
Discovery and Application of Data Dependencies
Eduardo Henrique Monteiro Pena1, Eduardo Cunha de Almeida (orientador)1

1Tese de doutorado defendida pela Universidade Federal do Paraná (UFPR)–Brazil

eduardopena@utfpr.edu.br,eduardo@inf.ufpr.br

Abstract. This work makes contributions that reach central problems in con-
nection with data dependencies. The first problem regards the discovery of de-
pendencies of high expressive power. We introduce an efficient algorithm for the
discovery of denial constraints: a type of dependency that has enough expres-
sive power to generalize other important types of dependencies and to express
complex business rules. The second problem concerns the application of de-
pendencies for improving data consistency. We present a modification for tradi-
tional dependency discovery approaches that enables the dependency discovery
algorithms to return reliable results even if they run on data containing some
inconsistent records. Also, we present a system for detecting violations of de-
pendencies efficiently. Our extensive experimental evaluation shows that our
system is up to three orders-of-magnitude faster than state-of-the-art solutions,
especially for larger datasets and massive numbers of dependency violations.
The last contribution in this work regards the application of dependencies in
query optimization. We present a system for the automatic discovery and selec-
tion of functional dependencies. Our experimental evaluation shows that our
system selects relevant functional dependencies that help reducing the overall
query response time for various types of query workloads.

Resumo. Este trabalho faz contribuições que abrangem problemas centrais em
relação às dependências de dados. O primeiro problema diz respeito à de-
scoberta de dependências com alto poder de expressividade. Apresentamos um
algoritmo eficiente para a descoberta de restrições de negação: um tipo de de-
pendência com poder de expressividade suficiente para generalizar outros tipos
importantes de dependências, e expressar regras de negócios complexas. O
segundo problema diz respeito à aplicação de dependências para melhoraria
de consistência de dados. Apresentamos uma modificação para as abordagens
tradicionais de descoberta de dependência que permite que algoritmos de de-
scoberta de dependência retornem resultados confiáveis, mesmo que sejam ex-
ecutados sobre dados contendo alguns registros inconsistentes. Além disso, ap-
resentamos um sistema para detecção eficiente de violações de dependências.
Nossa extensa avaliação experimental mostra que nosso sistema é até três or-
dens de magnitudes mais rápido do que competidores estado-da-arte, especial-
mente para grandes conjuntos de dados e um grande número de violações de
dependência. A última contribuição deste trabalho diz respeito à aplicação de
dependências na otimização de consultas. Apresentamos um sistema para a de-
scoberta e seleção automática de dependências funcionais. Nossa avaliação
experimental mostra que nosso sistema seleciona dependências funcionais rel-
evantes que ajudam na redução do tempo de resposta para consultas em vários
tipos de cargas de trabalho.



1. Introduction
One of the many essential concepts in relational database management systems and in
the relational model regards their capability of enforcement of constraints on database
objects. There are several applications for constraints: data cleaning, query optimiza-
tion, query processing, and data integration, just to name a few[Abiteboul et al. 1995,
Abedjan et al. 2015]. Constraints are necessary because the relational model, by itself,
lacks artifacts that guide the semantic interpretation of tables. Although the names of
tables and columns can help us to grasp preliminary meanings of the values in each tu-
ple, they do not specify how these values are related to each other or how we would
characterize invalid values. Constraints incorporate such semantics into the relational
model because they define semantic properties on a column or group of columns that
should be satisfied by relation instances. Unfortunately, the traditional integrity constraint
framework–domain constraints, keys, and foreign keys— of most commercial database
systems cannot express many critical types of semantic properties. The alternative then is
to use data dependencies of adequate expressive power to capture such properties.

The initial studies on dependencies started shortly after the proposal of the re-
lational model. Their primary motivation was mainly database design, but nowadays,
dependencies are a fundamental part of various data management contexts. Dependen-
cies have a less strict definition than constraints. A dependency is a property on a column
or group of columns that apply to particular instances of the database. We can choose
a dependency as an integrity constraint. If the database system cannot implement this
constraint, then we need to implement it using other means. Different types of depen-
dencies have different levels of expressive power, which means that some of them can
restrict inconsistencies that others cannot. The higher the expressive power, the higher
the complexity and, thus, the challenge in practical use. That is why the native support
for dependencies in database systems is somewhat limited—it is a trade-off between fea-
sibility and expressiveness [Abiteboul et al. 1995].

1.1. Research Challenges

The research questions on types of dependencies of higher expressive power are chal-
lenging. Nonetheless, the answers to such questions pursue the development of adequate
support for dependencies that can cover a broad range of data inconsistencies. This work
makes contributions to some of the central problems in connection with dependencies.
We briefly describe these problems in the following.

Discovery of dependencies. Relational database design and maintenance is a complex
process that requires, among other tasks, defining sets of constraints. One option is to del-
egate the task to database designers with adequate expertise in the domain of the applica-
tion. Although this option may work for small databases and simple types of constraints,
it may become infeasible in other scenarios. Database designers with enough expertise
might not be conveniently available. Even when experts are around, the manual design
of constraints is time-consuming as experts must keep the constraints up-to-date with the
semantics of data and application, which is continually evolving. Besides, the higher the
expressive power of a dependency language, the higher the complexity in the design of
constraints. Finally, the number of possible constraint candidates is usually too large for
manual validation, even in small datasets.



The alternative to the manual design of constrains is the automatic discovery of
dependencies using data. In a nutshell, the dependency discovery problem is to find the
set of dependencies, in a particular language, that holds in a specific table. The problem
comes under the umbrella of data profiling: the set of activities to gather statistical and
structural properties, i.e., metadata, about datasets [Abedjan et al. 2015]. The discovery
of basic types of dependencies has long been studied [Liu et al. 2012]. In contrast, the
discovery of more complex types of dependencies is in the early stages of development,
still with a limited number of contributions.

State-of-the-art data cleaning frameworks have used dependencies known as de-
nial constraints (DCs), as they can express complex real-world constraints and generalize
other types of dependencies. Each DC ϕ expresses a relationship between predicates that
indicate which combinations of attribute values are inconsistent. A table is inconsistent
with a DC ϕ, if it contains a set of tuples that satisfy all predicates of ϕ at the same time.
For example, given a table citizen with schema Citizen(SSN,Name, State, Salary,Rate),
we can verify whether all citizens pay a fair amount of taxes with a DC ϕ1:∀t, t′ ∈
citizen,¬(t.State = t′.State∧ t.Salary > t′.Salary∧ t.Rate < t′.Rate). Any pair of tuples
t, t′ that satisfy all predicates of ϕ1 is a DC violation showing an error in the citizen ta-
ble. Unfortunately, the discovery of DCs is computationally hard since it regards a search
space that is bigger than the search space seen in the discovery of simpler dependencies.

Application of the discovered dependencies. The number of discovered dependencies
radically increases with the number of columns in the dataset. This number may increase
drastically as the number of columns goes up, e.g., in the region of millions for datasets
with hundreds of columns and thousands of records [Papenbrock et al. 2015]. The main
problem is that selecting which of the dependencies are most relevant for a given task
(e,g, data cleaning) is left for human analysis. It is particularly challenging to under-
stand the relationships among hundreds, or even thousands, of dependencies spread across
multiple relations. Interestingness measures have been proposed to score data dependen-
cies [Pena et al. 2019]. These measures are primarily based on the statistical properties
of the data and have shown good potential to filter dependencies for tasks such as data
cleaning and query optimization [Pena et al. 2018]. As observed in [Kimura et al. 2009],
however, data dependencies should be exploited with caution because they may impose
additional performance penalties as their number increase. Thus, the goal is to use differ-
ent strategies to recommend sets of dependencies that offer the best trade-off between a
reduced number of dependencies and best gains for a particular dependency use-case.

Detection of dependency violations. Data inconsistencies emerge as violations of the
dependencies defined for the database. Knowing to which extend inconsistencies perme-
ates a database is the first step towards producing better-quality query answers; therefore,
the detection of dependency violations is vital. In data cleaning pipelines, nothing can be
done before the detection step. Even if fixing inconsistencies is not possible, users surely
need to be aware of the inconsistencies so they can avoid poor decision-making.

The most straightforward way to detect a dependency violation is to enumerate the
necessary combination of tuples, and then check whether each combination complies with
the dependency or not. Of course, this approach is impractical for large datasets since it
has a quadratic time complexity in the number of tuples. An alternative to the naive ap-



proach is to translate dependencies into SQL queries and then ask a database management
system to find the violations. Although the use of database systems is practical, it has two
critical performance drawbacks. The performance varies significantly from system to sys-
tem, and, worst yet, it is usually not robust against different types of dependencies. For
the same dataset, a database system may perform well for a given dependency but perform
poorly for another.

Most of the recently presented data cleaning systems use database systems to de-
tect violations of data dependencies. Still, their experimental evaluations are quite limited,
as they explore mostly simple dependencies (e.g., functional dependencies) and small
datasets [Rekatsinas et al. 2017]. In many real-world scenarios, however, data cleaning
(and other data management tasks) has to deal with large datasets and complex depen-
dencies such as denial constraints. Thus, there is a need for efficient techniques to detect
violations of dependencies of various types.

2. Summary of contributions
The research on data dependencies is vibrant, but at the same time, challenging. Contri-
butions on the field have numerous applications in various data management aspects. The
contributions of this work cover four primary dimensions, summarized as follows.

2.1. A novel algorithm for the discovery of denial constraints [Pena et al. 2019].
The alternative to designing denial constraints by hand is automatically discovering de-
nial constraints from data. Unfortunately, this alternative is computationally expensive
due to the vast search space derived from the number of predicates that can form denial
constraints. To tackle this challenging task, we present a novel algorithm, DCFINDER.
It combines data structures called position list indexes, bitwise operations, and optimiza-
tions based on predicate selectivity to validate denial constraint candidates efficiently. Be-
cause the available data often contain errors, the design of DCFINDER algorithm focuses
on the discovery of relaxed denial constraints. Our experimental evaluation uses real and
synthetic datasets and shows that DCFINDER outperforms previous existing algorithms
for the discovery of relaxed denial constraints.

2.2. A novel technique to focus the dependency discovery in denial constraints
useful for data cleaning [Pena and de Almeida 2019].

In the traditional approach to the discovery of dependencies, the results are as reliable as
the data used to produce them. Having problematic data is often involuntary; thus, the
discovery should be able to accommodate potential data errors. Besides, the number of
discovered results grows exponentially with the number of columns in the table. Even if
we discover dependencies from correct data, many results may hold only by chance, i.e.,
they are spurious. We propose a method that uses statistical evidence of the tuples of a
dataset to focus the discovery of denial constraints. Our method sets DCFINDER so that
it can find denial constraints appropriate for data cleaning, even if the dataset contains
errors. Our experiments with real data show that the identified denial constraints point,
with high precision and recall, to inconsistencies in the input data.

2.3. A novel system to detect violations of denial constraints [Pena et al. 2020].
Dependencies and their violations can reveal errors in data. Several data cleaning systems
use database systems to detect violations of data dependencies. While this approach is



efficient for some kinds of data dependencies (e.g., key dependencies), it is likely to fall
short of satisfactory performance for more complex ones, such as some forms of denial
constraints. We propose a novel system to detect violations of denial constraints effi-
ciently. We describe its execution model, which operates on compressed blocks of tuples
at-a-time, and we present various algorithms that take advantage of the predicate form in
denial constraints to provide efficient code patterns. Our experimental evaluation includes
comparisons with different approaches; real-world and synthetic data; and various kinds
of denial constraints. It shows that our system is up to three orders-of-magnitude faster
than the other solutions, especially for datasets with a large number of tuples and denial
constraints that identify a large number of violations.

2.4. Novel techniques to detect functional dependencies appropriate for query
optimization [Pena et al. 2018].

We present a system for query optimization based on automatic discovery of data depen-
dencies. By formulating query transformations, it can revise the number of processed
rows, with a direct impact on performance. The goal is to optimize query execution in
cases where the database is denormalized or have lost dependencies in the design. We
rely on the automatic discovery of dependencies, but to avoid optimizing for spurious
dependencies, we focus on dependencies matching the current queries in the pipe (i.e.,
the workload). Initially, we use a state-of-the-art algorithm to discover the set of func-
tional dependencies holding in the datasets. Then, our focused dependency selector uses
the available workload information to choose exemplars from the set of the discovered
functional dependencies that are appropriate for query optimization. That eliminates any
manual interaction. The selected dependencies exhibit statistical properties that resemble
those of the initial set of dependencies; therefore, they serve as a semantical summary of
the dependencies. We use well-known techniques for query optimization with the selected
dependencies. In the best-case scenario of our experimental evaluation, our system can
reduce query response time by more than one order of magnitude using join elimination
for a real-world database.

3. Relevance of the research
In this work, we contributed to the development of algorithms and systems for sup-
porting data scientists and IT-professionals in their quest for metadata use. In par-
ticular, we focused on the discovery and application of data dependencies because of
their critical role in data management. Our contributions span publications presented
in several high-quality venues [Pena et al. 2018, Pena and de Almeida 2018, Pena 2018,
Pena et al. 2019, Pena and de Almeida 2019, Pena et al. 2020]. Some of these contribu-
tions are readily available since we integrated some of our prototypes into an open data
profiling platform called Metanome 1.

The development of this work allowed us to leverage collaborations with well-
known research groups from Europe, namely, the Interdisciplinary Centre for Security,
Reliability and Trust (SNT) at the University of Luxembourg, and the Hasso Plattner In-
stitute at the University of Potsdam-Germany. Also, we contributed to work that is orthog-
onal to our thesis, which also appears as a high-quality publication [Santore et al. 2020].

1https://hpi.de/naumann/projects/data-profiling-and-analytics/
metanome-data-profiling.html.



References
Abedjan, Z., Golab, L., and Naumann, F. (2015). Profiling relational data: A survey. The

VLDB Journal, 24(4):557–581.

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases. Addison-
Wesley.

Kimura, H., Huo, G., Rasin, A., Madden, S., and Zdonik, S. B. (2009). Correlation maps:
A compressed access method for exploiting soft functional dependencies. Proc. VLDB
Endow., 2(1):1222–1233.

Liu, J., Li, J., Liu, C., and Chen, Y. (2012). Discover dependencies from data - a review.
IEEE TKDE, 24(2):251–264.

Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J.-P., Schönberg, M.,
Zwiener, J., and Naumann, F. (2015). Functional dependency discovery: An exper-
imental evaluation of seven algorithms. PVLDB., 8(10):1082–1093.

Pena, E. H. M. (2018). Workload-aware discovery of integrity constraints for data clean-
ing. In VLDB 2018 - PhD Workshop, volume 2175.

Pena, E. H. M. and de Almeida, E. C. (2018). Bfastdc: A bitwise algorithm for mining
denial constraints. In Database and Expert Systems Applications (DEXA), pages 53–
68, Cham. Springer International Publishing.

Pena, E. H. M. and de Almeida, E. C. (2019). Short paper: Descoberta automática de
restrições de negação confiáveis. In XXXIV Simpósio Brasileiro de Banco de Dados,
SBBD 2019, Fortaleza, CE, Brazil, October 7-10, 2019, pages 187–192. SBC.

Pena, E. H. M., de Almeida, E. C., and Naumann, F. (2019). Discovery of approximate
(and exact) denial constraints. Proc. VLDB Endow., 13(3):266–278.

Pena, E. H. M., Falk, E., Meira, J. A., and de Almeida, E. C. (2018). Mind your depen-
dencies for semantic query optimization. JIDM, 9(1):3–19.

Pena, E. H. M., Lucas Filho, E. R., de Almeida, E. C., and Naumann, F. (2020). Efficient
detection of data dependency violations. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM), page 1235–1244.

Rekatsinas, T., Chu, X., Ilyas, I. F., and Ré, C. (2017). Holoclean: Holistic data repairs
with probabilistic inference. PVLDB Endow., 10(11):1190–1201.

Santore, F., de Almeida, E. C., Bonat, W. H., Pena, E. H. M., and de Oliveira, L. E. S.
(2020). A framework for analyzing the impact of missing data in predictive models. In
Proceedings of the 29th ACM International Conference on Information and Knowledge
Management (CIKM), pages 2209–2212.


