM outputs a video-based VAD probability for each potential speaker, and the audio
modality is processed by the multi-user HMM competition scheme, at which point the
video probability is incorporated. This characterizes the combination of both modalities,
and is considered a mid-fusion approach. The final VAD decision is performed by the
analysis of the competing models, and its results are also reused for generating a final
SSL position (recalling the HMM scheme uses the SRP-PHAT SSL method). An average
VAD accuracy of 95.06% is obtained for up to three simultaneous speech sources, and
three-dimensional SSL is performed for the active speakers with an average distance error
of 10 cm between the estimated position to the true positions.

Finally, the work in [Minotto et al. 2012] describes the GPU implementations de-
veloped to achieve real-time processing in our multimodal systems. As it may be ob-
served, the aforementioned approaches employ the SRP-PHAT algorithm through a mi-
crophone array. Despite its known robustness, the SRP-PHAT has a high computational
cost as a drawback. For this reason, we have implemented two Compute Unified Device
Architecture (CUDA) versions of the algorithm, as well as one for the Cubic Splines Inter-
polation, which is commonly applied as a part of the SRP-PHAT itself. Using such meth-
ods we are able to achieve real-time processing in our previously mentioned VAD/SSL
works, which is a necessity of most HCI-related application.

From the referred papers we may notice the accomplished progression of our tech-
niques, from a single-speaker unimodal work to a multiple speakers multimodal VAD and
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SSL one. Incorporating extra modalities of data into our methods was inherent, given the
more realistic the scenario is, the more complex the problem becomes. While other works
also tackle such problems using audiovisual approaches, most part resort to some imprac-
tical capture system (as a 500-element microphone array) or deal with the single-speaker
case only [Thiran et al. 2010]. Furthermore, there exist few to none multimodal public
data-sets for performing tests and benchmarks. For this reason we made available all our
recorded sequences. Each of the referred works has a link their corresponding used sets.

3. Overall Results

Since the entirety of our work comprises different techniques, this section will focus on
presenting the results related to the work published most recently [Minotto et al. 2014],
which we consider to be the one that tackles an acoustic scenario more challenging than
the others. Figure 2 illustrates our algorithm running for two different multimodal se-
quences. The color of the bounding boxes indicates speech (green) or silence (red) de-
tected by our algorithm, while the arrows indicate the true VAD status of the users (man-
ually created ground-truths). Intuitively, matching colors mean our algorithm performed
a correct classification. The blue dots within the mouth bounding box illustrate the points
tracked by the Lucas-Kanade optical-flow algorithm, which is responsible for outputting
a visual feature to the video-based module of our system. The experimental results pre-
sented next are referred to situations similar to those of the Figs. 1(a) and 1(b), which are
extracted from the sequences available in our data-set.

)

Figure 2: (a) Situation with two speakers active. (b) All users speaking at the same time.

In more details, the data-set consists of several multimodal sequences ranging
from 40 to 60 seconds of duration each!. Among those, we present results for scenarios
containing two and three speakers, which are named Twol to Twob5, and Threel to
Threeb, respectively. In all recordings, the users randomly chat in Portuguese, alter-
nating between speech and silence moments, and intentionally overlapping their voices
at times. Sequences with two users consist of sections of individual speech (implying in
individual silence of the other speaker), simultaneous speech, and simultaneous silence.
For the sequences with three users, the same procedure is used, but applied to all possible
combinations of speakers. Furthermore, all sequences in the data-set contain some sort of
natural noise, such as people talking in the background, air-conditioning working, door
slams, and the fans from other computers.

'Details on the setup may be found in http://www.inf.ufrgs.br/~crjung/MVAD-data/
mvadsimult .htm, where the multimodal sequences with ground truth can be downloaded.
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For measuring the VAD accuracy, we have manually labeled each speaker at each
frame as active or inactive, and ran three experiments for each sequence (which are shown
in Table 1): one for our multimodal approach (named “Ours”), one for the VAD work
of [Sohn et al. 1999] (called “Sohn”), and a third for the VAD module of the G729B
codec [ITU-T 1996]. Since these competitive algorithms were designed for single speaker
scenarios, we chose the left-most speaker as the reference one, so that a fair comparison
is made. More specifically, the obtained results of each experiment are compared to the
ground truth of the left person only. As expected, both competitive approaches perform
worse for simultaneous speakers, owing to the speech of other users acting as noise to the
speech of the considered one. This demonstrates the importance of multi-speaker VAD
that is able to properly isolate different users, as is the case of our method.

Table 2: SSL accuracy in terms of Fu-

Table 1: Comparison of VAD methods. clidean distance error, in meters
Sequence Ours Sohn G729B Sequence  Audio Video  Multimodal
Twol 96.89%  78.65% 78.91% Twol 0,1479  0,1826 0,1275
Two2 97.81%  79.85%  79.33% Two2 0,1365  0,0963 0,0950
Two3 95.93%  80.95%  70.48% Two3 0,1422  0,1358 0,0999
Two4 96.71%  81.71%  75.55% Two4 0,2033  0,1522 0,1020
Two5 94.11%  82.66%  78.75% Two5 0,1381 0,1278 0,1148
Threel  0,2007 0,1643 0,1096
Avg. (Two) 96.29% 80.76%  76.60% Three2 0,1887  0.1311 0.1172
Threel 94.02%  7529%  63.42% Three3 02040 0,128 0,1022
Three? 9239%  80.74%  78.98% Threed 01976 0,1338  0,1052
Three3 9494%  82.48%  74.13% Threes 01845 01298 01102

Three4 92.10%  74.03%  75.43%

Average 0,1743  0,1375 0,1084
Three5 95.58%  79.74%  69.14%

Avg. (Three) 9381% 78.46% 72.22%

To evaluate the SSL performance of our algorithm, we have computed the Eu-
clidean distance between the found locations and the labeled locations as error mea-
sures (results are shown in Table 2). This process was repeated for the video and audio
modalities alone as well as for our multimodal SSL approach. For the video modal-
ity, an inverse projective mapping from the image plane coordinates to 3D world ones
has been used (using the face scale to estimate the depth). For the audio modality, the
SRP-PHAT was directly applied, and for the multimodal one, the previously summarized
multi-user HMM-based fusion has been used (a more detailed description may be found
in [Minotto et al. 2014]). It may be observed that our SSL approach presents accuracy
gains over the audio and video modalities alone. An average error of 10.84 cm exists
when estimating the speakers’ 3D position, which is about twice the average length of the
human mouth, meaning it is precise to the point no speaker is confused as being another.

4. Final Considerations

This document summarized our dissertation in the field of Voice Activity Detection and
Sound Source Localization. We presented the chronological progress of a single-speaker
unimodal technique to a more complex multimodal multi-speaker one, by outlining the
published articles resulted from this work. Our techniques focused on realistic environ-
ments, which were exposed to high levels of noise, and under the constraint of real-time
processing. The next step to further improve our simultaneous speaker multimodal ap-
proach is to include other modalities of data. Experiments using information from a
RGB-D camera have already been conducted, achieving VAD accuracies above 95%.
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