
Concurrency and Interference Analysis of Kernels on GPUs

Pablo Carvalho1, Lucia Maria de A.Drummond1(advisor), Cristiana Bentes2(co-advisor)

1Instituto de Computação
Universidade Federal Fluminense (UFF), Rio de Janeiro, Brasil

2Faculdade de Engenharia
Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brasil

pablocarvalho@id.uff.br,lucia@ic.uff.br,cris@eng.uerj.br

Abstract. Heterogeneous systems employing CPUs and GPUs are becoming in-
creasingly popular in large-scale data centers and cloud environments. In these
platforms, sharing a GPU across different applications is an important feature
to improve hardware utilization and system throughput. However, under scenar-
ios where GPUs are competitively shared, some challenges arise. The decision
on the simultaneous execution of different kernels is made by the hardware and
depends on the kernels resource requirements. Besides that, it is very difficult
to understand all the hardware variables involved in the simultaneous execution
decisions, in order to describe a formal allocation method. In this work, we
studied the impact that kernel resource requirements have in concurrent execu-
tion and used machine learning (ML) techniques to infer the interference caused
by the concurrent execution, and to classify the slowdown that results from this
interference. The ML techniques were analyzed over the GPU benchmark suites,
Rodinia, Parboil and SHOC. Our results showed that, from the features selected
in the analysis, the number of blocks per grid, number of threads per block, and
number of registers are the resource consumption features that most affect the
performance of the concurrent execution.

1. Problem Characterization and Motivation

Graphics Processing Units (GPUs) have proven to be a powerful and efficient platform
to accelerate a substantial class of compute-intensive applications. For this reason, many
large-scale data centers are based on heterogeneous architecture comprising multicore
CPUs and GPUs to meet the requirements of high performance and data throughput.
GPUs are also being used in computational clouds. Exploring GPUs in clouds through
GPU virtualization allows physical devices to be logically decoupled from a computa-
tional node and shared by any application, resulting in monetary cost reduction, energy
savings and more flexibility.

In this scenario, efficiently sharing a GPU across different applications is an in-
dispensable feature. Recent GPUs introduced the concept of concurrent kernel execution
that enables different kernels to run simultaneously on the same GPU, sharing the GPU
hardware resources. Concurrent kernel execution facilitates GPU virtualization and can
improve hardware utilization and system throughput. The blocks of the concurrent ker-
nels are dispatched to run on the streaming multiprocessor (SMs) and the warp scheduler



arranges the order at which each warp will execute, with near-zero context-switch over-
head.

However, one key difficulty for concurrent kernel execution is that, in the GPU,
the low-level sharing decisions are proprietary and strictly closed by GPU vendors. Con-
sequently, GPU virtualization software has no control over the actual resource sharing.
Our first work in this area, published in [Carvalho et al. 2020b], showed the impact that
kernel resource requirements have in concurrent execution for the kernels of the most
important GPU benchmarks. The results showed that resource-hungry kernels on one re-
source might prevent concurrent execution. This study, however, did not explain how the
resource requirements of the kernels have an effect on the performance of the concurrent
execution.

We performed an extensive analysis of the concurrent execution of
the kernels from Rodinia [Che et al. 2009], Parboil [Stratton et al. 2012], and
SHOC [Danalis et al. 2010] benchmarks to assess how their performance is affected
when they run simultaneously [Carvalho et al. 2020a]. We use four machine learning
techniques [Michalski et al. 2013] to induce models capable of inferring if there is
interference in the concurrent execution and also to classify the slowdown resulting from
such interference. Furthermore, we rely on feature selection [Guyon and Elisseeff 2003]
and feature importance [Zien et al. 2009] techniques to understand how the resource
usage of the kernels impacts the possible interference and slowdown. We focus on the
co-execution of two kernels to better understand their interference avoiding the explosive
increase in the number of experiments.

2. Objective and Main Contributions

Our first study [Carvalho et al. 2020b] exposed that the relation between kernel pairs may
not be simple to explain. The kernel co-executing experiments were performed on our
kernel submission framework but using a reduced set of kernels.

Our second study [Carvalho et al. 2020a] provided a more in-depth analysis of
the effects of concurrent execution. We analyzed the co-execution of 60 kernels, creat-
ing 3600 execution scenarios to be analyzed. The questions we wanted to answer were:
Can a pair of kernels run concurrently? How their resource requirements have influenced
their co-execution interference? To answer these questions, we used four machine learn-
ing classifiers (XGBoost[Chen and Guestrin 2016], Multilayer Perceptron, Logistic Re-
gression and K-Nearest Neighbor) to determine if there is interference in the concurrent
execution and to classify the slowdown. The classifiers used as features the resource re-
quirement information requested before the kernel execution: numbers of threads, blocks,
shared memory usage and numbers of registers. We evaluated the machine learning mod-
els considering not only accuracy but also some other important statistics (e.g. precision,
recall and kappa — this last one provides a measure on how far from the expected clas-
sification the results are). Furthermore, we analyzed the feature importance in order to
understand the relation between the features in each problem.

This dissertation has the following contributions:

• An extensive experimental analysis of the concurrent execution of pairs of kernels
from the most important GPU benchmark suites;



• A machine-learning study on the concurrent execution results with four different
techniques to unveil how the kernels interfere with each other in the concurrent
execution;

• A comparison of the machine techniques, k-Nearest Neighbours, Logistic Re-
gression, Multilayer Perceptron and XGBoost in their ability to infer if there is
interference in the concurrent execution, given the resource requirements.

• A feature importance analysis to reveal the features that matter the most for the
performance interference of the concurrent execution.

3. Experimental Results

Due to the lack of space, we show here only the results of the machine learning study.
The experiments were performed on two GPUs: a Tesla P100-SXM2, and a RTX 2080.

3.1. Machine Learning Results for Determining Concurrency

We induced the four classifiers for distinguishing whether or not a pair of kernels can exe-
cute concurrently, using four features from each kernel on the processed dataset. Tables 1
and 2 present the accuracy, precision, recall and kappa results for P100 and RTX-2080,
respectively. We can observe that XGBoost achieves the best results on almost all metrics.
This is expected, as ensemble methods are known to reach better results than learning the
models individually, and XGBoost is the current defacto choice of ensemble methods for
classification tasks. One can also see that kappa index is consistently better for XGBoost
than to the rest of the classifiers in both cases.

The only exception is the value of recall when the kernels run on RTX-2080. In
this particular case, the logistic regression performs surprisingly well, with almost no pos-
itive test examples incorrectly classified as negative. In fact, with P100, some classifiers
have a very disappointing performance: logistic regression performs extremely badly for
the positive examples and only achieves an accuracy of 0.6014 because it correctly classi-
fies the negative examples. Similarly, MLP incorrectly classifies several positive examples
as negative, yielding a very low value of recall. In this way, MLP would say that two ker-
nels cannot run concurrently when they actually can, yielding a very cautious classifier.
KNN is consistent on the precision and recall metrics, but it still worse than XGBoost. On
the other hand, when the kernels run on RTX-2080, all the classifiers achieve quite good
performance. KNN, for example, has precision as high as XGBoost and, as said before,
the recall of Logistic regression is even higher than the one achieved by XGBoost. The
RTX-2080 presented more pairs of kernels with a high probability of executing concur-
rently. Therefore, the classifiers solve the concurrency problem in RTX-2080 easier than
on P100.

Accuracy Precision Recall Kappa

MLP 0.7295 0.7299 0.1366 0.1162
K-NN 0.7295 0.6836 0.5887 0.4202
LR 0.6014 0.2533 0.0035 -0.0029
XGB 0.8164 0.8113 0.7001 0.6068

Table 1. Predictive results for the con-
currency problem on P100.

Accuracy Precision Recall Kappa

MLP 0.7642 0.7832 0.9532 0.1630
K-NN 0.7663 0.8260 0.8759 0.3215
LR 0.7574 0.7599 0.9933 0.0243
XGB 0.8008 0.8238 0.9375 0.3657

Table 2. Predictive results for the con-
currency problem on RTX-2080.



3.2. Machine Learning Results for Determining the Interference (Concurrency
Effect)

Knowing that 1,427 and 2,546 kernel pairs have a high probability (at least 80%) of con-
current execution, on P100 and RTX-2080, respectively, the next experiment consisted in
inducing a classifier for the interference problem, computed from the concurrency effect
(CE). Given two kernels Ki and Kj , the CE is defined as the ratio between the sum of their
standalone sequential execution times (when they are executed one after another without
concurrency) and the time they take to execute concurrently.

CE =
TKi

+ TKj

T(Ki,Kj)

(1)

To that, for each pair (Ki, Kj), if CE < 1, the interference is such that the concur-
rent execution causes a slowdown in the execution of the kernel when compared to their
standalone executions. This case is called here as a negative effect. On the other hand,
if CE > 1, this means that there is no interference, which we can call a positive effect.
Inducing a classifier for CE is a different problem from deciding whether or not a kernel
pair would run concurrently, as the variables that could impact the CE could be others.

The predictive results are disposed in Tables 3 and 4, for P100 and RTX-2080,
respectively. Once again, XGBoost reached the best values for accuracy, precision, recall
and kappa. In comparison to the prior experiment, the CE classifier achieves lower metrics
results since the concurrency effect is a more difficult task to find a pattern. Similar to the
previous experiment the Logistic Regression recall value on RTX-20280 is also as high
as XGBoost, with a slight small difference between them. Still, its kappa index is quite
low, making it not a good classifier to this problem, even though it is good at not mistake
the positive examples as negative ones (it has a low value of false-negative examples.)

Accuracy Precision Recall Kappa

MLP 0.5781 0.5370 0.3858 0.1213
K-NN 0.6279 0.5833 0.5703 0.2448
LR 0.5726 0.5324 0.3149 0.0976
XGB 0.6889 0.6723 0.5876 0.3623

Table 3. Predictive results of the Inter-
ference Problem (Task 2) on P100.

Accuracy Precision Recall Kappa

MLP 0.5746 0.6187 0.6339 0.1355
K-NN 0.6426 0.6645 0.7055 0.2732
LR 0.5491 0.5645 0.7813 0.0495
XGB 0.7133 0.7165 0.7927 0.4140

Table 4. Predictive results of the Inter-
ference Problem (Task 2) on RTX-2080.

3.3. Feature Importance Analysis
Regarding the concurrency, the number of blocks per grid of both kernels and the number
of registers of the second kernel are the most relevant features on both GPUs. For kernels
(K1, K2) to run concurrently from the beginning, K1 blocks must not occupy all the SMs
entirely, so the number of blocks of K1 must be smaller than the maximum number of
blocks that the hardware can allow being active in the SMs, which means that K1 is
leaving space for K2 execution. The number of registers of K2 is important to determine
if there is space in the register file for the K2 variables. For P100, blocks per grid are
around 20% more important than the number of registers. For RTX-2080, this difference
is more pronounced. Blocks per grid have almost double the importance value than the



number of registers. This occurs because RTX-2080 has a smaller number of SMs, so
the kernels blocks will have less space to be allocated, increasing the importance of this
feature.

About the interference problem, the results are somewhat different for the two
GPUs. On P100, the method elicits the blocks per grid and the number of registers as the
most important features, with almost the same importance. On RTX-2080, the method
also elicits the blocks per grid as the most important feature, around 30% more important
than the other features, but the importance of the number of threads per block is increased
when compared to the P100 results. The importance of the blocks per grid on the in-
terference results reinforces the leftover policy of NVIDIA. When the kernels execute
concurrently, the first kernel allocates the GPU resources and the second kernel can run
with the leftover resources. On RTX-2080, nonetheless, the importance of the number of
threads per block increases since RTX-2080 has the same number of registers as P100,
but its maximum number of threads per SM is half of the P100 maximum. This means
that some warps of the second kernel have to have their execution postponed when the
maximum number of threads is reached in the SM.

4. Main Publications

1. Carvalho, P., Clua, E., Paes, A., Bentes, C., Lopes, B., and Drummond, L.
M. (2020a). Using machine learning techniques to analyze the performance
of concurrent kernel execution on gpus. Future Generation Computer Systems,
113(1):528–540. (Qualis A2)

2. Cruz, R. A., Bentes, C., Breder, B., Vasconcellos, E., Clua, E., de Carvalho, P. M.,
and Drummond, L. M. (2018). Maximizing the gpu resource usage by reorder-
ing concurrent kernels submission. Concurrency and Computation: Practice and
Experience (online), 1(1):1–12. (Qualis A2)

3. Carvalho, P., Drummond, L. M., Bentes, C., Clua, E., Cataldo, E., and Marzulo,
L. A.(2020). Kernel concurrency opportunities based on gpu benchmarks charac-
terization.Cluster Computing, 23(1):177–188. (Qualis B1)

4. Carvalho, P., Drummond, L., Bentes, C., Clua, E., Cataldo, E., and Marzulo, L.
(2017). Analysis and characterization of gpu benchmarks for kernel concurrency
efficiency. High Performance Computing. CARLA 2017. Communications in
Computer and Information Science, 796. (Qualis B4)

5. Conclusions

Modern GPU architectures support concurrent sharing of the GPU resources among mul-
tiple kernels, which can unleash the power of the GPU for dynamic and highly virtualized
environments such as large-scale heterogeneous clusters and cloud environments. This
work presented an extensive analysis of the concurrent execution of the kernels from Ro-
dinia, Parboil, and SHOC benchmarks on two different GPU architectures to assess how
their performance is affected by the concurrent execution. We used machine learning
techniques to understand and predict the execution interference of the kernels and which
types of kernel can execute concurrently.

Our focus was to identify tricky relations among the resource requirements of the
kernels and their concurrent execution. We used four machine learning techniques to



capture the hidden patterns that make a kernel interfere in the execution of another one.
Our results showed that XGBoost, a state-of-the-art ensemble method, achieved the best
quantitative results with statistical significance validated. The feature importance method
showed the resource requirements that are the most relevant in the concurrent execution
performance. By analyzing the variables chosen as the most important to induce the XG-
Boost model, we conclude that the number of blocks per grid is the most relevant feature
to define if the kernels will execute concurrently and to influence the performance interfer-
ence. The second most important feature depends on the GPU architecture. For the GPU
with more resources, P100, the number of registers is key for the kernels interference,
while for the GPU with less SM resources but the same amount of registers, RTX-2080,
the number of threads per block is more relevant in the kernels interference. The results
obtained in this work can be further used in the design of a scheduling strategy for GPUs,
where the resource requirements of the kernels could help the scheduler in making wise
decisions for concurrent execution.

References
Carvalho, P., Clua, E., Paes, A., Bentes, C., Lopes, B., and Drummond, L. M. (2020a).

Using machine learning techniques to analyze the performance of concurrent kernel
execution on gpus. Future Generation Computer Systems, 113(1):528–540.

Carvalho, P., Drummond, L. M., Bentes, C., Clua, E., Cataldo, E., and Marzulo, L. A.
(2020b). Kernel concurrency opportunities based on gpu benchmarks characterization.
Cluster Computing, 23(1):177–188.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., , and Skadron, K.
(2009). Rodinia: A benchmark suite for heterogeneous computing. In Proceedings
of the IEEE International Symposium on Workload Characterization (IISWC), page
44:54.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, pages 785–794. ACM.

Danalis, A., Marin, G., McCurdy, C., Meredith, J. S., Roth, P. C., Spafford, K., Tipparaju,
V., and Vetter, J. S. (2010). The scalable heterogeneous computing (SHOC) benchmark
suite. Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, page 63:74.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (2013). Machine learning: An
artificial intelligence approach. Springer Science & Business Media.

Stratton, J. A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N., Liu,
G. D., and mei W. Hwu, W. (2012). Parboil: A revised benchmark suite for scientific
and commercial throughput computing.

Zien, A., Krämer, N., Sonnenburg, S., and Rätsch, G. (2009). The feature importance
ranking measure. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 694–709. Springer.


