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1. Introduction
It is unquestionable that quantum computing has the power to disrupt science and technol-
ogy, enabling new applications in different domains and extending the range of efficiently
computable problems [Shor 1994, Lubasch et al. 2020]. Quantum computing is already
a reality and different small scale quantum computers have been built by different corpo-
rations (such as the superconducting computers from Google or Rigetti, and the photonic
computer from Xanadu) and some options are even available to the general public (as the
IBM Q Experience). However, programming a quantum computer is drastically different
from programming a classic computer, since the former relies directly on the quantum
properties of matter to perform computations. Indeed, a drawback to quantum computing
is the lack of a generic framework to guide the design of quantum algorithms.

A quantum walk is a model to encode a moving particle on a graph by consid-
ering the superposition of quantum states [Aharonov et al. 1993]. Although originally
conceived as the quantum counterpart of the classic random walk, quantum walks are
universal for quantum computing [Childs 2009], meaning that any quantum algorithm
can be expressed as a quantum walk, and thus described as a moving quantum particle
on a graph. This opens the possibility of using quantum walks as a generic framework to
design quantum algorithms.

Similarly, random walks play a fundamental role in the development of various
algorithms, like PageRank for ranking network nodes and other algorithms for searching,
clustering and sampling network nodes. The success of random walks as a tool for build-
ing algorithms stems from its simplicity and predictability as a random model. Recall that
a random walk is a model for a moving particle on a graph where at each time step the
particle moves to an neighboring node chosen uniformly at random.

Since their inception, the connection between quantum and random walks has
been investigated. Early results on quantum walks identified significant differences with
respect to random walks, in particular that the wavefunction of quantum walks do not
converge to a fixed superposition of states and that the node probability distribution does
not necessarily converge [Portugal 2013]. Nonetheless, these differences were obtained
under the assumption of time-homogeneous random walks and quantum walks with time-
independent unitary operators. When these two assumptions are relaxed, the representa-
tion power of both random and quantum walks increases significantly, giving rise to much
more powerful models.

Indeed, under the assumption that random walks are not time-homogeneous, re-
cent prior work has shown that random walks can be constructed to be statistically equiva-
lent to quantum walks on an infinite line graph [Montero 2017]. However, the potential of



non-homogeneous random walks is far greater and establishing a more general connection
with quantum walks remained an open question.

1.1. Main challenges and goals
The goal of this thesis is to establish a broad and theoretical connection between random
walks and quantum walks in a discrete time model. While recent works have explored
this connection for specific scenarios, the aim here is to establish a more general result.
In particular, the dynamics of the random walk and quantum walk should occur over
the same underlying and arbitrary graph. Moreover, quantum walk evolution is not con-
strained to any specific operator and requires only to be unitary. Last, while prior works
have investigated this equivalence for a single walker, the goal here is to also consider a
scenario where the quantum system is formed by multiple quantum walkers interacting
with one another. Can random walks match such dynamics? The challenge is to devise a
theoretical framework where the equivalence can be rigorously established.

A general connection between the two walks also opens the possibility of simu-
lating quantum walks through the simulation of random walks. Thus, a second goal of
this thesis is to show that random walks can be used to simulate quantum walks. In par-
ticular, that the vertex probability yielded by the quantum system at an arbitrary time is
reconstructed by simulating the random walk up to the same time instant. In this context,
the fundamental challenge involved is an efficient algorithm for the construction of such
random walk.

1.2. Results achieved
This thesis delivered on its goals making three main contributions:

• A theorem establishing that the vertex probability distribution over time of any
unitary quantum walk on a finite graph can be represented by a time-dependent
random walk. The proof is by construction and provides the procedure to build
an statistically equivalent time-dependent random walk for every time step of the
quantum walk. The result is extended to the case of multiple quantum walkers that
can possibly interact with one another. This contribution has been published in a
leading journal in Quantum Computing [Andrade et al. 2020].

• The second main contribution goes on the opposite direction of the first: a theorem
establishing that the probability distribution over time of any random walk on a fi-
nite graph can be represented by a time-dependent quantum walk. Again, the proof
is by construction and provides the procedure to build a unitary time-dependent
quantum walk that is to be measured at the desired time instant. This contribution
is currently under revision and pre-print is available [Andrade et al. 2021].

• A simulation procedure for quantum walks based on its equivalent time-dependent
random walk. This procedure allows for the simulation of quantum walk trajec-
tories a concept that essentially brings the idea of sample paths in random walks
to quantum walks. The idea of quantum walk trajectories (and how to generate
them) is also a contribution of this thesis. This contribution has been published in
the same article as the first contribution [Andrade et al. 2020].

The remainder of this article is organized as follows. A minimal theoretical back-
ground and notation is provided in Section 2. In Section 3, the first and third contributions
are described in detail. Section 4 presents the second contribution.



2. Background
Let G = (V,E) be a symmetric directed graph. A discrete time random walk on G can be
characterized by a time-dependent probability vector π(t) : N → R|V | described by the
matrix equation

π(t+ 1) = P (t)π(t), (1)

where πv(t) denotes the probability that the walker is in vertex v at instant t, and P (t) is
a column-stochastic matrix with entries pvu(t) representing the transition probability for
the walker to move from vertex u to v. Essentially, Equation 1 shows that the probability
of a vertex v at instant t + 1 is a combination of the probabilities of the neighbors of v at
instant t, a property we refer to as the local evolution of probabilities.

A discrete-time coined quantum walk on G describes the evolution of a complex
vector |Ψ(t)〉 ∈ C|E| = Hw, where the space Hw = Hv ⊗ Hc represent the edges of
G. Precisely, each (u, v) ∈ E defines a unit vector |u, c〉 for Hw, analogously to how
each vertex defines an entry in π(t). In this case, |Ψ(t)〉 is called the state vector of the
quantum walk and is computed as

|Ψ(t)〉 =
∑

v∈V,c∈Cv

ψ(v, c, t) |v, c〉 , (2)

which gives a superposition of the edges of E. The evolution of the quantum walk is
performed by two unitary operators S(t) and W (t) as

|Ψ(t)〉 = S(t)W (t) |Ψ(t)〉 , (3)

where S(t) and C(t) are respectively named the shift and coin operator. Intuitively, at
every instant t, a quantum walk assigns a complex number ψ(v, c, t) to each edge of
G, which encodes the probability that the walker is found at that edge as ρ(v, c, t) =
|ψ(v, c, t)|2. The coin operator combines these complex numbers among the edges that are
incident to the same vertex, while the shift operator moves these quantities to neighbors
of a vertex. The probability that the walker is in v at time t is υ(v, t) =

∑
c ρ(v, c, t).

The complete description of quantum and random walks, as well as the definition
of Dirac’s notation are presented in detail in Chapter 2 of the thesis [Andrade 2020].

3. Matching quantum walks with time-dependent random walks
In order to show that a random walk can be statistically equivalent to a quantum walk, it
is necessary to define a time-dependent stochastic matrix P (t) that satisfies the equation

υ(t+ 1) = P (t)υ(t), (4)

where the vector υ(t) represents the vertex probability distribution of the quantum walk
as defined in Section 2. Note that this theoretical framework is sufficient for establishing
the equivalence, since Equation 4 is identical to Equation 1 which describes the evolution
of a random walk. The following theorem establishes how P (t) in Equation 4 can be
constructed. The proof and details can be found in Chapter 3 of the thesis [Andrade 2020].



Theorem 1. For any time instant t, the evolution of the vertex probability of a quantum
walk performed by the action of the unitary operator SW is local and equivalent to the
Markovian matrix P (t) where

pvu(t) =


ρ(v,c,t+1)

υ(u,t)
, if υ(u, t) > 0 and (u, v) ∈ E

1
d(u)

, if υ(u, t) = 0 and (u, v) ∈ E
0, otherwise

(5)

such that π(t+ 1) = P (t)π(t), where c = σ(u, v).

Essentially, Theorem 1 determines the evolution of quantum walk vertex proba-
bility for a generic time instant. It leverages the fact that both quantum and random walks
are Markovian, so that the system at instant t + 1 is completely described by the sys-
tem at instant t. Precisely, the construction given in Theorem 1 is possible because the
quantum walk wavefunction incident to v in instant t + 1 is completely determined by
the wavefunction incident neighbors of v at time t. This local evolution of the wavefunc-
tion is compatible with the evolution of the probability distribution of a random walk, as
discussed in Section 2.

Theorem 1 can be extended to the case of multiple quantum walkers by consid-
ering a graph that encodes their joint movement. A node in this graph is a tuple that
represents the current position of each of the K walkers, such that P (t) is a |V |K-by-
|V |K stochastic matrix. The possible interactions between the walkers are captured by
the edges of this graph, and thus their joint dynamics respect the local evolution of prob-
abilities. The theorem for the multiple walker case, together with its proof and discussion
is found in Chapter 3 of the thesis [Andrade 2020].

Note that the exponential growth of P (t) with the number of walkers indicates that
multiple interacting quantum walkers cannot be efficiently described by random walks,
in contrast with the single walker case. This result is expected due to the hardness of
simulating physical quantum systems with multiple particles, which is one of the main
motivations for building quantum computers.

3.1. Quantum walk trajectories

The simulation of quantum and random walks is fundamentally different: quantum walks
are simulated by a measurement at an specific time instant, such that samples for se-
quential time instants do not necessarily yield a path in the graph. On the other hand,
random walks are usually simulated by generating sample paths, which can be done
very efficiently. These differences are described in more detail in Chapter 2 of the the-
sis [Andrade 2020].

In spite of these differences, a direct consequence of Theorem 1 is a method to
simulate a random walk that has the exact same vertex distribution of a corresponding
quantum walk. The simulation of the random walk generates a path in the graph, that
captures the following property of the quantum system: when the number of independent
paths sampled tends to infinity, the marginal distribution of vertices in the path for time
instant t converges to the vertex distribution of the quantum walk for t. This path sample
is called a quantum walk trajectory since it encodes properties of the quantum walk. Note



(a) Independent measurements. (b) Quantum walk trajectories

Figure 1. Comparison between independent and random walk sampling of a
Hadamard walk on a cycle with 20 vertices for 10 time steps with initial
condition |Ψ(0)〉 = 1√

2
(|10, 0〉+ i |10, 1〉).

that quantum walk trajectories can be sampled efficiently with the corresponding random
walk. More details are provided in Chapter 4 of the thesis.

The comparison between the traditional quantum walk simulation and the quan-
tum walk trajectories method is depicted in Figure 1, where a Hadamard quantum walk
on a 20-vertex cycle is simulated for 10 consecutive time steps. In Figure 1(a), points
with the same marker style and color represent a sequence of samples (measurements).
When consecutive samples of the same style and color differ from more than one unit in
vertex value (y-axis), the vertices are not neighbors of each other. Note that consecutive
samples of the same sequence are not necessarily neighbors in the left figure, while every
sequence in the right figure correspond to a path of the graph.

4. Matching random walks with quantum walks in unitary evolution

Can a quantum walk match the dynamics of a given random walk on a finite graph? Note
that Theorem 1 shows how a random walk can imitate the dynamics of a quantum walk.
What about the opposite? If the quantum walk is measured at every time step, then the
answer is trivial because the quantum walk collapses to a random walk. Thus, the question
is more interesting under the assumption that the quantum system will be measured only
at the desired time instant.

Indeed, this can be accomplished by representing the probability vector of the
random walk in the Hilbert space of a quantum walk, such that υ(v, t) = πv(t), and by
describing shift and coin operators that evolve the quantum walker system following the
evolution determined by the stochastic matrix P (t) of the random walk. The following
theorem provides a procedure showing that this construction is possible for any random
walk on a finite graph. More details and the proof are shown in Chapter 5 of the the-
sis [Andrade 2020].

Theorem 2. Let P (t) be a stochastic matrix that defines the evolution of a random walk
on a graph G, such that, for all t, π(t + 1) = P (t)π(t). For every instant t, the quantum



walk with state

|Ψ(t)〉 =
∑

v∈V,c∈Cv

eiθ(u,σ
−1(u,v),t−1)

√
pvu(t− 1)

√
πu(t− 1) |v, c〉 , (6)

fixed shift operator S(t) = SRW and coin operator W (t) constructed through the Grand-
Schmidt procedure , evolves according to

|Ψ(t+ 1)〉 = SRWW (t) |Ψ(t)〉 , (7)

such that υ(u, t) = πu(t) and υ(u, t+ 1) = πu(t+ 1) for all u ∈ V .

Note that the quantum walk described in Theorem 2 is not measured during its
evolution over time. Nonetheless, once measured at time t, the quantum walk will have
the same vertex distribution as the corresponding random walk at t. Since Theorem 2
assumes an arbitrary random walk, it can be applied to time homogeneous random walks
which exhibit convergence of their probability distribution over time. This result is an
important contribution to the literature because it shows that the lack of convergence in
the probability distribution of quantum walks demonstrated in the early days was due to
the time homogeneity assumption [Aharonov et al. 2001]. Indeed, time dependent quan-
tum walks can be constructed as to have a converging vertex probability distribution, as
implied by Theorem 2.
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