
Qubit Allocation
Marcos Yukio Siraichi1

Advisor: Fernando Magno Quintão Pereira1
Co-advisors: Vinı́cius Fernandes dos Santos1, Caroline Colange2

1Departamento de Ciência da Computação – Universidade Federal de Minas Gerais (UFMG)
Belo Horizonte – MG – Brasil

2Inria – Université de Rennes – CNRS – IRISA
Rennes – France

Abstract. The availability of the first prototypes of quantum computers, in 2016,
with free access through the cloud, brought much enthusiasm to the research
community. However, programming such machines is difficult. One core chal-
lenge is the so called “qubit allocation problem”. This problem consists in
mapping the virtual qubits that make up a logical quantum program onto the
physical qubits that exist in the target quantum architecture. To deal with this
challenge, we have proposed one of the first algorithms to solve qubit alloca-
tion. This algorithm, together with its ensuing formulations, is today available
in the Enfield compiler—a concrete product of this work. Our first paper in this
field, titled “Qubit Allocation”, has inspired much research, and our latest qubit
allocation design, called “Bounded Mapping Tree”, stands out today as one of
the most effective qubit allocators in the world.

1. Introduction
In recent years, the advance of technology has enabled the development of bigger-scale
practical quantum machines, making them accessible not only for field researchers, but
also for the general public. One such example of publicly available quantum prototype
is the IBM Quantum Experience platform1. Given the computational possibilities that
quantum computers are known to have, these first prototypes have elicited much enthusi-
asm. Theoretically, these quantum devices can be used for accelerating the computation
of problems that are impractical in classical computers, such as integer factorization—a
core step in many implementations of cryptographic routines. However, implementing
algorithms in a quantum computer is not a simple endeavour. One key obstacle to the
implementation of these algorithms is the challenge of mapping a logical quantum circuit
into the physical quantum architecture.

In this context, an important architectural detail that must be taken into consid-
eration is the coupling graph of the given quantum machine. It defines the machine’s
inter-connection between two information storage units, the so called quantum bits or
qubits for short. Qubit connections enable one of the fundamental operations of quan-
tum computers: to correlate two different qubits. The coupling graph poses a problem to
developers because different architectures allow different qubits to correlate; hence, it is
impossible for some programs to be executed in a given quantum computer without any
modification.

1https://quantum-computing.ibm.com/

There are some specific operations that allow us to re-map logic qubits onto physi-
cal qubits. Such operations enable the implementation of any quantum program on a given
architecture with a connected coupling graph. Yet, as one might notice, these operations
enlarge the program, increasing runtime and noise introduced to the system. Even though
error correction algorithms have been studied to reduce this noise, they demand too many
qubits. Given that current quantum machines have few qubits, using error correction is
presently impractical. Therefore, it is important to design and implement compilers that
translated logical quantum circuits into physical quantum machines using as few transfor-
mations as possible.

Theoretical Contributions of this Work. In this dissertation, we have combined graph
theory and compilation techniques to solve the aforementioned problem, henceforth
called Qubit Allocation. In the effort to solve this problem, we have designed and im-
plemented three different solutions to it:

1. a dynamic programming exponential exact algorithm to serve as baseline for
smaller instances;

2. a fast and straight-forward algorithm that achieved comparable results in smaller
architectures; and

3. a polynomial parameterized algorithm that outperformed (quality-wise) all of the
state-of-the-art algorithms for bigger architectures.

In addition to the implementation of this algorithm, this dissertation also brought other,
more basic, theoretical contributions, namely:

• A formal definition of the qubit-allocation problem.
• A demonstration that qubit-allocation, and its many variants, are NP-complete

problems—a result of ours cited by several other researchers since publication.

The Products of this Dissertation. As a by-product of this dissertation, we also devel-
oped an entirely new openly available compiler called Enfield 2. Enfield translates Open-
QASM, a well-known quantum programming language, into one of the several quantum
architectures proposed by IBM. In addition to our own algorithms, Enfield also imple-
ments seven other solutions to qubit allocation, which are useful for comparisons. Several
papers have been published as direct consequence of this work:

• Best paper finalist at “International Symposium on Code Generation and Opti-
mization” (CGO’18–Qualis A2) [Siraichi et al. 2018]. This paper, titled “Qubit
Allocation” was the first to examine the theoretical properties of the namesake
problem, including NP-completeness. It counts 39 citations accumulated in 19
months—only one of them from our research group.
• Published the “Bounded Mapping Tree” algorithm in the Conference of Object-

Oriented Programming, Systems, Languages & Applications (OOPSLA’19–
Qualis A1) [Siraichi et al. 2019]. In this paper we established approximation
bounds to qubit allocation, and developed what, to the best of our knowledge,
is one of the most effective qubit allocators available today;
• Second best tool in CBSoft 2018 Tools Session, with the paper “Enfield: An Open-

QASM Compiler” [Siraichi and Tonetti 2018].
2http://cuda.dcc.ufmg.br/enfield/

2. Qubit Allocation – Theoretical Background

Quantum programs are made of qubits and reversible quantum gates, which receive qubits
as inputs, and produce qubits as outputs. Figure 1 shows a quantum circuit, which imple-
ments two boolean functions. This circuit has four qubits: a0, a1, b0 and b1, which are
represented as horizontal lines. It uses four different types of gates to operate on these
qubits: H , T , T † and CNOT, where CNOTab is depicted with a dot on qubit a and ⊕ on
qubit b. Gates change the state of qubits. How exactly this happens is immaterial to this
presentation. It suffices to know that each one of these gates represents an operation of
matrix multiplication. The final state of each qubit, such as r0 and r1 on the right side of
Figure 1, is determined by the result of these multiplications.

The only aspect of consequence in the context of this work is the placement of
CNOT gates. CNOT gates matter due to architectural constraints. Quantum computers
based on superconducting qubit technology are made of solid-state circuits that only al-
low CNOT interactions between qubits that are physically connected [Devoret et al. 2004,
Koch et al. 2007]. As an example, Figure 2 (a) shows the coupling graph of the IBM qx2
computer [Devitt 2016]. The coupling graph determines which qubits can communicate.
We define the coupling graph in terms of CNOT gates as follows:

Definition 1 (Coupling Graph) Given a quantum architecture A with a set Q of qubits,
its coupling graph is a directed graph Gq = (Q,Eq), Eq ⊆ Q×Q. The edge (qi, qj) ∈ Eq

if, and only if, CNOTq1q2 is valid in A.

Qubit Allocation – An Informal Overview. CNOT relations between qubits (henceforth
referred to as pseudo qubits) in a quantum circuit need to be mapped to the coupling
graph. For instance, in Figure 1, we have that the pseudo qubit a0 controls b0 and b1, i.e.
CNOTa0b0 and CNOTa0b1 . When allocating pseudo qubits onto the coupling graph, we
would like to enable such control relations. However, perfect mappings that enable all the
control relations in a quantum circuit are not always possible, as Example 1 illustrates.

Example 1 It is not possible to map the control circuit of Figure 1 onto the coupling
graph of Figure 2 (a). Figure 2 (b) represents the control relations in that circuit. This
graph contains two nodes of in-degree two, which have no equivalent in Figure 2 (a).

The qubit allocation problem, which Definition 2 states, asks for a mapping be-
tween pseudos and qubits in the coupling graph (henceforth referred to as physical qubits)
that respects the control relations. If a perfect mappings is not possible, then we must re-
sort to circuit transformations to solve the problem.

H T†T

T

T†

T†

T

T H

a0

a1

b0

b1

r0

r1

Figure 1. Example of Quantum Program.

q0

q1

q2

q4

q3 a1

b1

b0

a0

(a) (b) (c)

(a1, b0)
(b0, b1)
(a0, b1)
(b0, b1)
(a0, b1)
(a0, b0)

Ψ =

Figure 2. (a) The coupling graph of the IBM qx2 computer. (b) Interactions be-
tween qubits of the circuit seen in Figure 1. (c) Dependences that have created
these interactions.

Definition 2 (The Qubit Assignment Problem) Input: a coupling graph Gq =
(Q,Eq), plus a list Ψ = (P × P)n, n ≥ 1 of n control relations between pseudo qubits.
Output: yes, if there is a mapping between pseudo and physical qubits that respects the
control relations in Ψ.

Circuit Transformations. A transformation is a combination of gates that we can insert
into a quantum circuit to emulate the semantics of non-existing CNOT relations. Figure 3
describes two of these transformations. As Figure 3 shows, a CNOT reversal allows the
mapping of “backward” edges on the coupling graph, at the cost of extra gates. A CNOT
swap allows the migration of pseudo qubits across physical qubits. Figure 4 outlines a
solution to qubit allocation for the program in Figure 1 using two CNOT reversals.

H

H H

Hpa

pb
=

H

H

H

H pa���pb

pa

pb
= =

pb

pa
a) b)

Figure 3. Two types of transformations. (a) Reversal: Emulation of a virtual CNOT
between pa and pb. (b) Swap: exchanges two pseudo qubits pa and pb.

A particular instance of qubit allocation might have several different solutions.
The quality of a solution is given by its cost, which we measure as the number of gates
necessary to implement it. The main contribution of the research effort that resulted in
this dissertation was the design and implementation of different algorithms to solve this
optimization problem. Our algorithms yield quantum circuits with less gates and shorter
latency—the minimum number of gates from the beginning until the end of the circuit.

3. Selected Results
The dissertation contains a plethora of experiments that compare different versions of our
qubit allocators with state-of-the-art algorithms. In this section, we chose to show results
involving seven different algorithms: ibm, jku, chw, and sbr; plus the two variations
of BMT [Siraichi et al. 2019]: bmtS and bmtF and wpm [Siraichi et al. 2018]. The latter
three algorithms are contributions of the dissertation. We compare these algorithms in
terms of compilation time, cost of quantum circuits and speed of quantum circuits. We
conducted experiments in two different quantum architectures, using an ensemble of 158
programs typically used to compare compilers for quantum programming languages.

H T†T

T

T†

T†

T

T H

a0

a1

b0

b1

r0

r1H H

H H

H

H H

H(a)

q0

q1

q2

q4

q3 a1

b1b0

a0

+ =

q0(a1)

q1

q2(b0)

q4(b1)

q3(a0)

(b)

Reversal Reversal

Figure 4. (a) CNOT reversals, marked as grey boxes, invert the direction of
CNOTb0b1 . (b) Solution to qubit allocation that maps the logical circuit from Fig-
ure 1 onto the coupling graph from Figure 2-a using the two CNOT reversals.

Metrics. The cost directly addresses the fact that different gates introduce a different
amount of noise. Since there are only small quantum computers publicly available, we
measured the latency through the quantum circuit depth (related to the computation time).
Finally, the compilation time can be easily measured by executing the algorithm.

Figure 5 summarizes the comparison between the different qubit allocators when
targeting the 20-qubit IBM Tokyo computer architecture. As the figure shows, the two
algorithms of our design, bmtS and bmtF could outperform all the other allocators, in
terms of average cost per benchmark, and in terms of absolute cost (when adding the
number of gates in all of them). The good quality of the code produced by our allocators
come with a price: the two variations of BMT have the highest compilation time. In
practice, we are spending more compilation time to generate quantum circuits that are
considerably better that what could be produced by other qubit allocators.

0"

0.2"

0.4"

0.6"

0.8"

1"

1" 1.2" 1.4" 1.6" 1.8" 2" 2.2" 2.4"

bmtS (1.0, 1.0)

bmtF (1.02, 0.29)

chw (1.83, 0.02)

ibm (1.91, 0.46)

jku (1.47, 0.04)

sbr (1.25, 0.12)

wpm (2.25, 0.01)

Average Cost wrt bmtS

Av
er

ag
e

tim
e

w
rt

bm
tS

0"

1000"

2000"

3000"

4000"

5000"

20" 30" 40" 50"

bmtS (24.5, 4247)

bmtF (25.3, 883) chw (36.8, 198)

jku (29.6, 154)

sbr (30.3, 275) wpm (50, 549)

Ab
so

lu
te

 ti
m

e
(s

ec
s)

Absolute cost (sum of gate costs)

Figure 5. Compile Time vs Cost for all algorithms w.r.t. bmtS in the IBM Tokyo
quantum architecture. The smaller (in both axis), the better.

Figure 6 provides an in-depth comparison between BMT and Sabre
(sbr) [Li et al. 2019] in two quantum architectures from IBM: the 16-qubit Albatross,
and the 20-qubit Tokyo. Sabre is regarded as one of the best qubit allocators available to-
day. BMT tends to outperform Sabre in the larger architecture, Tokyo, which has a larger
diameter per qubit relation, however falls short in Albatross, the smaller system. Address-
ing this issue, we generated random coupling graphs with different number of qubits and
diameter. This result indicates that the denser the coupling graph, the better the results of
our algorithms when compared with state-of-the-art approaches.

Figure 6. Cost (left) and Depth (right) results by different diameter of coupling
graphs w.r.t sbr. The smaller (cost and depth), the better. Line colors refer to
the number of qubits in the coupling graph. Point shapes represent different
allocators. Single black points represents the overall results for each architecture
(Albatross and Tokyo), as well as their place in the diameter axis.

4. Conclusion
This MSc dissertation has formalized the qubit allocation problem, a core step in the
compilation of quantum programming languages into physical computer architectures. In
addition to this formalization, we have provided a novel modeling of such a problem. This
modeling led to efficient solutions that outperformed existing state-of-the-art qubit alloca-
tors. On heavily connected quantum architectures, such as IBM Tokyo, BMT—our most
efficient design—found programs that are, on average, 25% cheaper and 40% faster than
the state-of-the-art algorithm sbr. Analyzing our struggles and accomplishments with
hindsight, we believe that the most important contribution of this work was the observa-
tion that the qubit allocation problem can be solved by combining the solution to multiple
instances of two NP-complete graph problems: the subgraph isomorphism problem, and
the token swapping problem. We hope that this observation will foster new implementa-
tions of qubit allocators that can be even more efficient than the solutions that we have
found in the course of this work.

References
Devitt, S. J. (2016). Performing quantum computing experiments in the cloud. Phys. Rev.

A, 94(3):032329.

Devoret, M. H., Wallraff, A., and Martinis, J. M. (2004). Superconducting qubits: A short
review. arXiv, cond-mat/0411174:1–41.

Koch, J., Yu, T. M., Gambetta, J., Houck, A. A., Schuster, D. I., Majer, J., Blais, A.,
Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. (2007). Charge-insensitive qubit
design derived from the cooper pair box. Phys. Rev. A, 76(1):04319.

Li, G., Ding, Y., and Xie, Y. (2019). Tackling the qubit mapping problem for nisq-era
quantum devices. In ASPLOS, page 1001–1014. ACM.

Siraichi, M. Y., Santos, V. F. d., Collange, C., and Pereira, F. M. Q. (2019). Qubit allo-
cation as a combination of subgraph isomorphism and token swapping. In OOPSLA,
pages 120:1–120:29. ACM.

Siraichi, M. Y., Santos, V. F. d., Collange, S., and Pereira, F. M. Q. (2018). Qubit alloca-
tion. In Inter. Symp. on Code Generation and Optimization, page 113–125. ACM.

Siraichi, M. Y. and Tonetti, C. (2018). Enfield: An OpenQASM compiler. In Congresso
Brasileiro de Software, Sessão de Ferramentas, Bento Gonçalves, RS, Brazil. SBC.

