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Abstract. Reinforcement Learning (RL) is a powerful tool that has been used
to solve increasingly complex tasks. RL operates through repeated interactions
of the learning agent with the environment, via trial and error. However, this
learning process is extremely slow, requiring many interactions. In this thesis,
we leverage previous knowledge so as to accelerate learning in multiagent RL
problems. We propose knowledge reuse both from previous tasks and from other
agents. Several flexible methods are introduced so that each of these two types
of knowledge reuse is possible. This thesis adds important steps towards more
flexible and broadly applicable multiagent transfer learning methods.

1. Context and Motivation
Reinforcement Learning (RL) is an extensively used technique to train autonomous agents
through experimentation. First an action that affects the environment is chosen, then the
agent observes how much that action collaborated to the task completion through a reward
function. An agent can learn how to optimally solve tasks by executing this procedure
multiple times, but RL agents require a huge number of interactions to learn. However,
like in human learning, reuse of previous knowledge can greatly accelerate the learning
process. For example, it is easier to learn Spanish beforehand knowing Portuguese (or a
similar language).

Many RL domains can be treated as Multiagent Systems (MAS), in which multiple
agents are acting in a shared environment. In such domains, another type of knowledge
reuse is applicable. Agents can communicate to transfer learned behaviors. In the
language learning example, being taught by a fluent speaker of the desired language can
accelerate learning, because the teacher can identify mistakes and provide customized
explanations and examples.

Transfer Learning (TL) [Taylor and Stone 2009] allows to reuse previously
acquired knowledge, and has been used to accelerate learning in RL domains and
alleviate scalability issues. In Multiagent RL (MARL), TL methods have been applied
to reuse both internal knowledge from previously learned tasks and learned behaviors
from agent communication separately, but no work combined them. This research aimed
at specifying flexible TL frameworks to allow knowledge reuse by combining both
previously learned task solutions and agent advice, individually or in combination, two
scenarios that are common in human learning.

2. Research Goals
This research aimed to propose a Transfer Learning framework to allow knowledge
reuse in Multiagent Reinforcement Learning, both from previous tasks and among



agents. In order to specify a method to fulfill the expected contributions, we need to
define: (i) A model which allows knowledge generalization; (ii) What information is
transferred through tasks or agents; (iii) How to define when the knowledge of a given
agent must be transferred to another.

Figure 1 depicts the proposed framework. The agent extracts knowledge from
advice given by other agents (Kagents) and combines it with previously solved tasks
(Ksource) to accelerate the learning of a new task. The solution of this new task (Ktarget)
can then be abstracted and added to the knowledge base. In the long-term, the agent is
expected to learn tasks much faster due to the task solutions stored in its knowledge base
and the received advice, which is specific for the current task.

Figure 1. The proposed Transfer Learning framework.

Even though we here focus on MARL, the main ideas of our proposal are
applicable in the Multiagent Systems, Reinforcement Learning, and Machine Learning
areas in general.

3. Background and Related Work
Single-agent sequential decision problems are often modeled as a Markov Decision
Process (MDP), which can be solved by RL. An MDP is described by the tuple
〈S,A, T,R〉, where S is the set of environment states, A is the set of actions available
to an agent, T is the transition function, and R is the reward function, which gives a
feedback towards task completion. At each decision step, an agent observes the state s
and chooses an action a (among the applicable ones in s). Then the next state is defined by
T . The agent must learn a policy π that maps the best action for each possible state. The
solution of an MDP is an optimal policy π∗, a function that chooses an action maximizing
future rewards at every state. In learning problems the agent usually estimates the quality
of each action through exploring the state-action space and observing the received reward
signal. However, learning this estimate may take a long time, and TL methods can be used
to accelerate learning. The basic idea in any TL algorithm is to reuse acquired knowledge.

In order to use TL in practice, three aspects must be defined: What, when, and
how to transfer. Even though many methods have been developed, there is no consensual
definition of how to represent knowledge and how to transfer it.

In the teacher-student framework [Torrey and Taylor 2013], a more experienced
agent (teacher) suggests actions to a learning agent (student). However, works following
the teacher-student paradigm assume that teachers follow a fixed (and good) policy.
This means that, in order to apply this idea in a Multiagent RL domain, teacher-student



relations could only be established after teachers have trained enough to achieve a
fixed policy, but we are concerned about systems composed of simultaneously learning
agents, where this assumption does not hold. For the reuse of knowledge from
previous tasks, varied types of information have been successfully transferred, such
as samples of low-level interactions with the environment [Tan 1993], policies, value
functions [Taylor et al. 2014], abstract or partial policies, and heuristics or biases for a
more effective exploration, each of them presenting benefits over learning from scratch
[Silva et al. 2018].

4. Methods and Avenues for Future Work
Our first step towards the framework described in Section 2 was the development of an
advising framework based on teacher-student, called Ad Hoc Advising [Silva et al. 2017],
that is specialized to tasks in which multiple agents are learning together.

The agent relations in our proposal are termed advisor-advisee relations, where
the advisor does not necessarily need to perform optimally. Instead of having a fixed
teacher, the advisee evaluates its confidence in the current state, and broadcasts an advice
request for all the reachable agents in case its confidence is low. Each prospective
advisor then evaluates its own confidence in the advisee’s state. In case the advisor’s
confidence is high, an ad hoc advisor-advisee relation is initiated and the advisor suggests
an action. Advice works as a heuristic for the exploration strategy, thus it does not
affect the convergence of most base learning algorithms (after the maximum number of
advice is spent the agents return to their standard exploration strategy). We have explored
multiple possibilities for designing more efficient confidence functions, including the use
of Distributional RL [Bellemare et al. 2017], and methods for estimating the epistemic
uncertainty in Deep Learning models [Silva et al. 2020b].

Our proposal was a promising way to provide the advising ability of Figure 1.
We have explored the benefits of the ad hoc advising in robot soccer simulations and our
proposal presented a speed-up when compared to state-of-the-art advising techniques.

We have also explored the generalization capabilities provided by object-
oriented representations [Silva et al. 2019b]. Our first work leveraging this representation
estimates Probabilistic Inter-TAsk Mappings (PITAM) [Silva and Costa 2017] through
human-given task descriptions. The main idea is to receive a relational description of each
task and a class mapping to relate entities in the two tasks. Based on that, the algorithm
estimates a probabilistic mapping from one task to another, which can be used to TL.
The object-oriented representation has also been used to decompose complex tasks into
smaller ones, that are faster to solve and from which knowledge can be reused to learn the
complex task faster [Silva and Costa 2018].

This dissertation opened several avenues of possible research. An especially
prominent one is the security aspect of transfer procedures. How can the agent be robust
against malicious communications? An argumentation or trust mechanism to evaluate the
advice quality would be needed. Most transfer algorithms in the literature also require
communication protocols previously defined for transferring information. Therefore, it
would be interesting to develop methods for the Ad Hoc Teamwork [Stone et al. 2010]
setting, where the other agents in the system are previously unknown and no commonly-
known protocol is available at the beginning of the learning process.



5. Scientific Results
The work during this Ph.D. was published in several high-impact venues that include the
Journal of Artificial Intelligence Research (JAIR), IEEE Transactions on Cybernetics,
IEEE Transactions on Smart Grid, Autonomous Agents and Multi-Agent Systems, the
AAAI Conference on Artificial Intelligence, the International Joint Conference on
Artificial Intelligence (IJCAI), and the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

The following full papers are the main related publications:
[Silva et al. 2020a, Silva et al. 2020b, Silva and Costa 2019, Silva et al. 2019b,
Silva et al. 2020c, Silva et al. 2018, Silva and Costa 2018, Silva et al. 2017,
Silva et al. 2019a, Silva et al. 2016, Silva and Costa 2017].

A Best Paper Award from the BRACIS conference was awarded to one of those
publications [Silva et al. 2016]. Our work also received a Honorable Mention as Best
Student Poster at the AAAI Conference on Artificial Intelligence in 2017.

As of submission time, the first author has over 300 citations in total, most of them
from the papers above.

6. Main Advances in the State of the Art
In the context of TL, the main objective of this dissertation was to propose methods
specialized to reuse knowledge in multiagent RL systems. The high-level idea that a
learning agent could reuse knowledge from two sources – previously solved tasks and
other agents – guided the initial steps of this work. When the candidate started his Ph.D.,
a number of methods existed solving portions of those problems individually. However,
each work had its own set of assumptions (usually very restricting) that were very hard to
integrate.

One of the contributions of this thesis was to write two surveys: one clearly
organizing the literature on knowledge reuse in multiagent RL [Silva and Costa 2019],
discussing the assumptions of each group of papers, and analyzing the difficulty in
developing an integrated framework given the current state of the art. The second one
[Silva et al. 2020a] focused on the transfer of knowledge between agents, discussing all
the current challenges in translating the knowledge from one agent to another.

Another major contribution was the development of the Ad Hoc Advising
framework [Silva et al. 2017], focused on TL between agents. The main idea of the
method is that agents maintain confidence estimates in their policies and, when confidence
in their performance is low, they ask other agents for help. If those agents have high
confidence, they might answer with an action suggestion, with the intention of improving
the learning speed of the system overall. The Ad Hoc Advising is based on the widely-
known Teacher-Student framework [Torrey and Taylor 2013]. However, a key novelty
was introduced by the method. With Ad hoc Advising all the agents in the system
might assume both roles of Advisor or Advisee according to their confidence, while in all
previous teacher-student frameworks the teacher was fixed and assumed to have (nearly)
perfect actuation. This was a key assumption, and the potential of having multiple agents
simultaneously learning and sharing knowledge in a multiagent system was recognized by
other groups who are already working on extensions of the this work following different



points of view [Omidshafiei et al. 2019].

This dissertation has also resulted in an object-oriented task description
specialized for multiagent RL settings [Silva et al. 2019b]. This description is easy to
understand and to specify even to people without expertise in AI, and helps the learning
agent to abstract knowledge (important for building TL approaches). In addition to
being easier to specify than other similar relational descriptions, the candidate proposed
methods to reuse knowledge across tasks [Silva and Costa 2017], and to autonomously
decompose hard tasks into smaller ones to facilitate learning [Silva and Costa 2018].
The proposed method might be a first step towards the inclusion of laypeople into task
specification and knowledge reuse of RL systems integrated into the real world, and can be
combined with Ad Hoc Advising to integrate the framework that motivated this research.

Both groups of methods were validated in robot soccer simulations, a challenging
benchmark were the observations and actions are continuous. Our implementation
leveraged macro-actions composed of several low-level actions for training the RL
algorithms, and directly used the continuous observations. The methods proposed in the
thesis are far more flexible than the ones available before, and a number of groups are
starting to work on this challenge, clearly influenced by our ideas.

7. Societal impact
The methods here proposed have the potential of having strong societal impact as soon as
AI systems become pervasive in our daily life. In a near future, AI devices (e.g. robots)
manufactured by different companies will have to coordinate to solve tasks without
knowledge of each other’s inner workings. Our methods could provide the ways for
them to coordinate and share knowledge to solve new tasks, and to create repositories
of knowledge that could be accessed by any device in a cloud server.

Moreover, our work on object-oriented task descriptions can facilitate the
participation of laypeople, specifying tasks to be performed by their personal devices
in a natural manner, without requiring technical knowledge from the users.
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