CTD — XXVII Concurso de Teses e Dissertagdes

GPU Divergence: Analysis and Register Allocation

Diogo Nunes Sampaio
Adviser: Fernando Magno Quintao Pereira

'Universidade Federal de Minas Gerais

sampaio@dcc.ufmg.br

Abstract. The growing interest in graphics processing units has brought re-
newed attention to the Single Instruction Multiple Data (SIMD) execution
model. SIMD machines give application developers tremendous computational
power; however, programming them is still challenging. In particular, devel-
opers must deal with a phenomenon called divergences. Divergences happen
whenever two processing elements (PEs) see the same variable name holding
different values. In this dissertation we have introduced divergence analysis,
a static analysis that discovers data divergences. This analysis, currently de-
ployed in Ocelot, an industrial quality compiler, is useful in several ways: it
improves the translation of SIMD code to non-SIMD CPUs, it helps developers
to manually improve their SIMD applications, and it also guides the automatic
optimization of SIMD programs. We have demonstrated this last point by intro-
ducing the notion of a divergence aware register allocator. This allocator uses
information from our analysis to either rematerialize or share common data be-
tween PEs. As a testimony of its effectiveness, we have tested it on a suite of 395
CUDA kernels from well-known benchmarks. The divergence aware allocator
produces GPU code that is 29.70% faster than the code produced by the regis-
ter allocator originally used in Ocelot. These results have received substantial
acknowledgment from the research community. In particular, we got the best
paper in the Brazilian Symposium on Programming Languages, and published
our work in the ACM Transactions on Programming Languages and Systems
(TOPLAS), the leading journal in the field.

1. Introduction

Increasing programmability and low hardware cost are boosting the use of graphical pro-
cessing units (GPU) to run high-performance applications. In these processors, threads
are organized in groups, called warps, that execute in lock-step. To better understand the
rules that govern threads in the same warp, we can imagine that each warp has simultane-
ous access to a number of processing units, but uses only one instruction fetcher. As an
example, if a warp groups 32 threads together, then it can process simultaneously 32 in-
stances of the same instruction. Regular applications, such as scalar vector multiplication,
fare very well in GPUs, because we have the same operation being independently per-
formed on different data. However, divergences may happen in less regular applications
whenever threads inside the same warp follow different paths after conditional branches.
The branching condition might be true to some threads, and false to others. Given that
each warp has access to only one instruction at each time, in face of a divergence some
threads will be idle while others execute. Hence, divergences may be a major source of
performance degradation — a loss that is hard to overcome. Difficulties happen because

472

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

finding highly divergent branches burdens the application developer with a tedious task,
which requires understanding code that might be large and complex.

This dissertation solved this problem by introducing the Divergence Analysis.
This analysis identifies variable names holding the same value for all the threads in a
warp. The analysis precision is augmented by the Affine Divergence Analysis, where the
value of every variable is described as a linear equation to the special variable T;4 (thread
identifier), that always holds a unique value for each processing element.

Discovering divergent variables is important in different ways. Firstly, it helps
the compiler to optimize the translation of SIMD languages, such as C for CUDA and
OpenCL, to ordinary CPUs. There exist many attempts to compile such languages to ordi-
nary CPUs [Diamos et al. 2010, Karrenberg and Hack 2011, Stratton et al. 2010] vector
instruction sets that do not support divergences natively. Thus, compilers might produce
very inefficient code to handle this phenomenon at the software level. This burden can be
safely removed from non-divergent branches.

Secondly, our analyses enables divergence aware code optimizations,
such as Coutinho et al.’s [Coutinho et al. 2011] branch fusion, and Zhang et
al’s [Zhang et al. 2011] thread reallocation. ~We have augmented this family of
techniques with a divergence aware register allocators. These allocators are a second
contribution of this work. As we will show in Section 3, we use divergence information
to decide the best location of variables that have been spilled during register allocation.
The concrete result of our ideas is a register allocator that produces code 29.70% better
than the original algorithm. To emphasize that we are not comparing against a straw-man,
we have tested our ideas against the allocator of Ocelot, a GPU compiler. Our results
were good enough to convince the Ocelot maintainers to replace their original allocator
with our new one.

Products of this Dissertation: This dissertation gave origin to a large number of
publications, and a substantial body of software nowadays publicly available in an
industrial-quality compiler. We have published two journal papers [Coutinho et al. 2013,
Sampaio et al. 2013], one paper in an international conference [Coutinho et al. 2011],
and three papers in national symposia [Sampaio et al. 2010, Sampaio et al. 2012a,
Sampaio et al. 2012b]. The dissertation author is the first author of four of these papers
and second on the others. We would like to emphasize three achievements of this work:

e [Sampaio et al. 2012b] won the Best Paper of the Brazilian Symposium on Pro-
gramming Languages (SBLP) of 2012.

e [Sampaio et al. 2013] was published in the ACM Transactions on Programming
Languages and Systems (TOPLAS), the leading journal in the field of program-
ming languages.

e Contributions to [Coutinho et al. 2011] that was published in PACT, a conference
with an acceptance rate of under 17%.

In addition to the publications, we have contributed a long string of patches
to Ocelot [Diamos et al. 2010], an open source compiler for GPUs, used in NVIDIA'.
Therefore, instead of being restricted to the digital libraries of academic research, our
work is currently available in an open source tool, is effectively used in the industry, and

'Ocelot is available at http: //code.google.com/p/gpuocelot /

473

CTD — XXVII Concurso de Teses e Dissertagdes

is part of a vibrant and enthusiastic community of developers. To illustrate the importance
of this contribution, we quote Gregory Diamos, research engineer of NVIDIAZ. Gregory’s
statement also pinpoints our contributions, in terms of software designed and released:

“Revision 1943 includes a few major updates to the analysis framework in
Ocelot. It adds in new SSA forms, a framework for analyzing uniform and affine
values, and enhanced utilities for register allocation. Two new SSA forms (gated
and minimal) improve the precision of divergence analysis. The uniform and
affine variable analysis can identify values that are computed identically across
all threads, or as simple functions of the thread id. Finally, the new register al-
location code is able to spill uniform and affine registers to shared memory, po-
tentially improving the performance of programs with high register pressure. The
new framework includes helper code for managing live ranges, spilling registers,
and maintaining stack space for spilled registers. I want to thank Diogo Sampaio,
Sylvain Collange, Rafael Martins, and Fernando M. Q. Pereira for this contribu-
tion of over 10,000 lines of code.”

In the rest of this document we provide a technical overview of our work. We omit
describing the Affine Divergence Analyses as well as some references in this document.
For a deeper understanding we recommend the original dissertation. In addition to it, our
ideas are nowadays available as a set of class notes®. We also maintain two web pages
where we explain our core ideas to the open software community * .

2. Background

Our compiler analyses and optimizations have been designed for graphics processing units
(GPUs). These machines follow the Single Instruction, Multiple Data (SIMD) execution
model. The execution of a SIMD program consists of a number of processing elements
(PE) which execute in lock-step. A program P contains a set of variable names V', and
each PE has access to a mapping 6 : V' +— N. Each PE sees the same set of variable names,
yet these names are mapped into different address spaces. The special variable T;,4, the
thread identifier, holds a unique value for each PE. An assignment such as v; = vy 4 ¢
causes each active PE to compute — simultaneously — the value of [vy] + ¢, and to use
this result to update 0[v,].

In the SIMD world, divergences happen due to conditional tests. A conditional
test bra v, I’ at label [causes all the threads to evaluate their f[v]. Those that find 0[v] # 0
branch to !’, whereas the others fall through the next instruction at [+ 1. If two threads
take different paths, i.e., v is divergent, then we say that the threads diverge at [. Figure 1
illustrates this phenomenon. Our example program of Figure 1 contains two processing
elements, PE; and PE,. When visiting the branch at the end of block By, predicate p is 0
for thread PE, and 1 for the other thread. In face of this divergence, PF is pushed onto
a stack of waiting threads, while PE, executes the instructions at block B;. Once PE,

2Message available at https://groups.google.com/forum/#!searchin/gpuocelot/
diogo$20sylvain$20thank/gpuocelot/HIzamEhg23w/Hz7rft jv4GYJ

3The class notes about divergence analysis are available at http://homepages.dcc.ufmg.
br/ fernando/classes/dcc888/ementa/slides/DivergenceAnalysis.pdf

*On-line description of divergence analysis available at ht tp://divmap.wordpress.com/

>On-line description of register allocator available at https://simdopt .wordpress.com/

474

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

addr %rl v[3tid] label | instruction PE, PE,
1d 3£l %rl 1 addr %rl v[%tid] v v
set.lt %pl %£f1 0.0
bra %$pl $ZR 2 ld sfl srl v v
i 3 set.lt %pl $f1 0.0 v v
Bz B 4 bra %pl $ZR N v
mov %r2 %tid lmov er2 0 0 iig 7
jump $ST g 5 mov %rz2 %ti [}
6 jumpS$SST ° v
B 7 mov %r2 0 v °
ST
| st ort se2 8 st srl 3r2 v | v

Figure 1. (Left) A GPU program in assembly format. (Right) The execution trace
of the program, illustrating a divergence at the branch.

reaches a synchronization point, the execution of PFE; resumes, and this thread processes
the instructions at block B . The threads resume lock-step execution at block Bgr. The
main problem of divergences is the loss of performance: in a SIMD machine, instructions
are fetched for all the threads. Yet, threads in the waiting stack are not allowed to write
back their results. Thus, we have an excess of “dead-code execution”, which slows down
the runtime of the parallel programs and accounts for higher dissipation of power.

3. The Divergence Analysis

We have designed and implemented a compiler analysis that detects which variables have
always the same value for all the threads. These variables are called uniform. Non-
uniform variables are called divergent. Our analysis works recursively; thus, we mark as
divergent the following variables:

1. The thread identifier T;,.

2. Variables created by atomic instructions.

3. Variables that are data dependent on divergent variables.

4. Variables that are control dependent on divergent variables.

Items 1 and 2 above give us the base cases of our definitions. Items 3 and 4 give us
the recursive cases. We say that a variable u is data dependent on a variable v if u
appears in the right side of an instruction that uses u. Thus, detecting data divergences is
a trivial operation guided by the syntax of the program. For instance, variable $ f£1 is data
dependent on variable $r1 in Figure 1, due to the second instruction in block 5. On the
other hand, discovering the so called control dependencies is more complicated. We say
that a variable u is control dependent on a variable v if v is used in a conditional test, and
the outcome of this test defines the value of w. For instance, in Figure 1, variable $r2 is
control dependent on variable $p1, because its value depends on how we branch at the
end of block B,. If we take the “then” clause of the branch, then variable $r2 will be
assigned the value T4, otherwise it will receive the constant zero.

We have solved the problem of identifying control dependencies by relying
on an old program representation called the Gated Static Single Assignment (GSA)
form [Ottenstein et al. 1990]. This program representation was initially conceived to help

475

CTD — XXVII Concurso de Teses e Dissertagdes

Figure 2. Relative speedup of different register allocators. Every bar is normal-
ized to the time given by Ocelot’s linear scan register allocator. The shorter the
bar, the faster the kernel.

compilers to synthesize hardware to encode specific programs. The fact that we can use
GSA form to identify divergences in SIMD programs is one of the contributions of this
work. We use an almost linear time algorithm to convert a program into GSA form. Once
a program is in the GSA format, we can reduce the problem of identifying control de-
pendencies to the problem of computing data dependencies. This reduction is another
contribution that we claim in this work. A complete description of this technique can be
found in Section 3 of our TOPLAS paper [Sampaio et al. 2013].

4. Divergence Aware Register Allocation

Register allocation is the problem of finding storage location to the values manipulated
in a program. Either we place these values in registers or in memory. Values mapped
to memory are called spills. A modern GPU has many memory levels that the com-
piler must take into consideration when trying to decide where to place spills. Tra-
ditional GPU register allocators, such as the one used in the NVIDIA compiler, or in
Ocelot [Diamos et al. 2010], map spills to the local memory. This memory is exclusive
to each thread, and is located off-chip in all the architectures that we are aware off. We
have observed that spilled values that our analysis classifies as uniform or affine can be
shared among all the threads in the same warp. This observation is particularly useful
in the context of graphics processing units, because they are equipped with a fast-access
shared memory, which is visible to all the threads in execution. The main advantage of
mapping spills to the shared memory is speed. This memory is approximately 100x faster
than the local memory of a typical GPU. By mapping uniform variables to shared memory
we have been able to improve the runtime of the code produced by a traditional register
allocator by more than 29%.

Figure 2 quantifies these results. We have implemented different versions of reg-
ister allocators - all of them able to map uniform variables to shared memory. Our three
different allocators could deliver meaningful speedups on top of Ocelot’s original allo-
cator, which maps every spill, be it divergent or uniform, to local memory. Our best
allocator, which in Figure 2 we have called AffRA, spills into uniform memory using
the divergence analysis that we have described in the beginning of the present section.
As mentioned before, this allocator speedups the code produced by Ocelot in over 29%.
Nowadays, AffRA is the official allocator of the Ocelot compiler, and we know that some
of its techniques are also being implemented in the LLVM [Lattner and Adve 2004] back-
end that generates codes for GPUs.

476

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

5. Conclusion

This dissertation has introduced the notion of divergence analyses for GPUs. Our analyses
are currently in use in an industrial-strength compiler, and it companion register allocator
has been enjoying active use in the open source community. Thus, we close this presenta-
tion by highlighting once more that our work, in addition to its publications, has found its
way into end-users of the serious and fast-growing industry of graphics processing units.
More importantly, this work has laid solid foundations to the compiler analysis of SIMD
code. This theory, which relies on decades of advancements in the field of programming
languages, is described in our dissertation.

Software and Reproducibilidade: All the - more than 10,000 lines of - code imple-
mented in this work is available at http://code.google.com/p/gpuocelot/.

References

Coutinho, B., Sampaio, D., Pereira, F. M. Q., and Jr., W. M. (2011). Divergence analysis
and optimizations. In PACT, pages 320-329. IEEE.

Coutinho, B., Sampaio, D., Pereira, F. M. Q., and Jr., W. M. (2013). Profiling diver-
gences in GPU applications. Concurrency and Computation: Practice and Experience,
25(6):775-789.

Diamos, G., Kerr, A., Yalamanchili, S., and Clark, N. (2010). Ocelot, a dynamic opti-
mization framework for bulk-synchronous applications in heterogeneous systems. In
PACT, pages 354-364. IEEE.

Karrenberg, R. and Hack, S. (2011). Whole-function vectorization. In CGO, pages 141—
150. IEEE.

Lattner, C. and Adve, V. S. (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, pages 75-88. IEEE.

Ottenstein, K. J., Ballance, R. A., and MacCabe, A. B. (1990). The program dependence
web: a representation supporting control-, data-, and demand-driven interpretation of
imperative languages. In PLDI, pages 257-271. ACM.

Sampaio, D., Coutinho, B., and Pereira, F. M. Q. (2010). Detecting divergent branches in
simd architectures. In LTPD. SBC.

Sampaio, D., de Souza, R. M., Collange, S., and Pereira, F. M. Q. (2013). Divergence
analysis. Trans. Program. Lang. Syst., 35(4).

Sampaio, D., Martins, R., Collange, S., and Pereira, F. M. Q. (2012a). Divergence analysis
with affine constraints. In SBAC-PAD, pages 137-146. IEEE.

Sampaio, D. N., Gedeon, E., Pereira, F. M. Q., and Collange, S. (2012b). Spill code
placement for simd machines. In SBLP, pages 12-26.

Stratton, J. A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., and Hwu, W.-m. W.
(2010). Efficient compilation of fine-grained SPMD-threaded programs for multicore
CPUs. In CGO, pages 111-119. IEEE.

Zhang, E. Z., Jiang, Y., Guo, Z., Tian, K., and Shen, X. (2011). On-the-fly elimination of
dynamic irregularities for GPU computing. In ASPLOS, pages 369-380. ACM.

477

