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Abstract. This thesis presents a temporally-coherent matte-propagation method
for videos based on PatchMatch and edge-aware filtering. Given an input video
and trimaps for a few frames, including the first and last, our approach gener-
ates alpha mattes for all frames of the video sequence. We also present a user
scribble-based interface for video matting that takes advantage of the efficiency
of our method to interactively refine the matte results. We perform quantita-
tive comparisons against the state-of-the-art sparse-input video matting tech-
niques and show that our method produces significantly better results according
to three different metrics. We also perform qualitative comparisons against the
state-of-the-art dense-input video matting techniques and show that ours pro-
duces similar quality results while requiring less than 7% of their user input.
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Figure 1. Given an input video sequence (top) and user-defined trimaps for the
first and last frames, our method is able to efficiently compute and propa-
gate temporally coherent alpha mattes (bottom) for the video.

1. Introduction
Natural image matting refers to the process of accurately extracting foreground objects
from natural images. In such a context, the color Ip of any given pixel p is described
as a linear combination of a foreground color Fp and a background color Bp, according
to some opacity value αp. Computing such alpha mattings is, therefore, an ill-posed
problem. Thus, matting techniques require additional information, often presented in the
form of trimaps or scribbles specifying three sets of pixels belonging, respectively, to
foreground, to background, and to unknown regions.

Although image matting is a well studied problem and recent works can produce
high-quality results [Levin et al. 2008, Gastal and Oliveira 2010, Xu et al. 2017], video
matting still presents several challenges. As in most video applications, there are difficul-
ties associated with fast motions, lighting changes, occlusion and disocclusion, and pro-
cessing of large amounts of data. In addition, video-matting algorithms have two special



requirements: they are expected to operate under sparse user input, and achieve temporal
coherence. Video matting processes large amounts of data and most existing techniques
use one trimap per frame. To reduce the user burden, some techniques generate the re-
quired trimaps [Wang et al. 2005], or use a sparse set of trimaps [Li et al. 2013,Zou et al.
2019]. Although these methods can reduce the amount of user-provided input, they are
not fast enough for interactive use. The ability to interactively compute and refine mattes
considerably reduces time and improves the quality of video matting results.

1.1. Contributions
We present an efficient temporally-coherent matte-propagation method for videos.
Our technique uses a sparse set of trimaps, requiring a relatively small amount of user
input, and propagates the computed mattes to the entire video sequence. Unlike previous
approaches that can only handle a few frames at a time, ours processes an entire video
sequence at once, naturally enforcing temporal coherence. We exploit the parallelism of
modern GPUs and the use of linear-time edge-aware filters [Gastal and Oliveira 2011]
to process high-resolution videos (e.g., full HD or higher) in just a few milliseconds per
frame, allowing for interactive editing and propagation of the computed mattes on-the-fly.
Such interactivity improves productivity and the quality of the extracted mattes. Figure 1
illustrates the use of our technique to extract and propagate mattes for an entire video
sequence. A paper describing our method and its associated contributions, entitled A
PatchMatch-based Approach for Matte Propagation in Videos [Backes and Oliveira 2019]
was published in the Computer Graphics Forum journal, one of the most prestigious in
the field. A copy of the paper can be retrieved by clicking here. We encourage the reader
to access the on-line Suplemental Materials, which provide lots of video matting examples
as well as quantitative and qualitative comparisons against state-of-the-art techniques.

2. Related Works
Most video-matting solutions handle the individual video frames independently, requiring
a trimap per frame, and often compromising temporal coherence. Even when high-quality
image-matting techniques are used, the resulting videos tend to exhibit temporal jittering
and inconsistencies across frames [Erofeev et al. 2015]. Although some recent video-
matting techniques [Karacan et al. 2017, Cao et al. 2019] are able to find interframe
pixel relationships to produce temporally-coherent mattes, such techniques typically only
handle up to five frames at a time.

Sparse-input video matting techniques either use a frame-by-frame propagation
strategy [Bai et al. 2009, Li et al. 2013, Zou et al. 2019], or process the video as a
whole [Wang et al. 2005]. The first group can only propagate the matte one way. Thus,
whenever an error occurs it is propagated forward, resulting in temporal inconsistencies.
Although, theoretically, by using the entire sequence the second group should be able to
overcome this issue, in practice the presented solutions are temporally unstable [Wang
et al. 2005] or do not scale to current video resolutions.

3. Matte Propagation
Our matte propagation technique for videos has three major steps: (i) Computing both for-
ward and backward optical-flows along the temporal dimension with PatchMatch (Sec-
tion 3.1); (ii) Using the computed optical-flows to propagate alpha values, as well as

https://www.inf.ufrgs.br/~oliveira/pubs_files/VM/Backes_Oliveira_2019_Video_Matting_pre-print.pdf
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foreground and background colors from keyframes to unconstrained ones using a tempo-
ral version of the domain transform’s recursive filter (Section 3.2); and (iii) Refining the
computed alpha values to obtain locally-smooth mattes (Section 3.3).

3.1. Computing Forward and Backward Optical-Flow

We use PatchMatch [Barnes et al. 2009] to find correspondences between pairs of pixels
across adjacent frames. Given a pair of RGB images A and B, for every overlapping square
patch of side p in A, PatchMatch looks for its nearest neighbor in B under a distance metric
d (originally L2 distance). Given It and It+1, respectively the current and next video
frames, we set A = It and B = It+1 to compute the forward optical-flow, and A = It+1

and B = It to obtain the backward optical-flow. The use of the edge-preserving matching
cost function described by Bao et al. [Bao et al. 2014] produces more accurate matching
around object borders when compared to traditional optical-flow approaches. According
to our experience, it produces better results for our application than all tested alternatives.
One should note, however, that the optical-flow obtained with PatchMatch has no sub-
pixel accuracy, and that the use of more precise flow around the edges of the foreground
objects should lead to even more accurate matte propagation.

3.2. Propagation

The alpha values, foreground and background colors for the keyframes (frames with pro-
vided trimaps) are obtained with the use of some matting technique (e.g., [Gastal and
Oliveira 2010], [Levin et al. 2008], [Xu et al. 2017]). This makes matte propagation or-
thogonal to the choice of the matte computation algorithm applied to the keyframes. Since
every matting technique has its own strengths and weaknesses, the user can select the one
that works best for the type of video at hand. The forward and backward optical-flows
computed with PatchMatch guide the propagation of alpha values, and of foreground and
background colors throughout the unconstrained frames between pairs of keyframes. We
use the domain transform recursive filter to propagate these values in linear time with
respect to the number of pixels in the video [Gastal and Oliveira 2011, Lang et al. 2012].

3.3. Refining the Propagated Matte

The propagated alpha values might be noisy. To refine the matte, we use the scheme
presented by Gastal and Oliveira [Gastal and Oliveira 2010] for optimizing the alpha
channel based on the matting Laplacian L [Levin et al. 2008]. Once a refined alpha
matte has been obtained for each frame, we also refine the corresponding foreground and
background colors, by minimizing the chromatic error for each pixel [Levin et al. 2008].

3.4. Discarding False Foreground Components

Occasionally, optical-flow mismatches may lead to incorrect classification of background
pixels as foreground ones. To minimize the occurrence of such events, users can specify
the maximum number of foreground components present in a sequence. In this case, for
each frame we use a flood filling strategy to detect connected pixel regions with α > 0
and keep at most a user-specified number of the largest ones. The remaining are treated
as background pixels. Once false foreground components are detected, our technique
propagates the corrected mates both forwards and backwards.



Figure 2. Our interactive video matting system interface. Scribbles on the
keyframes indicate the foreground (white), background (black), and un-
known (gray) regions. The extracted foreground object is instantly updated
on the right window. Our system then propagates the extracted mattes for
the unconstrained frames (frames without trimaps). Users can inspect the
matte of any frame and interactively refine it with additional scribbles.

Table 1. Mean error metrics computed for the three video sequences using nine
keyframes. AE - Adobe After Effects Rotobrush Tool, MAKNN - Motion-
aware KNN matting, SLR - Sparse Low-Rank matting, OURS+CF - Ours with
Closed-form Matting, and OURS+SM - Ours with Shared Matting.

Video Alex castle Dmitriy Total
Metric SSDA dtSSD MESSDdt SSDA dtSSD MESSDdt SSDA dtSSD MESSDdt SSDA dtSSD MESSDdt

AE 147.83 90.76 16,076.97 214.65 85.84 15,692.79 144.66 104.97 11,853.67 178.71 91.53 14,732.34
MAKNN 121.80 85.49 12,419.27 150.93 84.90 12,540.72 140.65 102.90 19,001.01 140.12 89.20 14,090.91

SLR 147.66 93.18 11,965.11 200.01 92.76 19,274.85 258.17 154.34 38,768.78 200.46 108.08 22,279.33
OURS+CF 33.18 38.58 1,166.11 125.83 74.81 9,206.04 43.59 55.51 2,851.13 80.64 60.28 5,492.45
OURS+SM 41.44 48.48 1,705.46 111.91 70.61 7,911.91 45.51 57.38 2,769.59 76.48 61.24 4,980.80

4. Interactive Video Matting

We implemented an interactive video matting and editing interface using CUDA/C++, as
illustrated by Figure 2. Please refer to the video illustrating the use of our system, in
the supplementary material 1. Considering a 1080p video and an NVIDIA GTX 1070
graphics card, the average running time for each step of our algorithm is 1.24 seconds per
frame for computing the forward and backward optical flows using PatchMatch, 67 mil-
liseconds per frame for matte propagation, and 720 milliseconds per frame for matte and
color refinement. Note that the optical flow is computed at the beginning of an interactive
session, and can be precomputed. Since the user only has to wait for the recursive filter
to obtain some visual feedback, our technique provides instant feedback, as opposed to
other state-of-art sparse-input video matting methods [Li et al. 2013, Zou et al. 2019].

5. Results

To evaluate our method, we perform both quantitative and qualitative evaluations against
the state-of-the-art video matting techniques, on various types of videos. More specifi-
cally, we perform quantitative evaluations against two techniques that, like ours, do not
require the specification of one trimap per frame [Li et al. 2013, Zou et al. 2019], as well
as against Adobe After Effects Rotobrush Tool (AE).

Table 1 summarizes the results of the quantitative evaluation. It shows the average
per-frame error computed considering three video-matting error metrics (SSDA, dtSSD,
and MESSDdt) [Erofeev et al. 2015] for each video sequence, using nine keyframes. The

1The supplementary material is available here.
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two tested variants of our technique (Ours+SM) and (Ours+CF) performed significantly
better than MAKNN, SLR, and AE in the three metrics for all tested videos. For the
videos Alex and Dmitriy, our SSDA and MESSDdt results are one order of magnitude
better than the other approaches. The last column (Total) shows the average per-frame
error considering all frames in the three videos. Overall, the results of our technique were
45% more accurate (SSDA), 31% more temporally coherent (dtSSD), and 64% more
temporally coherent considering motion estimation (MESSDdt).

We also perform qualitative comparisons against After Effects plus top four
ranked techniques by the video matting benchmark [Erofeev et al. 2015]: Deep Mat-
ting (DM) [Xu et al. 2017], Self-Adaptive Matting (SAM) [Cao et al. 2019], Learn-
ing Based Matting (LB) [Zheng and Kambhamettu 2009], and Sparse Sampling Matting
(SpSM) [Karacan et al. 2017]. These techniques require one trimap per frame, and our
method produces similar results using less than 7% of their trimaps (Figure 3).

flowers - Frame 128 DM SAM LB SpSM

AE OURS+DM OURS+SAM OURS+LB OURS+SpSM

Vitaliy - Frame 98 DM SAM LB SpSM

AE OURS+DM OURS+SAM OURS+LB OURS+SpSM

Figure 3. Comparison of results produced by techniques that require one trimap
per frame against results produced by our method. AE - After Effects [Bai
et al. 2009], DM - Deep Matting [Xu et al. 2017], SAM - Self-Adaptive Mat-
ting [Cao et al. 2019], LB - Learning Based Matting [Zheng and Kamb-
hamettu 2009] and SpSM - Sparse Sampling Matting [Karacan et al. 2017].
OURS+DM, OURS+SAM, OURS+LB and OURS+SpSM stand for our method
initialized by these respective matting methods every 15 frames.

6. Conclusion
We presented an efficient temporally-coherent matte-propagation method for videos. Our
technique uses a sparse set of trimaps, requiring a relatively small amount of user input.
Our solution performs both forward and backward matte propagation, lending to better
temporal coherence. It is also orthogonal to the choice of alpha matte technique applied
to the keyframes, allowing us to select the one that works best for the type of video at
hand. We demonstrated the effectiveness of our technique by performing quantitative and
qualitative evaluations against the state-of-the-art methods for video matting. Compared
to approaches that only require sparse-input, ours performs significantly better with re-
spect to three error metrics. When compared to techniques that require one trimap per



frame, ours produces similar-quality results with less than 7% of user input. Given its
computational efficiency, our technique provides instant feedback, allowing the develop-
ment of interactive video matting systems for accurate matte extraction and compositing.
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