
Shared Memory Verification for Multicore Chip Designs
Marleson Graf1, Luiz C. V. dos Santos1 (advisor)

1Graduate Program in Computer Science (PPGCC)
Federal University of Santa Catarina (UFSC)

Florianópolis – SC – Brazil

marleson.graf@posgrad.ufsc.br, luiz.santos@ufsc.br

Abstract. A multicore chip usually provides a shared memory abstraction im-
plemented by a cache coherence protocol. On-chip coherence can scale grace-
fully as the number of cores grows, and it plays a major role for general purpose
applications. Besides, multicore architectures are likely to relax constraints on
store atomicity and on the ordering between loads and stores. As a result, the
validation of shared memory faces two main challenges: the higher number of
valid execution behaviors and the larger coherence protocol’s state space. This
dissertation faces those challenges and targets an important design automation
phase: the (pre-silicon) functional verification of the shared memory subsystem
of a multicore chip, whose behavior is specified by a memory consistency model
(MCM). The main scientific contribution is a novel approach to the building of
MCM checkers, along with technical contributions on random test generation
and directed test generation. The contributions were reported by two papers in
a premier IEEE/ACM conference and two articles in the most prestigious IEEE
journal on Computer Aided Design of Integrated Circuits and Systems.

1. Motivation, relevance and challenges
A multicore chip usually relies on a coherent shared-memory abstraction implemented
by a cache coherence protocol. It has been shown that (with proper design deci-
sions) on-chip hardware coherence can scale gracefully as the number of cores grows
[Martin et al. 2012]. Since scaling estimates show that the number of active cores is lim-
ited by thermal power, cache coherence can be expected to keep playing a major role
for multicore chips targeting general purpose applications. Besides, multicore architec-
tures are likely to relax sequential consistency constraints on store atomicity and on the
ordering between loads and stores [ARM 2018, RISC-V 2019]. Such constraints were
originally imposed by sequential consistency for keeping a simple abstraction for par-
allel programming, but they are not mandatory anymore [Hennessy and Patterson 2017],
because nowadays most programs are synchronized. Such trends impose two main chal-
lenges to the validation of the shared memory subsystem in a multicore chip: (1) the
higher number of valid behaviors (arising from the relaxation of sequential consistency)
and (2) the larger coherence protocol’s state space (induced by growing core counts).

In such a context, the dissertation targets an important phase of the design automa-
tion of a multicore chip: the (pre-silicon) functional verification of the coherent shared
memory subsystem, whose behavior is specified by a memory consistency model (MCM).
It involves the generation of parallel programs (tests), the simulation of their execution
over a design representation of the actual chip, and the verification of the observed be-
haviors according to the MCM.



On the one hand, litmus test generation is an effective approach to exposing shared
memory errors without the need for specialized checkers, but it has limited coverage when
used for functional verification. On the other hand, random test generation (RTG) and di-
rected test generation (DTG) are alternative approaches to functional verification leading
to higher coverage, but they require an independent checker to validate the observed mem-
ory behaviors at runtime. This tool is called an MCM checker. The checking is based on
the analysis of memory traces, which are obtained by monitors in each core domain.

However, when the observability is limited to a single monitor per core (like it
happens in conventional approaches for prototype validation), such analysis results in
an intractable problem. That is why runtime MCM checkers should exploit the higher
observability of the design representation and observe multiple monitors per core domain,
thereby allowing scalability without jeopardizing verification guarantees.

Moreover, conventional checkers assume that stores are atomic at the architecture
level, albeit they are inherently non-atomic operations when observed at the microar-
chitecture level, which makes it harder to tell valid from invalid behaviors. Although
some architectures have been simplified so that the programmer always sees atomic store
behaviors (like ARMv8 and RISC-V), aggressive implementations of such architectures
tend to exhibit non-atomic behaviors. As a result, a checker that exploits higher observ-
ability (to provide higher verification guarantees) may end up exposing non-atomic store
behaviors in face of aggressive implementations, which leads to false positives (thereby
compromising verification guarantees).

Thus, a new checker should be able to exploit higher observability without raising
false positives due to non-atomic behaviors.

2. Contributions

The main scientific contribution of the dissertation is a novel approach for building
MCM checkers. It properly handles speculative effects and non-atomic store behavior
under extended observability [Graf et al. 2019].

Since test generators were required to properly evaluate the new checker, the dis-
sertation also involved innovative technical contributions on algorithms for random test
generation [Andrade et al. 2018] and directed test generation [Andrade et al. 2020a,
Andrade et al. 2020b].

All such techniques were integrated within a verification framework, which was
developed under a collective research and implementation effort involving the author and
other fellow students.

2.1. Originality and impact

The proposed approach allows the customization of efficient runtime checkers according
to architecture and microarchitecture targets. To ensure scalability without compromising
verification guarantees, multiple monitors per core domain are defined. As opposed to
conventional checkers, which are unable to properly handle behavior arising from relaxed
store atomicity, the proposed approach allows the building of checkers compliant with
either relaxed or strict atomicity.



The keys to the originality of the main contribution are (1) an abstract specifica-
tion (where shared memory behavior is captured by axioms in terms of abstract load/store
events), (2) an observability template (where physical events are used as proxies for the
abstract events), and (3) a novel event-driven, scalable algorithm (where the abstract
axioms are checked over the observability template).

The potential impact of the approach comes from two pragmatic reasons: (1)
the abstract specification is not tied to a particular implementation, and it combines
architecture-independent (reusable) axioms and architecture depend (customizable) ax-
ioms; (2) the observability template is largely independent of microarchitecture. This
allows the practical use of the approach for a broad range of architectures and a large
variety of microarchitectures.

2.2. Publications
A significant part of the text of the dissertation reflects other documents written in co-
authorship, and were published in the proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD) and on the journal IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), as follows:

• ICCAD 2019 paper on MCM checking [Graf et al. 2019];
• ICCAD 2018 paper on DTG [Andrade et al. 2018];
• TCAD 2020 article on RTG [Andrade et al. 2020a];
• TCAD 2020 article on DTG [Andrade et al. 2020b].

It should be noted that in the research area of Computer Aided Design of In-
tegrated Circuits and Systems (also known as Design Automation), TCAD is the most
prestigious journal and ICCAD is the premier and most selective conference devoted to
technical innovations in design automation (along with the Design Automation Confer-
ence). Besides, a journal article generalizing the technique proposed in [Graf et al. 2019]
is in final elaboration for submission to TCAD in the second quarter of 2021.

3. The verification framework
The framework relies on coverage-directed random test generation and MCM checking,
and it is split into different cooperating engines, as depicted in Figure 1. The main contri-
bution of the author lies in the MCM checker, but he also contributed to the algorithms of
the Directing Engine and the RTG Engine, and he implemented the Coverage Analyzer.

monitors

(coverage witnesses)

RTG

Engine

Full-system 

Simulator

objective function
(coverage estimate)

parameters (n, s, k)

monitors 
(memory events)

MCM Checker

diagnosis

test

DTG

Directing

Engine

Coverage 

Analyzer

Figure 1. An overview of the framework under construction.

The framework’s generation engines were designed to be reusable across deriva-
tive designs, different protocol variants, and distinct coverage metrics. The RTG engine

https://ieee-ceda.org/publication/ieee-transactions-computer-aided-design-integrated-circuits-systems-tcad
https://dl.acm.org/conference/iccad


relies on three parameters to constrain the building of a test program: the number of mem-
ory operations (n), the number of shared memory locations (s), and the number of distinct
cache sets to which the locations can be mapped (k).

While the simulator executes a test program, monitors observe memory events at
relevant points of each core domain. A checker analyzes the monitored events at runtime
according to the axioms of the target MCM. Besides, other monitors observe events that
serve as coverage witnesses from which a coverage analyzer computes the cumulative
coverage of all tests executed so far. The directing engine takes that coverage value into
account before selecting the next setting of parameters for RTG.

4. Methodology and main experimental results
We compared the checkers built under the proposed approach with a conventional baseline
checker, which is based on multiple relaxed scoreboards (the chosen baseline is the most
recently published runtime checker whose algorithm is available).

The new checkers and the baseline checker were evaluated within the same ver-
ification framework (described above) in two distinct designs: (1) a conservative design
with strict atomic store behavior; (2) an aggressive design with relaxed non-atomic store
behavior. They were evaluated when running the same test suites, each built with many
programs of fixed size.

For the experimental evaluation, we employed design representations with 8, 16,
and 32 cores for a 2-level MOESI cache coherence protocol. The target architecture
was ARMv8. A microarchitecture supporting out-of-order execution was adopted for
all cores. For test generation, we adopted a DTG technique [Andrade et al. 2018], and
employed different test sizes (1ki, 2ki, and 4ki memory operations). For each test size,
the generator was executed 12 times exploiting distinct random seeds, leading to 12 test
suites containing different programs.

To quantify false positives, we employed correct designs. When verifying correct
designs with non-atomic store behavior, the baseline checker exhibited non-negligible
fractions of false positives, as shown in Figure 2. For a given core count, this fraction
increases significantly with test size, which is rather inconvenient, because large tests are
usually required to expose the most subtle errors. For programs with 4Ki instructions,
the conventional checker raised false positives for 1/3 of the test suites when targeting
correct, aggressive 32-core designs On the other hand, the new checker did not raise any
false positive at all in every scenario.

Figure 2. Fraction of false positives raised by the baseline checker for correct,
aggressive designs.



To evaluate the overhead of the proposed approach, faulty designs were employed,
and the times required to expose an error were compared. To build faulty designs, nine
different errors were inserted to challenge the checkers. As a result, nine distinct designs
were obtained (D1 to D9), each with a single different error.

The checker built under the proposed approach was able to find all the studied
design errors, while the baseline checker was unable to find one of them. The new checker
displayed negligible effort overhead when compared to the conventional one, and often
led to effort reduction, as depicted in Figure 3. The maximum overhead was 2.5%, while
the maximum improvement in effort was 16%.

The results indicate that the versatility of the approach and the improvement of the
verification quality require negligible additional effort, being adequate to verify designs
with different degrees of relaxation of store atomicity.

(a) 8-core designs.

(b) 16-core designs.

(c) 32-core designs.

Figure 3. Effort overhead for faulty conservative designs.



5. Conclusions
The dissertation proposed a novel approach to build checkers that is able to handle aggres-
sive designs with speculative effects and non-atomic store behavior. The experimental
evidence indicates that a checker produced with the novel approach is effective, it often
reduces the effort to detect an error, and it is suitable to checking designs with different
degrees of store atomicity relaxation.

The dissertation not only proposed a novel approach as its main scientific
contribution [Graf et al. 2019], but it also provided innovative technical contributions
to test generation leading to high coverage with small effort [Andrade et al. 2018,
Andrade et al. 2020a, Andrade et al. 2020b]. Finally, the required implementation effort
contributed to the building of a verification framework that is effective to discover errors
and can support different architectures and distinct microarchitecture variants.

References
Andrade, G. A. G., Graf, M., and dos Santos, L. C. V. (2020a). Chaining and Biasing:

Test Generation Techniques for Shared-Memory Verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(3):728–741.

Andrade, G. A. G., Graf, M., Pfeifer, N., and dos Santos, L. C. V. (2018). Steep Coverage-
ascent Directed Test Generation for Shared-memory Verification of Multicore Chips.
In 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

Andrade, G. A. G., Graf, M., Pfeifer, N., and dos Santos, L. C. V. (2020b). A Directed Test
Generator for Shared-Memory Verification of Multicore Chip Designs. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 39(12):5295–
5303.

ARM (2018). ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture
profile.

Graf, M., Henschel, O. P., Alevato, R. P., and dos Santos, L. C. V. (2019). Spec&Check:
An Approach to the Building of Shared-Memory Runtime Checkers for Multicore Chip
Design Verification. In International Conference on Computer-Aided Design, pages 1–
7.

Hennessy, J. L. and Patterson, D. A. (2017). Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 6th edition.

Martin, M. M., Hill, M. D., and Sorin, D. J. (2012). Why on-chip cache coherence is here
to stay. Communications of the ACM, 55(7):78–89.

RISC-V (2019). The RISC-V Instruction Set Manual Volume I: Unprivileged ISA. Water-
man, Andrew and Asanovi, Krste.


	Motivation, relevance and challenges
	Contributions
	Originality and impact
	Publications

	The verification framework
	Methodology and main experimental results
	Conclusions

