CTD — XXVII Concurso de Teses e Dissertagdes

Making Refactoring Safer through Impact Analysis
Melina Mongiovi', Rohit Gheyi (advisor)'

!Department of Computing Systems — UFCG
58429-900 — Campina Grande — PB — Brazil

melina@copin.ufcg.edu.br, rohit@dsc.ufcg.edu.br

Abstract. Developers use regression tests and refactoring tools to ensure that
the refactoring preserves the behavior of the program. However, refactoring
tools may have bugs. In addition, some studies revealed that in real projects the
test suite may be inappropriate to test refactorings. We propose an approach for
evaluating whether a transformation is behavior preserving by automatically
generating tests for the entities impacted by the change. We evaluate it in a set
of 45 transformations and to a technique to test refactoring implementations. We
identify behavioral changes previously undetected in transformations applied to
real systems (from 20 LOC to 79 KLOC). Furthermore, we reduce on average
60% the total time to test 18 refactoring implementations of Eclipse and JRRT.

1. Introduction

Refactoring is the process of improving software internally without affecting external be-
havior [Opdyke 1992]. Developers can apply it manually or assisted by a tool with support
to automatic refactorings such as Eclipse and NetBeans. However, refactoring tools may
apply transformations that do not preserve the program behavior [Soares et al. 2013a].
In practice, developers have to apply manual steps and use test suites to guarantee be-
havior preservation in refactoring activities. However, the tests may not exercise the
entities impacted by the change. Furthermore, executing all regression tests of the
program may be time-consuming and unnecessary since only the test cases that ex-
ercise the change are relevant to analyze behavior preservation. Rachatasumrit and
Kim [Rachatasumrit and Kim 2012] found that refactorings are not well tested in real
projects. Their investigation identified that existing regression test cases cover only 22%
of impacted entities. Moreover, they found that 38% of affected test cases are relevant for
testing the transformation.

For example, we present a defective refactoring and a test suite that does not iden-
tify the behavioral change. In Figure 1 it shows a diagram representing a program and
its test suite. The program contains the class A and its subclass B. Methods A.m and B.m
(inherited from A) call A.k(int) yielding 1. Renaming method B.n(int) to B.k(int), intro-
duces a behavioral change: the inherited method B.m in the target program now yields 0
instead of /. The test suite contains three test cases test1, test2, and test3 that call meth-
ods A.k(int), A.m, and B.bar respectively. The tests do not catch the behavioral change
because the inherited method B.m is not exercised. Furthermore, only fest3 exercises an
impacted method while other test cases are not relevant to test the transformation. There-
fore, in a real program with a large test suite may be costly and unnecessary to execute all
test cases. Moreover, the test suite may not exercise all entities impacted by the change.

484

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

Figure 1. Renaming method B.n(int) to
We propose an approach B.k(int) changes program behavior.
to analyze whether a transforma- public class A
tion preserves the program behav- |public int k(int a) { return 13}
jor based on change impact analy- [P4blicintm() { return k(2)}

. . . [AY testl () {assertTrue(new A().k(2) == 1);}
sis and test generation (Section 2). i 'B i test2() {assertTrue(new A().m() == 1)}
elhe e test3() {assertTrue(new B().bar() == 0);}

We implemented this approach in R S————
a tool called SAFEREFACTORIM- [public int bar() { return n(2);}
PACT (SRI). The tool analyzes a

transformation applied to a pro-

gram and, within a time limit, it generates test cases for the impacted methods.
We evaluated SRI in 45 transformations and compared it with SAFEREFACTOR
(SR) [Soares et al. 2010], a similar tool that does not perform change impact analysis, and
a manual inspection performed by experts [Murphy-Hill et al. 2012]. We also evaluated
SRI in a technique to test refactoring implementations that found more than 100 bugs in
the best academic (JRRT [Schifer and de Moor 2010]) and commercial Java refactoring
implementations (Eclipse and NetBeans). We found that SRI detects behavioral changes
that the other approaches could not detect [Soares et al. 2013b]. Moreover, SRI reduced
in 60% the time to test 18 refactoring implementations of Eclipse and JRRT while found
the same bugs.

2. Approach

SRI uses change impact analysis to gener-
ate tests only for the entities impacted by
a transformation. By comparing two ver-

sions of a program, it identifies the meth- Safira -2t
ods impacted by the change (Step 1.1). We (5 i

. g 12 2 B
implemented a too‘l, called SAFIBA, to per: ﬂ D LO_, g) /g/ i
form the change impact analysis. Then, — pntind | -

. . . . Input e \D —
we identify the public and common im- 32 kd] Output
pacted methods in both program versions i T e
from the impacted set (Step 1.2). Next, [e e @'Si’;iif < impacted }
SRI generates a test suite, within a time
limit passed by the user, for the methods
previously identified using Randoop [Pacheco et al. 2007], an automatic test suite gener-
ator (Step 2). It executes the same test suite before (Step 3.1) and after the transformation
(Step 3.2). Finally, the tool evaluates the results: if the results of the tests are different,
the tool reports a behavioral change. Otherwise, we improve confidence that the transfor-
mation is behavior preserving (Step 4). Figure 2 illustrates the described process.

Figure 2. SRI’s technique.

The goal of our change impact analysis is to analyze the original and modified pro-
grams, and yields the set of methods impacted by the change that is, the methods that may
change the program behavior. First, we decompose a coarse-grained transformation into
smaller transformations (Step 1). We consider nine small-grained transformations: Add
and Remove Method, Change Method Body, Change Method Modifier, Add and Remove
Field, Change Field Modifier, Change Field Initializer, and Change Static Field Initial-
izer. For each small-grained transformation, we identify the set of impacted methods. We

485

CTD — XXVII Concurso de Teses e Dissertagdes

formalized the impact of small-grained transformations in laws (Step 2). Next, we specify
the impact of adding or removing a method. Law 1 adds the method m in the class C when
applying it from left to right, and removes the method when applying it from right to left.
If the class B is Object, and C does not have a subclass, the set of impacted methods is
C.m. Otherwise, other methods may be impacted due to overloading and overriding. We
specified other laws for the small-grained transformations. Next, we collect the union of
the impacted methods set of each small-grained transformation (Step 3). Moreover, we
also identify the methods that exercise an impacted method directly or indirectly (Step 4).
Finally, SAFIRA yields the set of impacted methods by the transformation, which is the
union of directly and indirectly impacted methods (Step 5).

Law 1 (Add/Remove Method)

cds cds’
class C extends B { class C' extends B {
fds; mds; & fds'; mds';
} m(...) {...}
}

(+») {n:Method | 3 E:Class | (F < E A E < C) A (n € methods(cds’) U mds’) A n =
E.mZ, where F is the closest subclass of C' such that it redeclares m.

3. Evaluation

We evaluated SRI in 45 transformations applied to programs (Section 3.1) and
in a technique to test refactoring implementations (Section 3.2). Experimental
data are available online at http://www.dsc.ufcg.edu.br/~spg/ctd/CTD/
SafeRefactorImpact.html.

3.1. Transformations Applied to Programs

The goal of this experiment is to analyze SRI for the purpose of comparing it with SR
and a manual inspection with respect to fault detecting and performance from the point
of view of researchers in the context of transformations applied to programs. We eval-
uated transformations applied to 23 design patterns implemented in Java and AspectJ, 2
programs compiled by two JML compilers, 8 defective refactorings of Eclipse, and 12
real programs. SRI correctly identifies behavioral changes in 5 out of the 23 design pat-
terns implementations while SR identifies all of these behavioral changes but one (the
Mediator design pattern). In the JML compilers evaluation, both tools correctly iden-
tify behavioral changes in both transformations. However, in the defective refactorings
applied by Eclipse, SRI does not identify one behavioral change due to a limitation of
SAFIRA. Comparing with SR, SRI reduces the time to evaluate these transformations
while has higher percentage of relevant tests and a similar change coverage.

SRI correctly evaluates all transformations applied to the real programs but two
(Subjects 5 and 6), while SR correctly evaluates seven transformations. Both tools used
a time limit of 20s. In Subjects 5 and 6, the tools do not identify behavioral changes
using this time limit because Randoop does not generate tests that exercise the impacted
methods that change behavior. Different from SR, SRI identifies the behavioral changes
in both subjects using a time limit of 120s since it reduces by more than 90% the num-
ber of methods passed to Randoop. SR does not identify the behavioral changes using a

486

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

Table 1. Results of the evaluation of SR and SRI in the real subjects.

- Change Relevant
Subject Impacted MEthiods s () Coverage (%) Tests (%) REE Baseline
Methods
SRI SR | SRI SR SRI SR SRI SR SRI
1 4,134 14,867 | 2,267 | 63 45 10 9 72.10 100 Yes Yes Yes
2 4,321 14,870 | 2,336 61 53 12 19 77-18 100 No No No
3 2,251 1,539 | 374 87 | 74 5 4 5323 | 98.31 | No No No
4 2,580 1,546 | 384 8o 69 7 6 84.73 100 No No No
5 3,375 18,977 | 2,004 | 78 68 7 16 5o.41 | 96.50 | Yes Yes No
6 251 31,833 | 185 65 63 8 34 3.89 100 Yes Yes No
7 2,068 17,074 | 1,510 68 55 8 16 53.44 | 99.78 Yes No No
8 3,524 12772 | 2,135 69 88 6 18 59.60 100 No No No
9 5,027 29,698 | 2,882 | 73 150 6 13 55.37 100 Yes No No
10 203 30,447 | 130 69 61 9 33 2.30 100 Yes No No
11 27 31,685 26 69 72 o 7 o 100 Yes No No
12 4,214 32,307 | 2,377 54 g2 4 13 56.76 99.81 Yes No No

Table 2. Results of the evaluation of SR and SRI in the refactoring implementa-

tions.
. Failures Bugs Time Reduction (h)

Refactoring

rename class |15.322 | 145] 1 o 1,43 5,44 pull upmethod | 8.937 | 202 10 3 1 1,72 2,65
rename method | 11.263 | o© 482 2 1,40 3,99 pull up field 10.927 | 546 o 4 o 1,76 0,27

rename field [19.424| o o o o 7,08 6,08 encapsulate field | 2.000 o 437 o 1 0,71 9,27
add parameter |30.186 | 2.238| o 2 o 6,58 1,55 move method | 22.905(3.586 - 3 1,87 -
push down field | 11.936 | g2 o 1 o 1,02 2,04 push down method | 20.544| 853 5 2,26

time limit of 20s in Subjects 7 and 9-12 different from SRI. However, SR detects three
of them (Subjects 7, 10 and 12) using a time limit of 120s [Soares et al. 2013b]. Then,
SR is more dependent to the time limit than SRI. SRI identified a previously undetected
behavioral change in Subject 9. Both SR and a manual inspection performed by ex-
perts [Murphy-Hill et al. 2012] classified Subject 9 as behavior preserving. In real pro-
grams, the change impact analysis is useful to reduce (ranging from 75% to 99%) the set
of methods passed to Randoop in SRI. Moreover, SRI has higher percentage of change
coverage in 9 out of 12 subjects and generates at least 95% of relevant tests. Finally, both
tools took almost the same time to evaluate these subjects. Table 1 summarizes the results
of the evaluation on real programs using a time limit of 20s.

3.2. Technique to Test Refactoring Implementations

The goal of this experiment is to analyze SRI for the purpose of comparing it with SR
in a technique to test refactoring implementations [Soares et al. 2013a] with respect to
fault detecting and performance from the point of view of refactoring tools developers in
the context of refactoring implementations. The technique generates automatically pro-
grams using JDolly, an automatic Java programs generator, and uses SR to evaluate the
behavior preservation. In the technique SR used a time limit of one second to gener-
ate tests, which they consider appropriate for testing the small programs generated by
JDolly [Soares et al. 2013a]. As SRI reduces the set of methods passed to Randoop gen-
erating tests due to change impact analysis, we used a time limit of 0.2 second in order to
reduce the time to evaluate the transformations. We evaluated the refactoring implemen-
tations using SR and SRI to compare the time and failures detected for each tool.

The technique generated a total of 153,444 programs to evaluate all the refactoring
implementations. SRI reduced in 64% and 54% the total time to evaluate the refactoring
implementations of Eclipse and JRRT [Schifer and de Moor 2010], which is equivalent to
25.83 and 31.29 hours, respectively. SRI and SR identified the same bugs in all refactor-
ing implementations. We also evaluated SR in some refactoring implementations using a

487

CTD — XXVII Concurso de Teses e Dissertagdes

time limit of 0.2 second and it did not catch some failures. Table 2 summarizes the results.

4. Related Work

Schifer et al. [Schifer and de Moor 2010] presented a number of Java refactoring im-
plementations and implemented them in a tool called JRRT. The tool was designed to
improve correctness of refactorings implemented on Eclipse. We evaluated eight refac-
toring implementations of JRRT and found bugs related to missing conditions. Steimann
and Thies [Steimann and Thies 2009] proposed a constraint-based approach to specify
Java accessibility. It is useful for detecting bugs regarding accessibility-related proper-
ties. However, they have not proven the specifications according a formal semantic of
the language. Borba et al. [Borba et al. 2004] proposed a set of refactorings for a sub-
set of Java with copy semantics. Later, Silva et al. [Silva et al. 2008] presented a set of
behavior preserving transformation laws for a sequential object-oriented language with
reference semantics. They proved the refactoring correctness based on a formal seman-
tics. However, they have not considered all Java constructs. SRI may be useful when their
work may not be applied. Soares et al. [Soares et al. 2013a] introduced a technique to test
refactoring implementations. This approach is based on a program generator (JDolly) and
SR. We optimized this technique by using SRI instead of SR. Then, we reduced in 60%
the time to test the refactoring implementations.

Chianti [Ren et al. 2004] is a change impact analyzer tool for Java. Based on a
test suite and the changes applied to a program, it decomposes the change into atomic
changes and generates a dependency graph. The tool indicates the test cases that are im-
pacted by the change. Zhang et al. [Zhang et al. 2012] proposed a change impact analyzer
tool (FaultTracer) that improves Chianti by refining the dependencies between the atomic
changes, and adding more rules to calculate the change impact. Both tools receive two
program versions as parameters, and decompose the change into small-grained transfor-
mations, similar to SAFIRA. However, different from Chianti and FaultTracer, SAFIRA
calculates the impact based on defined laws for each small-grained transformation. The
other approaches use rules to formalize the dependencies between the atomic changes
and then, identify the tests impacted by the change. Moreover, Chianti and FaultTracer
depend on a test suite to assess the change impact while SRI automatically generates test
cases for the methods impacted by a transformation.

5. Conclusions

We propose a tool (SAFEREFACTORIMPACT) to check whether a transformation is be-
havior preserving. We found that SAFEREFACTORIMPACT detects some non-behavior-
preserving transformations applied to real programs (ranging from 20 LOC to 79 KLOC),
undetected by SAFEREFACTOR and manual inspection performed by experts. Moreover,
it has a better change coverage in larger subjects and generates much more relevant tests.
Finally, it reduced in 60% the time to test the refactoring implementations.

Publications and Awards

This work was ranked the second best work in the ACM Student Research Com-
petition [Mongiovi 2011]. It was published in ICSM [Soares et al. 2011] (Qualis
A2) and it was accepted for publication in Science of Computer Programming Jour-
nal [Mongiovi et al. 2013] (Qualis B1).

488

XXXIV Congresso da Sociedade Brasileira de Computacdo — CSBC 2014

Acknowledgment

We gratefully thank G. Soares, T. Massoni, P. Borba, A. Cajueiro, R. Coelho, J. Candido,
and the anonymous referees for useful suggestions. This work was partially supported by
INES funded by CNPq grants 573964/2008-4, 306610/2013-2, and 477943/2013-6.

References
[Borba et al. 2004] Borba, P., Sampaio, A., Cavalcanti, A., and Cornélio, M. (2004). Alge-
braic reasoning for object-oriented programming. SCP, 52:53—100.

[Mongiovi 2011] Mongiovi, M. (2011). Safira: A tool for evaluating behavior preservation.
Student Research Competition at SPLASH, pages 213-214.

[Mongiovi et al. 2013] Mongiovi, M., Gheyi, R., Soares, G., Teixeira, L., and Borba, P.
(2013). Making refactoring safer through impact analysis. SCP. In press.

[Murphy-Hill et al. 2012] Murphy-Hill, E., Parnin, C., and Black, A. (2012). How we refac-
tor, and how we know it. IEEE TSE, 38(1):5-18.

[Opdyke 1992] Opdyke, W. (1992). Refactoring Object-Oriented frameworks. PhD thesis,
University of Illinois at Urbana-Champaign.

[Pacheco et al. 2007] Pacheco, C., Lahiri, S. K., Ernst, M., and Ball, T. (2007). Feedback-
directed random test generation. ICSE, pages 75-84.

[Rachatasumrit and Kim 2012] Rachatasumrit, N. and Kim, M. (2012). An empirical inves-
tigation into the impact of refactoring on regression testing. ICSM, pages 357-366.

[Ren et al. 2004] Ren, X., Shah, F.,, Tip, F., Ryder, B. G., and Chesley, O. (2004). Chianti:
a tool for change impact analysis of Java programs. OOPSLA, pages 432-448.

[Schifer and de Moor 2010] Schifer, M. and de Moor, O. (2010). Specifying and imple-
menting refactorings. OOPSLA, pages 286-301.

[Silva et al. 2008] Silva, L., Sampaio, A., and Liu, Z. (2008). Laws of object-orientation
with reference semantics. SEFM, pages 217-226.

[Soares et al. 2013a] Soares, G., Gheyi, R., and Massoni, T. (2013a). Automated behavioral
testing of refactoring engines. IEEE TSE, 39:147-162.

[Soares et al. 2013b] Soares, G., Gheyi, R., Murphy-Hill, E., and Johnson, B. (2013b).
Comparing approaches to analyze refactoring activity on software repositories. JSS,
86:1006—-1022.

[Soares et al. 2010] Soares, G., Gheyi, R., Serey, D., and Massoni, T. (2010). Making pro-
gram refactoring safer. IEEE Software, 27:52-57.

[Soares et al. 2011] Soares, G., Mongiovi, M., and Gheyi, R. (2011). Identifying overly
strong conditions in refactoring implementations. ICSM, pages 173—182.

[Steimann and Thies 2009] Steimann, F. and Thies, A. (2009). From public to private to
absent: Refactoring Java programs under constrained accessibility. ECOOQOP, pages
419-443.

[Zhang et al. 2012] Zhang, L., Kim, M., and Khurshid, S. (2012). FaultTracer: a change
impact and regression fault analysis tool for evolving Java programs. FSE, pages 40:1—
40:4.

489

