
AutoParBench: A Unified Test Framework for OpenMP-based
Parallelizers

Gleison Souza Diniz Mendonça1, Fernando Magno Quintão Pereira1, Chunhua Liao2

1Departamento de Ciência da Computação
Universidade Federal de Minas Gerais (UFMG) – Brazil

2Lawrence Livermore National Laboratory – CASC – USA

{gleison.mendonca,fernando}@dcc.ufmg.br,liao6@llnl.gov

Abstract. After decades of advances in techniques of automatic parallelization,
software developers can count, today, on many different tools that transform
a program, so that it runs in parallel. Yet, most of these tools are still con-
sidered research artifacts. They contain latent bugs, often consequence of a
sparsity of testing frameworks for autoparallelizers. This dissertation describes
one such framework: AutoParBench—the product of a cooperation between
UFMG’s Compilers Lab, and Lawrence Livermore National Laboratory. Au-
toParBench is today publicly available, and has been successfully used to find
three zero-day bugs in the Intel C Compiler. Its usage also uncovered problems
in more research-oriented tools: 2 bugs in DawnCC, 4 in Rose AutoPar and 2 in
Cetus. All these bugs have been confirmed, and some of them have been already
fixed as an aftermath of this work.

1. Introduction
Much effort has been spent in the craft of automatic parallelization tools. These tools
adapt programs to run in parallel. Examples of automatic parallelizers include the
Intel C Compiler (ICC), DawnCC [Mendonca et al. 2016, Mendonça et al. 2017], Au-
toPar [Liao et al. 2010], Pluto [Bondhugula et al. 2008], TaskMiner [Ramos et al. 2018b]
and Cetus [Bae et al. 2013]. Yet, the usage of these tools is not widespread. Developers
are reluctant to employ them, mostly because it is difficult to find bugs in these arti-
facts [Liao et al. 2017]. The goal of this dissertation was to mitigate these difficulties. To
this end, we have delivered two contributions.

The First Contribution: DawnCC. The first of these contributions was
DawnCC [Mendonca et al. 2016, Mendonça et al. 2017], an automatic paralleliza-
tion tool that annotates programs with OpenMP pragmas. Programs thus annotated
can be compiled to graphics processing units, an embarrassingly parallel hardware.
Innovations tested in DawnCC were later put to new use in the design of TaskMiner, an
automatic parallelization tool for multi-core CPUs [Ramos et al. 2018b]. Both DawnCC
and the TaskMiner are today publicly available through online interfaces: users feed
them with programs, and they give back parallel versions of said codes1.

The Second Contribution: AutoParBench. The second of our contributions was Au-
toParBench: a test framework to support the design and the development of automatic

1DawnCC is available at http://cuda.dcc.ufmg.br/dawn/. The TaskMiner is available at
http://cuda.dcc.ufmg.br/taskminer/

http://cuda.dcc.ufmg.br/dawn/
http://cuda.dcc.ufmg.br/taskminer/

parallelization tools2. AutoParBench is centered around a representation that normal-
izes programs annotated with OpenMP 4.5 pragmas. This representation is based on the
JavaScript Object Notation (JSON); thus, we call it a JSON snapshot. The main benefit
of this common representation is the possibility to compare programs produced by differ-
ent automatic parallelization tools. AutoParBench comes with a reference collection of
annotated programs, which developers can use as the ground-truth when debugging auto-
parallelizers. Thus, AutoParBench allows the direct comparison between tools, or the
comparison between a tool and the reference collection. In this process, a set of bench-
marks is selected as the baseline, and is used to classify the output of the other. Using this
methodology, AutoParBench has let us discovered zero-day bugs in different automatic
parallelizers: three bugs were confirmed in the Intel C Compiler, two in DawnCC, four in
Rose AutoPar [Liao et al. 2010] and two in Cetus [Bae et al. 2013].

A Partnership between Industry and Academia. This dissertation is the product of a
cooperation between the industry and the university. The development of DawnCC was
sponsored by LG Electronics to support the parallelization of software running on smart-
phones. Thus, DawnCC has been used to transform sequential C programs into code that
runs in GPUs of smartphones [Mendonça et al. 2017]. After the first release of DawnCC,
LG has ported its technology to multicore CPUs. From this effort, the TaskMiner was pro-
duced, through a project financed at UFMG and at UNICAMP. The release of DawnCC
drew the attention of researchers from Lawrence Livermore National Laboratory, who
later contacted us at UFMG. From this contact, I, Gleison Mendonça, was invited for an
internship at LLNL. Once there, I constructed AutoParBench under the supervision of
Chunhua Liao.

A Work of Many Hands. As mentioned previously, this dissertation was part of a project
financed by LG Electronics, CAPES and the U.S. Department of Energy. Hence, I have
worked in close cooperation with many colleagues, from UFMG’s Compilers Lab, from
the Computer Systems Lab (UNICAMP) and from Lawrence Livermore National Lab.
The bulk of the implementation of DawnCC is my work. DawnCC reuses a static analysis
built by Péricles Alves [Alves et al. 2015], to infer the sizes of arrays. He also designed
DawnCC’s algorithm to find parallel loops. To support DawnCC’s annotation system,
Breno Guimarães [Mendonca et al. 2016] has implemented an algorithm to harmonize
information from Clang (front-end) and LLVM’s IR (back-end). I have worked in the
implementation of TaskMiner; however, most of this effort was Pedro Ramos’. The de-
sign of AutoParBench is fruit of my effort and my mentors’, but I have implemented the
framework alone.

2. First Contribution: DawnCC

Directive-based programming models, such as OpenACC and OpenMP, allow developers
to convert a sequential program into a parallel one with minimum human intervention.
However, inserting pragmas into production code is a difficult and error-prone task, of-
ten requiring familiarity with the target program. This difficulty restricts the ability of
developers to annotate code that they have not written themselves. The first part of the
dissertation describes a suite of compiler-related methods to mitigate this problem. Such
techniques rely on symbolic range analysis, a well-known static technique, to achieve two

2AutoParBench is available at https://github.com/LLNL/AutoParBench.

https://github.com/LLNL/AutoParBench

void
saxpy_serial(int n, float alpha, float *x, float *y) {
 for (int i = 0; i < n; i++) {
 y[i] = alpha*x[i] + y[i];
 }
}

__global__ void
saxpy_parallel(int n, float alpha, float *x, float *y) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < n) {
 y[i] = alpha * x[i] + y[i];
 }
}
...
// Allocate x and y, and copy them to the GPU ...
// Invoke the parallel kernel:
int nblocks = (n + 255) / 256;
saxpy_parallel <<<nblocks, 256>>>(n, 2.0, x, y);
// Copy y back to the CPU ...

(a)

(b)

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

5

6

10

11

Figure 1. (a) Standard C implementation of the Single Precision AX + Y (SAXPY)
kernel. (b) Same algorithm written in C for CUDA.

void saxpy_serial(int n, float alpha, float *x, float *y) {
 long long int tmp[2];
 tmp[0] = n -1;
 tmp[1] = ((tmp[0] > 0) ? tmp[0] : 0); // upper bound

 char x_y_alias_free = ((x >= y + tmp[1] + 1) ||
 (y >= x + tmp[1] + 1));

 #pragma acc data pcopy(y[0:tmp[1]]) \
 pcopyin(x[0:tmp[1]]) \
 if(x_y_alias_free)
 #pragma acc kernels loop independent \
 if(x_y_alias_free)
 for (int i = 0; i < n; i++)
 y[i] = alpha*x[i] + y[i];
}

void saxpy_serial(int n, float alpha, float *x, float *y) {
 long long int tmp[2];
 tmp[0] = n -1;
 tmp[1] = ((tmp[0] > 0) ? tmp[0] : 0); // upper bound

 char x_y_alias_free = ((x >= y + tmp[1] + 1) ||
 (y >= x + tmp[1] + 1));

 #pragma omp target data map(to:x[0:tmp[1]]) \
 map(tofrom:y[0:tmp[1]]) \
 if(x_y_alias_free)
 #pragma omp parallel for if(x_y_alias_free)
 for (int i = 0; i < n; i++)
 y[i] = alpha*x[i] + y[i];
}

(a) (b)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

Figure 2. (a) SAXPY annotated with OpenACC pragmas. (b) SAXPY annotated
with OpenMP pragmas. The gray area denotes code created automatically
by DawnCC.

purposes: populate source code with data-transfer primitives and to disambiguate pointers
that could hinder automatic parallelization due to aliasing. We have materialized our ideas
into a tool, DawnCC, which can be used standalone, or through an online interface. To
demonstrate its effectiveness, we have shown how DawnCC can annotate the programs
available in PolyBench without any intervention from users. Such annotations lead to
speedups of over 100x in an Nvidia architecture, and over 50x in an ARM architecture.

We use the Single Precision AX + Y (SAXPY) kernel in Figure 1 (a) to illustrate
the contributions of this paper. This kernel runs in linear time on a sequential machine.
However, it is O(1) in the Parallel Random-Access Machine (PRAM) model, because
there is no dependency between different iterations of the loop. Figure 1 (b) shows a direct
translation of SAXPY to C for CUDA. CUDA’s syntax is very similar to C’s; however, its
semantics is substantially different. Part of it, e.g., lines 1-7 is meant to run on a GPU in
parallel; the rest, e.g., lines 9-11, is meant to run on a host CPU.

To make GPUs more accessible to the everyday developer, the high-performance
computing community has designed a number of annotation systems. An annotation sys-
tem is a meta-language that changes the semantics of a host language. In our setting,
the host language is C, and the meta-language is either OpenACC or OpenMP. Figure 2
shows the sequential SAXPY kernel annotated with (a) OpenACC and (b) OpenMP prag-

mas. Our DawnCC compiler inserts these pragmas, plus all the code necessary for them to
work, automatically. The tool is still restricted to regular loops. It is not able, for instance,
to parallelize an algorithm that traverses a graph represented as a mesh of pointers.

3. Second Contribution: AutoParBench
The second contribution of this work, AutoParBench, is a framework to compare the
output of different automatic parallelization tools. Its goal is to uncover bugs in these
tools. Testimony to its effectiveness are the bugs confirmed as consequence of its usage.
AutoParBench has found 3, 2, 4 and 2 bugs in ICC, DawnCC, AutoPar and Cetus, respec-
tively. Figure 3 shows the main components of AutoParBench. These components are
briefly summarized below.

file
.c

ICC

AutoPar

Cetus

DawnCC

…

Human

log
.txt

atpr
.c

ctus
.c

dawn
.c

hman
.c

ICC-Trans

S2S-Trans

ilog
json

atpr
json

ctus
json

dawn
json

hman
json

… …

Eval
(E) fp

tp

fn

tn

dp(F)

(A)

(B) (C)

(D)

Figure 3. An overview of AutoParBench.

AutoParBench provides developers with a reference collection of 99 programs
(A). These programs contain 1,579 loops, which have been manually annotated with
OpenMP directives. These benchmarks were taken from well-known collections, such
as NAS [Seo et al. 2011] and Rodinia [Che et al. 2009]. AutoParBench provides front-
ends to different annotation systems used on C/C++ programs and on logs produced by
Intel’s ICC (B). The goal of these front ends is to extract the loops and the corresponding
annotations from C source files. AutoParBench contains two translators to convert anno-
tated programs into JSON snapshots. One of these translators read ICC’s logs (C), for
ICC does not produce annotated sources, but rather binary files. The other parser reads C
source files and extracts OpenMP annotations from them, to then convert them into JSON
objects (D).

The most intricate part of AutoParBench are the snapshot evaluators. These tools
(E) semantically compare JSON snapshots. From this comparison, AutoParBench gen-
erates graphic or quantitative reports (F). Said reports classify the loops annotated by
tools as true positives or negatives (annotations deemed correct), or as false positives or
negatives (annotations with high probability to be bugs). In the effort to debug auto-
parallelizers, we have designed a protocol to verify these reports. This protocol reduces
the amount of user intervention necessary to validate warnings, and sorts warnings by
relevance. We emphasize that developers never have to annotate programs to use Au-
toParBench. The only human intervention that we require is the verification of warnings,
once they are issued. This pass is necessary to confirm or refute bugs.

Examples of confirmed bugs. ICC parallelizes the first loop in the program in Figure 4
(a). However, when argc is greater than 2, a race condition occurs in a[len-2], caused
by a primary race in x. This race condition can be exercised by Intel Inspector when the
variable len is assigned a value of 16. Figs. 4(b-d) show a bug that was discovered in
Cetus. Cetus, when given the program in Figure 4 (b), produces the code in Figure 4
(c). Cetus extracts variable j from the loop, and transforms it into a reduction. Said
reduction causes a runtime crash. The version of this program in the reference collection
appears in Figure 4 (d). By comparing JSON snapshots produced for Figure 4 (c) and (d),
AutoParBench warns the developer about the potential bug.

for (i=0;i<len;i++) {
 c[j]+=a[i]*b[i];
 j++;
}

#pragma omp parallel \
 for private(i) \
 reduction(+: c[i+j])
for (i=0; i<len; i ++) {
 c[i+j]+=(a[i]*b[i]);
}
j+=len;

#pragma omp parallel \
 for private(i) linear(j)
for (i=0;i<len;i++) {
 c[j]+=a[i]*b[i];
 j++;
}

(b)

(c)

(d)

void main(int argc, char *argv[]) {
 int i, len = argc;
 int x = argc > 2 ? len - 2 : 0;
 int* a = (int*)malloc(len * sizeof(int));
 for (i = 0; i < len; i++) {
 a[x] = i; x=i;
 }
 for (i = 0; i < len - 1; i++)
 printf("%d ", a[i]);
 printf("x=%d",x);
} (a)

Figure 4. (a) Program that caused a false positive in ICC. (b) Sequential program
that uncovered bug in Cetus. (c) Code produced by Cetus. (d) Code in
reference collection.

In addition to comparing tools for correctness, AutoParBench also allows us to
compare them for performance. To this effect, AutoParBench contains a set of curated
inputs for long-running benchmarks in its reference collection. The original description
of AutoParBench [Mendonça et al. 2020] contains a comparison of six different versions
of parallel programs—five of them produced automatically by different tools.

4. Conclusion: Summary of Constributions

This MSc dissertation has helped to advance the design and implementation of automatic
parallelization tools. Such help comes from AutoParBench, a framework that supports
the testing of automatic parallelization tools, and from DawnCC, which is, itself, one
such a tool. In addition to software, from this work resulted papers and bug reports—
contributions that we summarize as follows:

Papers: The main publication describing DawnCC appeared in the ACM Transactions
on Architecture and Code Optimization (TACO) [Mendonça et al. 2017]. Au-
toParBench is described in a paper published on the International Conference
on Supercomputing (ICS) [Mendonça et al. 2020]. In addition to these two
works, several other papers have been published as a consequence of this re-
search [Mendonca et al. 2016, Ramos et al. 2018a, Ramos et al. 2018b].

Software: DawnCC is accessible at http://cuda.dcc.ufmg.br/dawn/. Au-
toParBench is available at https://github.com/LLNL/AutoParBench.
TaskMiner can be used at http://cuda.dcc.ufmg.br/taskminer/.

http://cuda.dcc.ufmg.br/dawn/
https://github.com/LLNL/AutoParBench
http://cuda.dcc.ufmg.br/taskminer/

Bugs: Several bugs have been reported as a consequence of this work. Some of them have
been confirmed and posteriorly fixed3. Others are still awaiting for confirmation
at the time of SBC’s CTD.

References
Alves, P., Gruber, F., Doerfert, J., Lamprineas, A., Grosser, T., Rastello, F., and Pereira,

F. M. Q. a. (2015). Runtime pointer disambiguation. In OOPSLA, page 589–606, New
York, NY, USA. ACM.

Bae, H., Mustafa, D., Lee, J.-W., Aurangzeb, Lin, H., Dave, C., Eigenmann, R., and
Midkiff, S. P. (2013). The cetus source-to-source compiler infrastructure: Overview
and evaluation. International Journal of Parallel Programming, 41(6):753–767.

Bondhugula, U., Hartono, A., Ramanujam, J., and Sadayappan, P. (2008). A practical
automatic polyhedral parallelizer and locality optimizer. In PLDI, page 101–113, New
York, NY, USA. ACM.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and Skadron, K.
(2009). Rodinia: A benchmark suite for heterogeneous computing. In IISWC, pages
44–54, Washington, DC, USA. IEEE.

Liao, C., Lin, P.-H., Asplund, J., Schordan, M., and Karlin, I. (2017). Dataracebench: A
benchmark suite for systematic evaluation of data race detection tools. In SC, pages
11:1–11:14, New York, NY, USA. ACM.

Liao, C., Quinlan, D. J., Willcock, J. J., and Panas, T. (2010). Semantic-aware automatic
parallelization of modern applications using high-level abstractions. Int. J. Parallel
Programming, 38(5):361–378.

Mendonca, G. S. D., Guimarães, B. C. F., Alves, P. R. O., Pereira, F. M. Q., Pereira,
M. M., and Araujo, G. (2016). Automatic insertion of copy annotation in data-parallel
programs. In SBAC-PAD, pages 34–41, Los Alamitos, CA, USA. IEEE.

Mendonça, G., Guimarães, B., Alves, P., Pereira, M., Araújo, G., and Pereira, F. M. Q. a.
(2017). DawnCC: Automatic annotation for data parallelism and offloading. ACM
Trans. Archit. Code Optim., 14(2):13:1–13:25.

Mendonça, G. S. D., Liao, C., and Pereira, F. M. Q. a. (2020). Autoparbench: A unified
test framework for openmp-based parallelizers. In ICS, New York, NY, USA. ACM.

Ramos, P., Souza, G., Leobas, G., and Pereira, F. M. Q. (2018a). Taskminer: Automatic
identification of tasks. In SBLP, page 11–18, New York, NY, USA. ACM.

Ramos, P., Souza, G., Soares, D., Araújo, G., and Pereira, F. M. Q. a. (2018b). Automatic
annotation of tasks in structured code. In PACT, New York, NY, USA. ACM.

Seo, S., Jo, G., and Lee, J. (2011). Performance characterization of the NAS parallel
benchmarks in opencl. In IISWC, pages 137–148, Piscataway, NJ, USA. IEEE Press.

3For an example of discussion that our bug reports have raised, see this thread in the Intel mailing list:
https://community.intel.com/t5/Intel-C-Compiler/

ICC-19-0-4-243-parallelized-loop-with-confirmed-Race-Condition/m-p/
1173793.

https://community.intel.com/t5/Intel-C-Compiler/ICC-19-0-4-243-parallelized-loop-with-confirmed-Race-Condition/m-p/1173793
https://community.intel.com/t5/Intel-C-Compiler/ICC-19-0-4-243-parallelized-loop-with-confirmed-Race-Condition/m-p/1173793
https://community.intel.com/t5/Intel-C-Compiler/ICC-19-0-4-243-parallelized-loop-with-confirmed-Race-Condition/m-p/1173793

	Introduction
	First Contribution: DawnCC
	Second Contribution: AutoParBench
	Conclusion: Summary of Constributions

