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Abstract. An EPG graph G is an edge-intersection graph of paths on a grid.
In this thesis, we analyze structural characterizations and complexity aspects
regarding EPG graphs. Our main focus is on the class of B1-EPG graphs
whose intersection model satisfies well-known the Helly property, called Helly-
B1-EPG. We show that the problem of recognizing Helly-B1-EPG graphs is
NP -complete. Besides, other intersection graph classes such as VPG, EPT,
and VPT were also studied. We completely solve the problem of determining
the Helly and strong Helly numbers of Bk-EPG graphs and Bk-VPG graphs
for each non-negative integer k. Finally, we show that every Chordal B1-EPG
graph is at the intersection of VPT and EPT.

1. Introduction
EPG graphs were introduced by Golumbic, Lypshteyn, and Stern (2009) and consist of
the intersection graphs of sets of paths on the orthogonal grid, whose intersections are
taken considering the edges of the paths. If the intersections of the paths consider the
vertices and not the edges, the resulting graph class is called VPG graphs.

The study of graphs whose host is a tree or a grid has motivation related to the
problem of VLSI design that combines the notion of edge/vertex intersection graphs
of paths in a tree/grid with a VLSI grid layout model, see [Golumbic et al. 2009].
The number of bends in an integrated circuit may increase the layout area, and con-
sequently, increase the cost of chip manufacturing. This is one of the main appli-
cations that instigate research on the EPG/VPG representations of some graph fami-
lies when there are constraints on the number of bends in the paths used in the rep-
resentation. Other applications and details on circuit layout problems can be found
in [Bandy and Sarrafzadeh 1990, Molitor 1991].

A graph is a Bk-EPG graph if it admits a representation in which each path has at
most k bends. The bend number of a graph G is the smallest k for which G is a Bk-EPG
graph. Analogously, the bend number of a class of graphs is the smallest k for which all
graphs in the class have a Bk-EPG representation. Interval graphs have bend number 0,
trees have bend number 1, and outerplanar graphs have bend number 2. The bend number
for the class of planar graphs is still open, but it is either 3 or 4.
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The class of EPG graphs has been studied in several papers, such as
[Alcón et al. 2016, Asinowski and Suk 2009, Cohen et al. 2014, Golumbic et al. 2009],
among others. The investigations regarding EPG graphs frequently approach character-
izations concerning the number of bends of the graph representations. Regarding the
complexity of recognizing Bk-EPG graphs, only the complexity of recognizing a few of
these sub-classes of EPG graphs have been determined: B0-EPG graphs can be recog-
nized in polynomial time, since it corresponds to the class of interval graphs; in contrast,
recognizing B1-EPG and B2-EPG graphs are NP-complete problems. Also, note that
the paths in a B1-EPG representation have one of the following shapes: x, y, p and q.
Cameron et al. [Cameron et al. 2016] showed that for each non-empty S ⊂ {x, y, p, q}, it
is NP-complete to determine if a graph G has a B1-EPG representation using only paths
with shape in S.

A collection C of sets satisfies the Helly property when every sub-collection of
C that is pairwise intersecting has at least one common element. The study of the Helly
property is useful in several areas of science. We can enumerate applications in seman-
tics, code theory, computational biology, database, graph theory, optimization, and linear
programming, see [Dourado et al. 2009].

The Helly property can also be applied to Bk-EPG representations, where each
path is considered as a set of edges. A graph G has a Helly-Bk-EPG representation if
there is a Bk-EPG representation of G where each path has at most k bends, and this
representation satisfies the Helly property. Figure 1(a) presents two B1-EPG representa-
tions of a graph with five vertices. Figure 1(b) illustrates 3 pairwise intersecting paths
(Pv1 , Pv2 , Pv5), containing a common edge, so it is a Helly-B1-EPG representation. In
Figure 1(c), although the three paths are pairwise intersecting, there is no common edge
in all three paths, and therefore they do not satisfy the Helly property.

(a) A graph with 5
vertices

(b) B1-EPG representation that
satisfies the Helly property

(c) B1-EPG representation that
does not satisfy the Helly prop-
erty

Figure 1. A graph with 5 vertices in (a) and some single bend representations:
Helly in (b) and not Helly in (c)

The Helly property related to EPG representations of graphs has been studied
in [Golumbic et al. 2009, Golumbic et al. 2013].

Let F be a family of subsets of some universal set U , and h ≥ 2 be an integer.
Say that F is h-intersecting when every group of h sets of F intersect. The core of F ,
denoted by core(F), is the intersection of all sets of F . The family F is h-Helly when
every h-intersecting subfamily F ′ of F satisfies core(F ′) 6= ∅. On the other hand, if for



every subfamily F ′ of F , there are h subsets whose core equals the core of F ′, then F is
said to be strong h-Helly. Note that the Helly property that we will consider in this paper
is precisely the property of being 2-Helly.

The Helly number of the family F is the least integer h, such that F is h-Helly.
Similarly, the strong Helly number of F is the least h, for which F is strong h-Helly.
It also follows that the strong Helly number of F is at least equal to its Helly number.
In [Golumbic et al. 2009] and [Golumbic et al. 2013], they have determined the strong
Helly number of B1-EPG graphs.

In this thesis, we analyze structural characterizations and complexity aspects re-
garding Bk-EPG graphs. Our main focus is on the class of B1-EPG graphs satisfying the
Helly property, called Helly-B1-EPG. We show that the problem of recognizing Helly-B1-
EPG graphs isNP -complete. Besides, other intersection graph classes such as VPG, EPT,
and VPT were also studied. We completely solve the problem of determining the Helly
and strong Helly numbers of Bk-EPG graphs and Bk-VPG graphs for each non-negative
integer k. Finally, we show that every Chordal B1-EPG graph is at the intersection of
VPT and EPT.

Next, we present the list of papers, related to this thesis, developed during the doc-
toral research. Recall that in Theoretical Computer Science the list of authors is usually
arranged in alphabetical order.

1. BORNSTEIN, C. F.; GOLUMBIC, M.C.; SANTOS, T. D.; SOUZA, U. S.;
SZWARCFITER, J. L. The Complexity of Helly-B1-EPG graph Recognition. In:
Discrete Mathematics & Theoretical Computer Science (DMTCS), vol. 22 no. 1,
2020.

2. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. Relationship AmongB1-EPG,
VPT and EPT Graphs Classes. Accepted for publication in journal Discussiones
Mathematicae Graph Theory (DMGT) on March 09, 2021.

3. BORNSTEIN, C. F.; MORGENSTERN, G.; SANTOS, T. D.; SOUZA, U. S.;
SZWARCFITER, J. L. Helly and Strong Helly Numbers of Bk-EPG and Bk-VPG
Graphs. Submitted to journal Discussiones Mathematicae Graph Theory (DMGT)
on May 16, 2020.

The following are papers published in conferences:

1. BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L.
A Complexidade do Reconhecimento de Grafos B1-EPG-Helly. In: 50º SBPO -
Simpósio Brasileiro de Pesquisa Operacional, 2018.

2. BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L. So-
bre a Dificuldade de Reconhecimento de Grafos B1-EPG-Helly. In: XXXVIII
Congresso da Sociedade Brasileira de Computação, III Encontro de Teoria da
Computação, 2018

3. BORNSTEIN, C. F.; SANTOS, T. D.; SOUZA, U. S.; SZWARCFITER, J. L.
The complexity of B1-EPG-Helly graph recognition. In: VIII Latin American
Workshop On Cliques in Graphs (LAWCG), ICM 2018 Satellite Event, 2018.

4. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. Identifying Subclasses
of Helly-B1-EPG Graphs. 52nd Brazilian Operational Research Symposium
(SBPO), 2020.



5. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. On Subclasses of Helly-
B1-EPG Graphs. Reunión Anual de la Unión Matemática Argentina (virtUMA),
2020.

6. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. Paths on Hosts: B1-EPG, EPT
and VPT Graphs. Latin American Workshop on Cliques in Graphs (LAWCG),
2020.

7. ALCON, L.; MAZZOLENI, M. P.; SANTOS, T. D. On Helly-B1-EPG Graphs.
Submitted to Revista Matemática Contemporânea (SBM) on March 8, 2021.

The main results of this work are briefly presented as follows.

2. The Helly property and EPG graphs
First, we demonstrate that every graph is a Helly-EPG graph and we present some
subclasses of B1-EPG graphs that are incomparable with Helly-B1 EPG. We present a
characterization of Helly-B1-EPG representations, and finally we demonstrate the NP -
completness of the Helly-Bk EPG recognition problem.

The study starts with the following lemma.
Lemma 1 ([Golumbic et al. 2009]). Every graph is an EPG graph.

We show that this result extends to Helly-EPG graphs.

Lemma 2. Every graph is a Helly-EPG graph.

Corollary 3. For every graph G containing µ maximal cliques, it holds that

bH(G) ≤ µ− 1.

Theorem 4. [x] ( [x, q] ( Helly-B1 EPG, and Helly-B1 EPG is incomparable with [x, p]
and [x, p, q].
Lemma 5. A B1-EPG representation of a graph G is Helly if and only if each clique of
G is represented by an edge-clique, i.e., it does not contain any claw-clique.

The HELLY-Bk EPG RECOGNITION problem can be formally described as follows.

HELLY-Bk EPG RECOGNITION

Input: A graph G and an integer k ≤ |V (G)|c, for some fixed c.

Goal:

Determine if there is a set of k-bend paths
P = {P1, P2, . . . , Pn} in a grid Q such that:
• u, v ∈ V (G) are adjacent in G if only if Pu, Pv

share an edge in Q; and
• P satisfies the Helly property.

At this point, it is important to note that the next result is non-trivial.

Theorem 6. HELLY-Bk EPG RECOGNITION is in NP.

Finally, we present our main result concerning the recognition of HELLY-B1 EPG.

Theorem 7. HELLY-B1 EPG RECOGNITION is NP-complete.



3. Helly and Strong Helly Numbers of Bk-EPG and Bk-VPG Graphs
In this section, we solve the problem for determining the Helly and strong Helly numbers,
for both Bk-EPG and Bk-VPG graphs, for each non-negative integer k.

For EPG graphs, the Helly number of B0-families is well known and is equal to
2, since B0-EPG graphs coincide with interval graphs. It is also simple to conclude that
the strong Helly number of B0-EPG graphs are also equal to 2. For k = 1, we prove that
both the Helly number and the strong Helly number of the class of B1-families are equal
to 3. For the class of B2-families, we prove that these two parameters are equal to 4. The
Helly and strong Helly number for B3-families equal 8, and finally, these parameters are
unbounded for k ≥ 4.

As for VPG graphs, it is simple to verify that the Helly number of B0-VPG graphs
equals 2, and we prove that B1-VPG have Helly number 4, B2-VPG graphs have Helly
number 6, B3-VPG has Helly number 12, while the Helly number for B4-VPG graphs is
again unbounded.

Finally, the strong Helly number equals the Helly number of Bk-EPG graphs, for
each k. Similarly, for Bk-VPG graphs.

As for existing results, Golumbic, Lipshteyn, and Stern [Golumbic et al. 2009]
have already shown that the strong Helly number for B1-EPG graphs equal 3, and for
B1-VPG graphs is equal to 4 (see [Golumbic and Morgenstern 2019], Theorem 11.13).
Theorem 8. [Golumbic and Morgenstern 2019] Let P be a collection of single bend
paths on a grid. If every two paths in P share at least one grid-edge, then P has strong
Helly number 3. Otherwise, P has strong Helly number 4.

To the best of our knowledgment, there is no other result concerning the strong
Helly number or the Helly number of Bk-EPG graphs in the literature. However, for
other classes, Golumbic and Jamison have determined the strong Helly number of the
intersection of edge paths of a tree [Golumbic and Jamison 1985]. Finally, Asinowski,
Cohen, Golumbic, Limouzy, Lipshteyn, and Stern have reported that the strong Helly
number of B0-VPG graphs equals two.

Table 1 summarizes the full classification regarding the strong Helly number and
the Helly number of Bk-EPG graphs obtained in this thesis.

k Bk-EPG Bk-VPG
0 2 2
1 3 4
2 4 6
3 8 12
≥ 4 unbounded unbounded

Table 1. Helly and Strong Helly Numbers for Bk-EPG and Bk-VPG Graphs

4. Relationship among B1-EPG, EPT and VPT graph classes
We also have considered three different path-intersection graph classes: B1-EPG, VPT
and EPT graphs. We showed that {S3, S3′ , S3′′ , C4}-free graphs and others non-trivial sub-
classes of B1-EPG graphs such as Bipartite, Block, Cactus and Line of Bipartite graphs
are all Helly-B1-EPG.



We presented an infinite family of forbidden induced subgraphs for the class B1-
EPG and in particular we proved that Chordal B1-EPG ⊆ VPT ∩ EPT.

Theorem 9. Let G be a B1-EPG graph. If G is {S3, S3′ , S3′′ , C4}-free then G is a Helly-
B1-EPG graph.

Theorem 10. IfG is aB1-EPG and diamond-free graph thenG is a Helly-B1-EPG graph.

Corollary 11. If G is a Bipartite B1-EPG graph then G is a Helly-B1-EPG graph.

Corollary 12. Block, Cactus and Line of Bipartite graphs are Helly-B1-EPG.

Theorem 13. Chordal B1-EPG ( VPT.

Theorem 14. Chordal B1-EPG ( EPT.
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