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Abstract. Parkinson’s Disease (PD) is a neurodegenerative disorder character-
ized by symptoms like resting and action tremors, which cause severe impair-
ments to the patient’s life. Recently, many assistance techniques have been pro-
posed to minimize the disease’s impact on patients’ life. However, most of these
methods depend on data from PD’s surface electromyography (sEMG), which
is scarce. In this work, we propose the first methods, based on Neural Net-
works, for predicting, generating, and transferring the style of patient-specific
PD sEMG tremor signals. This dissertation contributes to the area by i) compar-
ing different NN models for predicting PD sEMG signals to anticipate resting
tremor patterns ii) proposing the first approach based on Deep Convolutional
Generative Adversarial Networks (DCGANs) to generate PD’s sEMG tremor
signals; iii) applying Style Transfer (ST) for augmenting PD’s sEMG signals
with publicly available datasets of non-PD subjects; iv) proposing metrics for
evaluating the PD’s signal characterization in sEMG signals. These new data
created by our methods could validate treatment approaches on different move-
ment scenarios, contributing to the development of new techniques for tremor
suppression in patients.

1. Introduction
As one of the most common neurodegenerative diseases affecting approximately 10 mil-
lion people around the world [Organization. 2006], Parkinson’s Disease (PD) has been
studied and investigated from different perspectives to minimize the disease’s symptoms
and impairments to patients, with many studies around rest and action tremors. Sur-
face electromyography (sEMG) stands out as one of the most common ways to mea-
sure muscle response to voluntary or involuntary stimulation, being widely used as a pri-
mary input feedback signal for artificial stimulation devices [Philipson 2009, Bó 2010].
sEMG is widely used clinically for the diagnosis of neurological and muscular pathology
[Ahad 2019] and has recently been used for several human-machine interface applica-
tions. Usually, these applications require datasets to train machine learning models.

However, acquiring such datasets from patients is a complicated and sometimes
painful task, and a wide range of movements is usually not possible due to the pa-
tient’s movement limitation and impairment. Therefore, collecting, processing, and using
recorded sEMG signals for analysis is quite a challenging approach due to data scarcity
and lack of dataset variation.

In this scenario, biological signal simulations could be employed. However, gen-
erating realistic models requires a profound understanding of the simulated signal patterns



and morphology [Petersen and Rostalski 2019]. Also, since PD’s tremor patterns differ in
intensity and manner for each patient, it is quite challenging to create a generic mathe-
matical model [Guerrero and Macı́as-Dı́az 2019] that can effectively produce an artificial
signal similar to real ones. Furthermore, such an approach cannot adapt to different move-
ment protocols or adjust to an individual’s specific sEMG tremor pattern, whose param-
eters are not known a priori, and present typical irregularities on frequencies and shape
through time. Such adaptability is desired when augmenting a specific patient dataset
instead of generating generic tremor patterns.

To overcome these restrictions, data augmentation is a promising alternative ap-
proach for extending existing datasets, allowing further research and analysis. In this
work, we employ NN models to predict, generate, and transfer the style of patient-specific
PD sEMG tremor signals. Our proposed approach aims at evaluating and comparing dif-
ferent neural network architectures to predict PD’s sEMG signals. Our primary target
is to successfully predict an entire window of the tremor pattern (approximately 0.2s).
This method could enable real-time assisting devices, like Functional Electrical Stimula-
tion (FES) devices, to operate with much more precise control over the stimulus and the
patient’s tremor.

Additionally, we propose two new approaches to generate surface EMG signals
based on existing datasets. Neural Networks are trained to learn the specific sEMG signal
tremor patterns in our first proposed method, hence reproducing such tremors for each
patient. The resulting model can also be employed as a feature extractor model, allow-
ing us to combine it with the second method’s style transfer techniques. The resulting
combination will enable us to generate a transformation model that simulates the tremor
pattern not only on the original movement protocol but also on other movements based on
healthy individuals’ datasets. Such extension allows us to use healthy patients datasets to
investigate how PD can affect patients’ movements from a much broader perspective than
those we can collect with real patients during measurement experiments.

2. Contributions
This dissertation proposes a Neural Network-based approach for predicting PD’s
sEMG future tremor peaks. To this end, we design and evaluate several architectures
to predict both raw and envelope sEMG signals with different prediction windows. The
resulting approach was published in the IEEE International Conference on Systems,
Man and Cybernetics 2018 [Zanini et al. 2019].

We also designed the first method to generate sEMG PD signals. By employing
Deep Convolutional Generative Adversarial Networks (DCGANs) with domain-specific
discriminator CNN pipelines, we successfully simulate sEMG tremor behavior, not only
mimicking generic tremor patterns but patient and protocol-specific characteristics. With
this approach, we could generate new sEMG signals that could tackle typical problems
in generative approaches such as mode collapse. We also addressed how different input
features such as FFT and Wavelet impact the generated signal quality.

Finally, we propose a Style Transfer approach for augmenting Parkinson’s
sEMG signals by combining two distinct sEMG databases. For this purpose, we use
our trained discriminator as a feature extractor of the Parkinson’s signal components. This
discriminator is used in a Fast neural style transfer architecture to combine our learned



PD’s signal components to data from the NinaPro (non-PD signals) dataset, creating a
new dataset of PD’s data. To assess the quality of the final generated signal, we propose
using DTW distance, FFT MSE, and sEMG Envelope Cross-correlation as metrics for
sEMG signal generation. The results from these methods were published in the Sensors
Journal with the work ”Parkinson’s Disease EMG Data Augmentation and Simulation
with DCGANs and Style Transfer” [Zanini and Colombini 2020].

3. sEMG Signal Prediction
Predicting Parkinson’s Disease sEMG signals based on patient’s readings as input is a typ-
ical time-series sequence prediction problem. Since PD’s tremor typical frequency varies
between 4-6 Hz, each tremor stimulus happens on a 0.2-second window. Considering a
sampling rate of 2 kHz, we need to cover at least 400 points in the future to predict when
the next tremor stimulus is happening.

To do that, we generate 400 points in the future based on the last 4,000 points,
using two approaches: first, we used the raw sEMG data as input and evaluated different
models based on MLP, LSTM, and Autoencoders as a prediction model, trying to predict
the next 400 points. This approach can give us a good estimation of the shape and behavior
of the sEMG signal but does not offer a good estimation of the complete amplitude of the
tremor. To better predict tremor peaks and amplitudes, we employed a second approach,
using a representation of sEMG envelopes as input. We have also evaluated MLP, LSTM,
and Autoencoders prediction models to predict the shape and amplitude of the next tremor
sEMG envelope. As a result, for the same sEMG signal, it is possible to predict its shape
and specific sEMG raw signal frequencies and its envelope representation, giving us a
complete prediction of PD’s tremor signals (0.2s before they occur).

Results. Experimental results showed that MLP and LSTM-based networks could suc-
cessfully predict sEMG tremor behavior, predicting sEMG envelopes and raw signals.
By using the autoencoder approach, we successfully trained encoding models to compact
sEMG information into a lower-dimensional space. We also compared different MLP and
LSTM topologies, evaluating the hyperparameters’ influence on the models and how the
loss function affects the prediction quality, proposing a new loss metric to evaluate and
train sEMG prediction models.

4. sEMG Signal Generation
This work proposed two methods for sEMG data augmentation. On the first one, based on
DCGANs, we train a generator that is capable of simulating each patient’s sEMG tremor
pattern and its correlated discriminator. In the second, based on neural style transfer and
the trained discriminator from the previous method, we apply the style from a PD patient
on a set of healthy patient sEMG signals, simulating the expected tremor behavior on a
different set of movements. We can also use the same inputs to train a Fast Neural Style
Transfer transformer network to use it as a fast transformation method. Figure 1 presents
a simplified diagram of the proposed methods.

4.1. sEMG Signal Generation with DCGANs

Despite their current success and results in image generation, DCGANs have been less
explored on time series and biological applications. In this work, we shift their use to a



Figure 1. Proposed flow for the experimental setup for sEMG signal generation.

multi-variable 1D context with intricate patterns varying through time. Typically, while
creating GANs, the generator is of primary interest—the discriminator is an adaptive loss
function that gets discarded once the generator was trained. However, as we present in
this work, the trained discriminator can also be used as a feature extractor that can be
applied in combination with other techniques, such as style transfer.

Generator Model. Our best generator model consists of a deep convolution network
– adapted for 1D convolutions – that takes 400 point samples (0.2 s) from the original
sample and tries to generate a new dataset with 2,000 points (1 s). It includes a dense
layer and moving average at the end of the generator pipeline to smooth the generated
signal compared to the filtered sEMG input signal. We have evaluated several different
parameters (such as the number of filters, layers, activation functions, and other settings),
reaching a fine-tuned architecture.

Discriminator Model. Our best discriminator model consists of a deep convolution net-
work that takes a batch of 100 randomly distributed samples with 2,000 sequential points
and tries to distinguish if they come from the training dataset or the generator. We have
combined parallel deep convolutional pipelines for such a task where each one generates
extended features based on the input vectors. The pipeline combines four convolutional
stacks with a final dense layer for classification between real and fake samples. They are i)
Convolutional Filters on Raw Signal; ii) Convolutional Filters on FFT; iii) Convolutional
Filters on an sEMG Envelope Signal, and iv) Convolutional Filters on Wavelet Expansion.

4.2. sEMG Generation with Style Transfer

Style Transfer (ST) was introduced in 2015 on the computer vision domain as a tech-
nique that allows us to recompose the content of an image in the style of another
[Gatys et al. 2015]. In this work, we employ two style transfer approaches. In the first,
we modify the algorithm introduced in [Gatys et al. 2015] to work for 1D time-series
data, adjusting the proposed content loss and style loss functions to our domain. We also
replace the original VGG16 used in [Gatys et al. 2015] with the trained discriminator



network used for the DCGAN architecture. We took the four main discriminator convolu-
tional stacks (raw signal, FFT, FFT over envelopes, and wavelet expansion) as the feature
layers for the style loss, calculating the gram matrix for the convolutional filters for the
style signal and the generated signal. For the second approach, we used the concept of fast
neural style transfer [Johnson et al. 2016] to train a transformer network. This network
receives an input sEMG signal from a healthy individual—performing some functional
actions (like wrist flexion/extension, grasping, pointing index fingers, and others)—and
applies a transformation based on a PD patient sEMG signal to simulate how the signal
would look like if performed by a PD patient. The transformer network is trained based
on a set of content examples (healthy individuals database coming from NinaPro) and the
style (sEMG signals from our private PD patient dataset). For calculating the losses be-
tween content, style, and transformed signals, we use the pre-trained discriminator from
the DCGAN architecture as a feature extractor—thus allowing the transformer network
to learn the individual patterns of each patient, according to the trained discriminator and
generator. We compare this approach with the ST-based model.

4.3. Proposed Metrics
We evaluate the quality of the signal generated by proposing three metrics to our domain:
Fast Fourier Transform (FFT) Mean Squared Error (MSE). To measure the similar-
ity between two-time series signals, one can use the mean square error (MSE) between
signals FFT magnitudes. The FFT MSE was used to measure the similarity between gen-
erated data and real data and evaluate the similarity between the generated signal and the
style and component signals on the style transfer step. Dynamic Time Warping (DTW).
In time series analysis, DTW is one of the algorithms for measuring similarity between
two temporal sequences by comparing both sequences’ local cost functions. Delaney et al.
(2019) [Delaney et al. 2019] showed that DTW could successfully evaluate the generated
data quality since it is more robust against training instability and sensitivity to the rela-
tive amplitude between the real and synthetic data. sEMG Envelope Cross-Correlation.
Cross-correlation is a measure of similarity of two series as a function of the displacement
of one relative to the other. It has been commonly used for pattern recognition applica-
tions, mainly applied to neurophysiology. The cross-correlation function is similar to
applying the convolution of two functions [Semmlow and Griffel 2014]. Since the shape
and values of tremor peaks on sEMG might vary significantly from reference and gener-
ated signals, we have identified that the simple cross-correlation on raw signals would not
capture the similarity between them. Therefore, we have calculated the normalized cross-
correlation between the sEMG envelopes (with a 100-point moving average on absolute
values) to check if generated signals correctly captured tremor peaks.

4.4. Results
We arrived at significant findings related to 1D complex bio-signals such as EMG tremor
signals from the Signal Generation experiments. First, we emphasize that, although em-
ploying a DL-based approach, it is essential to add different convolutional pipelines that
focus on specific features from the signal while replicating complex output shapes. In our
case, adding both FFT analysis and wavelet decomposition to the discriminator model was
essential for generating better results. Also, we found that 1D convolutions significantly
outperformed 2D representations of the time-series signals. We identified that increasing
the number of points and introducing the real signal sampling as input led to better results.



We also verified the importance of metrics that can effectively evaluate the generator’s
performance vs. the reference signals. FFT and DWT were the best evaluation metrics
for our domain. It was also relevant to find that we could employ our discriminator as a
meaningful feature extractor for the Style transfer technique. We also found that the loss-
optimization approach from traditional style transfer led to more robust solutions. Finally,
finding appropriate weights for the content and style signals is a challenging task. In our
case, their impact might be further evaluated if real signals from PD patients performing
the same types of movement from healthy individuals are available.

5. Main Advances in the State of the Art
In PD’s sEMG signal prediction and generation, we have created the first methods for such
tasks. We also employ the first Style Transfer-based approach for combining a signal style
typical of a neurodegeneraitve disease to a healthy patient signal. It is important to remark
that, although we validate our findings in the context of PD, the proposed models could
be employed in other sEMG-based scenarios. We also hypothesize that EEG and ECG
signals could be used instead of sEMG. The code is available in our public repository
www.github.com\larocs
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