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Abstract. Computer-Aided Design (CAD) models of industrial sites are ex-
tremely important, as they provide documentation, and simplify inspection, plan-
ning, modification, as well as a variety of physical and logistics simulations.
Despite these clear advantages, many industrial sites do not have CAD mod-
els, or have trouble keeping them up-to-date. This thesis presents some initial
efforts towards developing an automatic framework for producing CAD models
from point clouds obtained by scanning complex environments. It introduces
fast and robust algorithms for detecting planes and cylinders in noisy unorga-
nized point clouds that represent such installations. The detection and removal
of such structures from the input point cloud should facilitate the detection of
other components. We demonstrate the effectiveness of our techniques by com-
paring their performances against the state-of-the-art solutions and showing
that ours achieved the best overall accuracy on real and synthetic datasets.

1. Introduction
CAD models are a key element in the design, construction, inspection, and maintenance
of large, complex installations. Unfortunately, many existing installations do not have
CAD models or have outdated ones. Moreover, for quality control, one needs to check
the construction/assembly of modern environments against their designs. Thus, the ability
to scan real environments and obtain corresponding CAD models is highly desirable.

In industrial sites, planes and cylinders are among the most common structures.
They are used to model floors, walls, ceilings, pipes, tanks and ducts. However, detect-
ing even such simple geometric structures in unorganized point clouds is a challenging
task. Planes may appear in arbitrary directions and sizes, while cylinders may contain
various radii, orientations, and lengths. Moreover, unorganized point clouds introduce
additional challenges such as noise, non-uniform sampling density, incomplete models
due to occlusions, and lack of semantic relationship among samples.

1.1. Contributions
This thesis introduces efficient solutions for automatic detection of planes and cylinders
in unorganized point clouds. More specifically, we present an efficient O(n log n) de-
terministic technique for robust plane detection in unorganized point clouds. Our
solution uses robust statistics to derive a novel planarity test that is insensitive to outliers.
It uses robust measures of distance to plane and normal deviation to detect and remove
outliers, as well as to automatically adjust its parameters to the local distribution of sam-
ples in the input dataset. This results in a robust-to-noise approach, which is also virtually
independent of parameter tuning, and handles point clouds of large sizes and variable sam-
pling distributions. To attain such goal, we introduce two additional contributions: an it-
erative grow-merge procedure capable of retrieving connected planar regions with a great



Figure 1. Examples of automatic plane detection in unorganized point clouds
obtained by our technique and corresponding ground truths.

level of precision and detail; and a mechanism to automatically adjust the plane detection
parameters in order to fit the local distribution of samples. A paper describing our robust
plane detection technique and its associated contributions, entitled A Robust Statistics
Approach for Plane Detection in Unorganized Point Clouds [Araujo and Oliveira 2020b],
was published in the Pattern Recognition journal, one of the most prestigious in the field.
Additional information about our plane-detection solution, including code and datatesets
can be found in our plane detection project website.1

Our second major contribution is a technique for fast cylinder-detection in unor-
ganized point clouds that is robust to noise, uses parameters which require little to no
fine-tuning, and can handle cylinders with arbitrary orientations. In order to develop
such a technique, we also introduce a fast deterministic circle-recognition method capable
of filtering noisy samples. These results are summarized in the paper Connectivity-based
Cylinder Detection in Unorganized Point Clouds [Araujo and Oliveira 2020a] also pub-
lished in the Pattern Recognition journal. Additional information can be found in our
cylinder detection project website.2

2. Plane Detection
Our plane-detection technique is based on robust statistics and has three main steps: split,
grow, and merge. In the split phase, the input point cloud is spatially subdivided using an
octree until the leaf nodes have less than ε samples (0.1% of the total samples). A robust-
to-noise planarity test (Section 2.1) is then applied to the samples of each leaf node. If
they pass the test, they undergo a growth process and can further be merged with adjacent
cells into larger planar patches. The growth parameters are automatically estimated from
the data distribution itself. Finally, in the merge phase, patches are merged according to
some boundary condition. The grow and merge phases are iterated until no patches can
grow any further, when the algorithm outputs the set of detected planar regions (Figure 2).

2.1. Planarity Test
The standard procedure for testing co-planarity in a set of samples uses principal com-
ponent analysis (PCA) to obtain an eigen-decomposition of the samples’ covariance ma-
trix [Limberger and Oliveira 2015, Li et al. 2017, Vo et al. 2015]. One way to check for

1http://www.inf.ufrgs.br/~oliveira/pubs files/RE/RE.html
2http://www.inf.ufrgs.br/~oliveira/pubs files/CD/CD.html



(approximate) co-planarity is by comparing the ratio between the smallest and largest
eigenvalue magnitudes. If such ratio is smaller than some threshold τ , the samples are
considered coplanar: |λ1| ≤ |λ2| ≤ |λ3|, |λ1||λ3| < τ . But, since PCA uses the covariance
matrix, which is computed using the mean of each variable, it is sensitive to outliers. In
statistics, breakdown point is the percentage of outliers an estimator can handle before
giving incorrect results. The mean estimator is said to have a breakdown point of 0%,
since a single outlier can disturb it.

The thesis introduces a new co-planarity test that is robust to outliers and has
linear cost in the number of samples. It is based on robust statistics alternatives to the
mean and standard deviation: the median and the median absolute deviation (MAD).
Both median and MAD estimators have breakdown points of 50%, since it would re-
quire more than 50% of outlier observations to disturb them. MAD is computed as:
MAD = k ×median(|xi −median(X)|), where xi ∈ X represents all individual sam-
ples in the set X . k is a constant that makes MAD yield consistent results with standard
deviation. For a normal distribution, k = 1.4826 [Rousseeuw and Croux 1993]. Using
these two estimators, we developed two tests to check whether a sample might belong to
a plane: (i) plane-sample distance test, which checks if the sample distance to the esti-
mated plane is inside a safe interval calculated as median(D) + 3 ×MAD(D), where
D = {d1, d2, ..., dn} and di is the orthogonal distance of sample i the to estimated plane;
and (ii) plane-sample normal deviation tests, which checks if the deviation of the sample
normal with respect to the estimated plane normal is inside a safe interval calculated as
median(Φ) + 3×MAD(Φ), where Φ = {φ1, φ2, ..., φn} and φi is the angular difference
between the normal of sample i and the estimated plane normal. Additionally, we perform
a third test to validate the plane itself: outlier-ratio test, which verifies if the percentage
of outliers is below a certain threshold (25%).

3. Cylinder Detection
In order to detect cylinders with arbitrary orientations, our technique projects the point
cloud onto a set of uniformly-distributed directions on a unit hemisphere. Each direction
defines a tangent plane onto which we orthographically project the samples whose nor-
mals are approximately perpendicular to the plane normal. For each group gi of projected
samples that form a connected component in 3D, we refine the orientation of the corre-
sponding projection plane based on these samples’s normals and re-project them onto the
new plane. Then, a novel circle-recognition technique is applied to elements of gi to detect
circular projections. Delimited cylindrical surfaces are then obtained by merging related
connected components in 3D and fitting cylinders to the merged components (Figure 2).

3.1. Circle Detection
Unlike previous cylinder-detection techniques, ours is based on a circle detection tech-
nique that has linear cost in the number of projected samples. For each connected compo-
nent in the projections, we check if it fits a circle. This is achieved by exploring the fact
that extended normals from each sample of a circle should intersect at the circle’s center.
Since point clouds are susceptible to occlusion, our algorithm handles projections form-
ing arcs of varying lengths. Our circle-detection technique is faster than RANSAC- and
Hough-transform-based solutions, and does not require the specification of noise-level
thresholds. Due to space restrictions, we refer the reader to [Araujo and Oliveira 2020a]
or to the full thesis [Araujo 2019] for additional details.



Figure 2. Examples of automatic cylinder detection in unorganized point clouds
obtained by our technique and corresponding ground truths.

4. Results
We implemented our technique in C++ and used OpenGL to render the point clouds and
the detected planes and cylinders. For our comparisons, we chose popular and recent
works on plane and cylinder detection. Whenever available, we used the authors’ own
implementations. All techniques were compared using both synthetic and real datasets.
We obtained the ground truths by manually labeling each dataset ourselves. The results
for each combination of technique and dataset are displayed in Figures 3 and 4. Our
technique achieved competitive results for all evaluated datasets, and when considering
the average precision, recall and F1 score, our methods surpassed the state-of-art for both
plane and cylinder detection.

5. Conclusions
This thesis presented the first steps towards obtaining an automatic robust-to-noise frame-
work for recovering CAD models from point clouds captured from complex environ-
ments, such as industrial site plants. We presented fast and robust techniques to detect
planes and cylinders.

Our automatic O(n log n) plane-detection technique achieves better accuracy,
measured in terms of average precision, recall, and F1 score, than the previous ap-
proaches, while still being one of the fastest. Our cylinder-detection technique achieved
the best F1 score on all datasets. One should note that when comparing both techniques,
the parameters used by the competing techniques were individually tuned for each dataset
in order to produce their best results in each case. For our techniques, in turn, we used
default parameter values for all datasets, showing our methods’ robustness and indepen-
dence to parameter tuning, and their ability to handle point clouds in general. Regarding
noisy point clouds, we have investigated the use of popular noise filtering and outlier
removal techniques as a pre-processing step. Unfortunately, they have undesirable side
effects. Low-pass filtering tends to collapse nearby structures and smooth sharp edges.
Outlier removal often discards good samples in low-sampled surfaces, compromising
their reconstruction. This reinforces the importance of techniques that are robust to noise.

Acknowledgments

This work was sponsored by CNPq-Brazil (fellowships and grants 130895/2017-2,
312975/2018-0, 423673/2016-5) and by ONR Global (award N62909-18-1-2131).



B
ox

C
om

pu
te

r
R

oo
m

M
us

eu
m

U
tr

ec
ht

Pl
an

t
B

oi
le

rR
oo

m

RHT KHT-3D
RANSAC

(Schnabel)

RANSAC

(NDT)

RG

(Farid)

RG

(Pham)

RG

(Vo)

RSPD

(Ours)

Ground

truth

Figure 3. Planes detected by the compared techniques for all datasets. Ground
truth is shown in the rightmost column. For each pair of technique and
dataset, the detected planes have been highlighted using different colors.
Black dots represent samples treated as outliers by each technique. We
could not find a set of parameters to execute RG (Pham) on the Box dataset
in reasonable time. RHT [Xu et al. 1990], KHT-3D [Limberger and Oliveira 2015], Schn-
abel [Schnabel et al. 2007], NDT [Li et al. 2017], Farid [Farid 2015], Pham [Pham et al. 2016],
Vo [Vo et al. 2015].
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Figure 4. Cylinders detected by the compared techniques for all datasets.
Ground truth is shown in the rightmost column. For each pair of technique
and dataset, the detected cylinders have been highlighted using different
colors. Black dots represent samples treated as outliers by each tech-
nique. Schnabel [Schnabel et al. 2007], Tran [Tran et al. 2015], Ahmed [Ahmed et al. 2014].
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