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Abstract. Statistical machine learning algorithms usually assume that there is
considerably-size data to train the models. However, they would fail in addres-
sing domains where data is difficult or expensive to obtain. Transfer learning
has emerged to address this problem of learning from scarce data by relying on
a model learned in a source domain where data is easy to obtain to be a star-
ting point for the target domain. On the other hand, real-world data contains
objects and their relations, usually gathered from noisy environment. Finding
patterns through such uncertain relational data has been the focus of the Sta-
tistical Relational Learning (SRL) area. Thus, to address domains with scarce,
relational, and uncertain data, in this paper, we propose TreeBoostler, an al-
gorithm that transfers the SRL state-of-the-art Boosted Relational Dependency
Networks learned in a source domain to the target domain. TreeBoostler first
finds a mapping between pairs of predicates to accommodate the additive trees
into the target vocabulary. After, it employs two theory revision operators de-
vised to handle incorrect relational regression trees aiming at improving the
performance of the mapped trees. In the experiments presented in this paper,
TreeBoostler has successfully transferred knowledge among several distinct do-
mains. Moreover, it performs comparably or better than learning from scratch
methods in terms of accuracy and outperforms a transfer learning approach in
terms of accuracy and runtime.
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1. Introduction
Machine learning algorithms have been successfully used in many areas such as computer
vision, robotics, etc. However, this success usually comes with the presence of large
amounts of data. When the number of examples is relatively small, learning good models
can be a challenging task. This is often the case of several real-world problems where
collecting data is expensive or even impossible to obtain. To handle this issue, transfer
learning techniques [Pan and Yang 2010] leverage a model learned from a source domain
with more examples to learn from another related domain where data is more scarce.

Transfer learning has been widely employed in classical machine learning set-
tings. However, most of them do not take into account the relationships between en-
tities of the domain and the fact that the examples may not be identically and in-



dependently distributed, which is the case of a number of real-world data. In ad-
dition, real-world data have noise and are generally uncertain which is the focus of
the area called Statistical Relational Learning (SRL) [Getoor and Taskar 2007]. Trans-
fer Learning algorithms have also been developed in the context of SRL. Two of
these algorithms [Davis and Domingos 2009, Van Haaren et al. 2015] transfer relatio-
nal knowledge by creating a second-order representation of formulas from learned
Markov Logic Networks (MLN) [Richardson and Domingos 2006]. Other three algo-
rithms [Mihalkova et al. 2007, Mihalkova and Mooney 2009, Kumaraswamy et al. 2015]
find predicate mappings through search methods to perform transference of clauses lear-
ned from MLNs by mapping their predicates.

In this work, we present a transfer learning algorithm called TreeBoostler that
transfers Boosted Relational Dependency Networks [Natarajan et al. 2012] by mapping
the predicates appearing in the trees. At a higher level, the algorithm generates the possi-
ble predicate mappings as it tries to recursively transfer nodes from the source regression
trees. After finding such mappings, they are propagated to the rest of the tree and the
other trees of the next iterations. To adjust the mapped trees to the new target domain,
TreeBoostler also includes a theory revision [Wrobel 1996, Paes et al. 2017] algorithm
for proposing modifications to the mapped models in order to handle incorrectness and
improve the performance.

We evaluated TreeBoostler in several real-world datasets and simulated the sce-
nario where only a few data are available by training on one single fold and testing on
the remaining folds. Our results demonstrate that our method has successfully transferred
learned knowledge across different domains in a smaller time compared to other transfer
learning algorithms. In addition, transference showed to be very useful in terms of accu-
racy compared to learning from scratch methods based on RDNs. Additional experiments
were performed to investigate the behavior of the algorithm as the number of examples
increases and when provided minimal target data. The results demonstrate that our algo-
rithm can be very competitive to traditional methods that learn from scratch even with the
increase of the amount of data, also when provided only with a few examples.

2. Contributions
To sum up, the main contributions of this dissertation include:

• A transfer learning algorithm, namely TreeBoostler, that constructs a target set
of relational regression trees biased by a predicate mapping found through the
transfer process given the structure of the source regression trees. This is found
by applying all legal mappings to a node and selecting the one which gives the
best split.
• A revision theory system that proposes modifications to boosted trees through

two revision operators. These revision operators are: (1) pruning operator, which
deletes nodes from a tree and (2) expansion operator, which expandes nodes in
each tree.
• Three types of experiments to evaluate TreeBoostler against baseline approaches.

The experiments were conducted as follows: (1) simulating a transfer learning
environment with limited target data, (2) providing to the system a scenario with
increasing amounts of target data and (3) providing a scenario with learning from
minimal target data.



3. TreeBoostler: The proposed algorithm
We propose a method that transfers learned boosted trees from a source domain to a target
domain. The approach is divided into two major steps: first, the source boosted trees
structure is transferred to the target domain by finding an adequate predicate mapping,
and second, the algorithm revises its trees by pruning and expanding nodes in order to
better fit the target data. Figure 1 illustrates the entire process of the algorithm.

3.1. Transferring the structure

A fundamental problem when tackling transfer learning on relational domains is to auto-
matically find how to map the source vocabulary to the target domain. In this way, the first
step of the overall process is to find this mapping, where we reduce the overall vocabulary
of both domains to their set of predicates. With that, the boosted trees learned from the
source domain are transferred sequentially to the target domain and the parameters relear-
ned to fit the target data. There are two approaches for establishing a predicate mapping:
(1) a global mapping, which finds a corresponding target predicate to each source predi-
cate and applies this mapping to the entire source structure (i.e. all clauses) at once; and
(2) a local mapping, which finds an independent predicate mapping for each independent
part of the entire structure (i.e. each clause).

In this work, we choose to follow the local approach, by finding the best local
predicate mapping for transferring the boosted trees. Thus, the algorithm translates the
predicates presented in the inner nodes according to the previously found translations in
order to keep the found predicates mapping through the entire process of learning trees.

3.2. Revising the structure

When transferring learned theories from one domain to another it is usually not enough to
map the vocabularies from both domains to achieve a model representative of the target
domain [Mihalkova et al. 2007]. Such theories may contain multiple faults that prevent
them to correctly predict examples due to the difference in the distribution of both do-
mains. These faults can be repaired through the process of theory revision. The main idea
of theory revision is to search for points in the theory that are preventing the examples
to be correctly classified and propose modifications to them. In a transfer learning sce-
nario, the revision process attempts to adjust the initial mapped source theory to fit the
target data. The goal is to achieve more accurate theories due to the fact that the theory
revision allows the learning algorithm to build clauses from partial or incomplete theories
that would otherwise not be found in the constrained search space.

Our theory revision component follows the three major steps:

1. Searching for paths in the trees responsible for bad predictions of examples and
defining them as revision points.

2. Proposing possible modifications to the revision points by applying the revision
operators.

3. Scoring both transferred and revised theory and choosing to stay with the best one.

The revision points, which are responsible for ”bad”predictions, need to be modi-
fied during the revision process in order to increase accuracy. We define as a revision point
any leaf that has a ”bad”weighted variance. Arguably, modifications on the paths ending
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Figura 1. The transfer learning process stages with their respective trees. Obtai-
ned from source domain by learning from scratch (top-left); transferred by
mapping predicates (top-right); after the pruning process (down-left) and
after the expansion of nodes (down-right).

up on such leaves will change the way an example is covered resulting in a differently
weighted variance.

We considered two types of revision operators: (1) a pruning operator, which
increases the coverage of examples by deleting nodes from a tree (and in such a way, it
may be seen as a generalization operator); and (2) an expansion operator, which decreases
the coverage of examples by expanding nodes in each tree (in the same way, it can be seen
as a specialization operator). We describe them as follows:

• Pruning operator prunes the tree from the bottom to top by removing a node
whose children are leaves marked as revision points.
• Expansion operator recursively adds nodes that give the best split in a leaf consi-

dered as a revision point.

4. Experimental Results and Conclusions
We conducted the experiments considering the following questions:

• Does it learn more accurate models than the baselines?
• Does theory revision improve the performance of the transfer process?
• Does it transfer well across domains?
• Is it faster than the baselines?
• Does it perform better than the baselines with increasing amount of examples in

the target data?
• Does it perform better than the baselines with minimal target data?

We have performed three types of experiments: (1) an approach simulating a trans-
fer learning environment with limited target data, (2) a scenario with increasing amounts



Tabela 1. Results on transference from Twitter to Yeast dataset and NELL Sports
domain to Finances domain.

Twitter→ Yeast NELL Sports→ NELL Finances

Algorithm CLL AUC
ROC

AUC
PR Time CLL AUC

ROC
AUC
PR Time

RDN -0.182 0.695 0.081 4.46 s -0.180 0.532 0.020 4.59 s
RDN-B -0.257 0.919 0.231 18.80 s -0.317 0.713 0.083 22.12 s
TODTLER -0.023 0.497 0.002 39 min NA NA NA NA
TreeBoostler* -0.180 0.986 0.273 4.14 s -0.164 0.978 0.062 46.63 s
TreeBoostler -0.180 0.986 0.272 60.99 s -0.161 0.979 0.074 229.36 s
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Figura 2. Learning curves from minimal target data for AUC ROC (left) and AUC
PR (right) obtained from NELL Sports→ NELL Finances.

of target data and (3) a scenario that represents learning from minimal target data. The
first question is important to evaluate the algorithm and conclude if it performs better than
learning from scratch approaches and related transfer learning approaches. The second
question evaluates the effectiveness of a theory revision process and demonstrates that the
process is capable of improving the performance of the transferred model in the target
domain. The third question addresses if the transfer process is capable of providing good
models while the fourth question asks if the algorithm is faster than related transfer lear-
ning algorithms and also learning from scratch algorithms. The fifth question investigate
the behavior of the algorithm with increasing amounts of data while the sixth question
addresses the problem of minimal target data where the learner is provided with only a
few examples.

We compared the performance of TreeBoostler against two baseline approaches
that learn from scratch from target data: RDN-Boost [Natarajan et al. 2012], which le-
arns a set of regression trees using boosting method and RDN [Neville and Jensen 2007]
which learns a single large regression tree. We also compared it against TODTLER
[Van Haaren et al. 2015], a transfer learning method that lifts a source structure to second-
order logic. In the results we presented two stages of the algorithm: structure transference
(TreeBoostler*) and the complete transfer system including theory revision (TreeBoos-
tler).

The most relevant results are presented in Table 1 and Figure 2. It can be observed
that our algorithms are competitive or better than TODTLER and learning from scratch



methods. Bold results are significantly better than the performance of all baselines for at
least one TreeBostler algorithm. The statistical significance was measured using a pai-
red t-test at the 95% confidence level. Considering the minimal target data problem, as
shown in Figure 2, our algorithms easily outperform the learning from scratch algorithms
RDN-B and RDN. The results show that only mapping the predicates and learning the
parameters for the mapped trees may be very useful when target training data is scarce. In
addition, the results presented in the work answer positively all the questions. TreeBoos-
tler is capable of transferring well across domains and learning more accurate models. For
experiments considering other datasets, TreeBoostler was also capable of learning faster
than baselines and the theory revision showed an improvement in the performance.
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