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Abstract. Modern visual pattern recognition models are based on deep convo-
lutional networks. Such models are computationally expensive, hindering appli-
cability on resource-constrained devices. To handle this problem, we propose
three strategies. The first removes unimportant structures (neurons or layers)
of convolutional networks, reducing their computational cost. The second in-
serts structures to design architectures automatically, enabling us to build high-
performance networks. The third combines multiple layers of convolutional
networks, enhancing data representation at negligible additional cost. These
strategies are based on Partial Least Squares (PLS) which, despite promising
results, is infeasible on large datasets due to memory constraints. To address
this issue, we also propose a discriminative and low-complexity incremental
PLS that learns a compact representation of the data using a single sample at a
time, thus enabling applicability on large datasets.

1. Introduction

Pattern recognition plays an important role in cognitive tasks such as natural language
processing and image understanding. Modern pattern recognition methods have led to
a series of breakthroughs, often surpassing human performance [Badia et al. 2020]. The
reason for these remarkable achievements is the improvement in data representation (i.e.,
features), which allows discovering new abstractions and patterns from data.

In the context of visual pattern recognition, deep convolutional networks have
been the focus of intense research due to their state-of-the-art effectiveness in learning
discriminative representation. In particular, most efforts have been devoted to the develop-
ment of architectures for convolutional networks, since large architectures are a major de-
terminant factor for improving their predictive ability [Tan and Le 2019], as shown in Fig-
ure 1. In terms of performance, on the other hand, excessively large architectures are com-
putationally expensive, hindering applicability on low-power and internet of things (IoT)
devices. Moreover, such architectures are data-hungry, meaning that large datasets are
needed to provide a better generalization performance [Kolesnikov et al. 2020], hence,
the encouragement for large datasets has been growing.

A parallel line of research to obtain discriminative representations is to dis-
cover low-dimensional features through dimensionality reduction techniques. Such
techniques are capable of yielding discriminative and compact representations from
the original (high-dimensional) data [Li et al. 2019]. Recent works use dimensional-
ity reduction collaboratively with convolutional networks and produce encouraging re-
sults [Suau et al. 2020]. Such a combination, however, is unsuitable for large datasets
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Figure 1. Comparison of convolutional networks in terms of predictive abil-
ity, computational cost, and complexity. Predictive ability is measured
by accuracy. Computational cost is measured by Floating Point Opera-
tions (FLOPs). Complexity is measured taking into account the number of
neurons (width) and layers (depth), and it is represented by the circle size
(larger means more complex). The arrows indicate which direction (in both
x and y axes) is better. It is evident that there is a strong relationship be-
tween predictive ability and network complexity (circle size), in which more
complex networks are more accurate. In turn, network complexity incurs
computational cost.

since traditional dimensionality reduction techniques require all the data to be in mem-
ory in advance, which is often impractical due to hardware limitations. Additionally, this
requirement prevents us from employing dimensionality reduction on streaming applica-
tions, where the data are being generated continuously.

Regardless of the mechanism employed to recognize or improve pattern recogni-
tion, there is a trade-off between accuracy and complexity, in which more accurate models
often incur higher complexity and computational cost, as illustrated in Figure 1. Thereby,
discovering accurate and efficient strategies for pattern recognition, which include en-
hancing the existing ones, have been the focus of intense research.

Motivation. Modern visual pattern recognition models are predominantly based on con-
volutional networks since they are capable of learning effective representations from
data [He et al. 2016]. According to previous works [Tan and Le 2019], large (deeper and
wider) convolutional networks lead to better results. Figure 1 supports this claim, where
larger networks (large circles) have superior predictive ability. In terms of performance,
however, such networks suffer from heavy computation and memory overhead, incurring
slow inference and hindering applicability on low-power and resource-constrained de-
vices. Moreover, since modern networks demand massive computing infrastructure, the
financial cost to deploy them can be prohibitive for academic researchers. For example,
the estimated cost for training and deploying state-of-the-art networks can surpass hun-
dreds of dollars per hour [Strubell et al. 2019]. Prior research on the climate impact of
AI has raised another important issue regarding these networks, which is the quantity of



carbon emitted by them based on their energy consumption [Lacoste et al. 2019]. Sur-
prisingly, convolutional networks have a large carbon footprint that can surpass one car
in its lifetime [Strubell et al. 2019, Lacoste et al. 2019]. The simplest way to circumvent
the problems mentioned is to evaluate different trade-offs between accuracy and network
complexity, for example, by comparing the performance of ResNet50 (50 layers) with
its deeper counterpart ResNet152 (152 layers), see Figure 1. Unfortunately, this process
requires significant human engineering due to its trial-and-error essence. Instead, it is pos-
sible to transform or automatically design efficient convolutional networks by employing
pruning or neural architecture search (NAS), respectively. The former removes unim-
portant structures (neurons or layers) from the network, reducing its complexity while
preserving as much predictive ability as possible. The latter learns to design accurate
and efficient architectures automatically. Both strategies, however, are not without their
limitations. Existing criteria for identifying and removing structures from convolutional
networks are ineffective since the accuracy of the original (unpruned) network is often
degraded, as shown in Figure 2 (Left). Besides, many pruning approaches demand a high
computational cost, mainly when applied to very deep networks [Luo and Wu 2020]. Re-
garding the neural architecture search, current strategies analyze a large set of possible
candidate architectures and, hence, require vast computational resources and take many
days to process even with modern Graphics Processing Units (GPUs) [Zoph et al. 2018].
Motivated by these issues, we propose simple, effective, and efficient mechanisms for
eliminating structures of deep networks as well as discovering high-performance archi-
tectures automatically (i.e., without involving human engineering). More precisely, our
pruning strategies achieve the best trade-offs between accuracy and computational cost
compared to state-of-the-art methods, as illustrated in Figure 2 (Left). In the context of
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Figure 2. Left. Comparison of existing pruning methods. Compared to state-
of-the-art pruning strategies, our pruning method always provides a better
solution (i.e., it is a non-dominated solution) considering one of the per-
formance metrics: accuracy drop (y-axis) or FLOP reduction (x-axis). In
this figure, negative values in the y-axis denote improvement regarding the
original, unpruned, network. Right. Comparison of existing neural archi-
tecture search (NAS) methods. Our NAS method discovers architectures
by exploring one order of magnitude fewer models compared to other ap-
proaches. In addition, our method is the most resource-efficient as it de-
signs architectures in a few hours on a single GPU. In both figures, the
arrows indicate which direction is better.



NAS, our method discovers competitive and low-cost convolutional networks by explor-
ing one order of magnitude fewer models compared to other approaches, thus designing
architectures in a few hours on a single GPU, as shown in Figure 2 (Right).

Besides computational cost concerns, many efforts have been devoted to improve
data representation of convolutional networks. In this context, previous works have
demonstrated encouraging results combining features from different levels (layers) of the
network. Such works have followed either multi-scale or HyperNet strategies. While
the former redesigns network topology to encode features from shallow and deep lay-
ers [Yang et al. 2020], the latter preserves network topology, encouraging application on
off-the-shelf networks [Sindagi and Patel 2019]. Despite the positive results, both strate-
gies increase the computational burden significantly since they insert time-consuming
operations at multiple levels of the network. To address this problem, we propose an ef-
ficient yet accurate approach to extract different levels of representation across multiple
layers of deep networks, thus enhancing data representation at negligible additional cost.

A parallel line of research to improve data representation is to learn compact, but
discriminative, representations through dimensionality reduction [Li et al. 2019]. In this
context, Partial Least Squares (PLS) has presented remarkable results, mainly when com-
pared to other methods such as Principal Component Analysis and Linear Discriminant
Analysis [Sharma and Jacobs 2011]. The promising results of PLS are associated with its
characteristics that include being discriminative and robust to sample size problem (when
the number of samples is smaller than the number of features). Another attractive aspect
of PLS is that it can operate as a feature selection method. However, PLS is unsuit-
able for large datasets (e.g., ImageNet) since all the data need to be available in advance
and this could be impractical due to memory constraints. To handle this problem, many
works have proposed incremental versions of traditional dimensionality reduction meth-
ods [Zeng and Li 2014], where the idea is to learn compact representations using a single
sample at a time. Unfortunately, most incremental PLS fail to keep all its properties and
present a high time complexity. To preserve the fundamental characteristics of PLS, we
propose a discriminative and low-complexity incremental PLS. Among the advantages of
this approach are the preservation of discriminative information, its computational effi-
ciency, and the ability to operate as a feature selection technique.

Objectives. From a practical perspective, our goal is to promote mechanisms capable
of reducing the financial cost, carbon emission and computational cost of convolutional
networks (see Figure 3). More specifically, we pretend to provide strategies for (i) accel-
erating convolutional networks, (ii) discovering high-performance convolutional archi-
tectures automatically and (iii) efficiently improving data representation of convolutional
networks. Additionally, we target to provide a memory-friendly version of PLS. From a
theoretical perspective, our goal is to demonstrate the potential of PLS as a tool for de-
termining the importance of structures composing a convolutional network. Besides, we
intend to show that it is possible to preserve underlying properties of PLS in its incremen-
tal version through simple algebraic decomposition.

Contributions. The contributions of this thesis are simple, effective and efficient strate-
gies for improving computational cost and predictive ability of convolutional networks.
Specifically, we reduce more than half of computation, memory usage and inference time,
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Figure 3. Financial cost (Brazilian real) and carbon emission for training different
convolutional networks. Values above the bars indicate CO2 in kgCO2eq
(lower is better), which indicates the global warming potential of various
greenhouse gases as a single number. Our strategies (blue bars) provide
significantly more efficient convolutional networks.

which enables modern convolutional networks suitable to low-power systems (we re-
fer the reader to Tables 5.13, 5.16, and Figures 5.10, 5.16 in the thesis for additional
details). Furthermore, we decrease the financial cost of deploying convolutional net-
works, which is significant progress in making them more accessible to academic re-
searchers, as shown in Figure 3. Regarding the climate impact of AI, our work enables
that modern networks emit around 91% less CO2. This result is an important step towards
green AI. Last but not the least, we expand the applicability of a powerful dimensional-
ity reduction technique, PLS, to large datasets and streaming applications. Particularly,
all our contributions are beneficial for academics, researchers, and students with lim-
ited computational budgets. To promote reproducibility, we release the source code at:
https://arturjordao.github.io/PLSDeepSpaceOdyssey/.

Publications. The results obtained during our research have been published in important
conferences and journals on computer vision and pattern recognition:

1. Jordao, A., Yamada, F., and Schwartz, W. R. Deep Network Compression based
on Partial Least Squares. Neurocomputing, 2020.

2. Jordao, A., Lie, M., and Schwartz, W. R. Discriminative Layer Pruning for Convo-
lutional Neural Networks. Journal of Selected Topics in Signal Processing, 2020.

3. Jordao, A., Kloss, R. B., and Schwartz, W. R. Latent hypernet: Exploring the lay-
ers of Convolutional Neural Networks. International Joint Conference on Neural
Networks (IJCNN), 2018.

4. Jordao, A., Kloss, R., Yamada, F., and Schwartz, W. R. Pruning Deep Neural Net-
works using Partial Least Squares. British Machine Vision Conference (BMVC)
Workshops: Embedded AI for Real-Time Machine Vision, 2019.

5. Jordao, A., Yamada, F., Lie, M., and Schwartz, W. R. Stage-Wise Neural Archi-
tecture Search. International Conference on Pattern Recognition (ICPR), 2020.

6. Jordao, A., Lie, M., de Melo, V. H. C., and Schwartz, W. R. Covariance-free
partial least squares: An Incremental Dimensionality Reduction Method. Winter
Conference on Applications of Computer Vision (WACV), 2021.
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