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Abstract. Monotone Boolean circuits form one of the largest natural circuit
classes for which we are able to prove exponential size lower bounds. Such
lower bounds play a pivotal role in complexity theory, being a proxy for lower
bounds on communication complexity, proof complexity and optimisation. For
over 20 years, the best known lower bound on the size of monotone circuits com-
puting an explicit n-bit monotone function was exp(n1/3−o(1)). In this work, we
present the first lower bound on monotone circuit size of order exp(n1/2−o(1)).
The proof employs the approximation method of Razborov and recent robust
sunflower bounds. We also give the first tight bound of nΘ(k) on the monotone
complexity of the clique problem when k is large.

1. Introduction

1.1. Complexity theory

One of the most fundamental contributions of theoretical computer science is the notion
of an algorithm. Many of the most innovative creations of our age came about by the
discovery of an efficient algorithm for an interesting computational problem. Yet, even
though algorithms have been heavily studied for decades, their limitations are not well
understood.

The limitations of algorithms under various computational models are studied in
Computational Complexity Theory [Arora and Barak 2009]. Progress in this area is in-
extricably connected to many real-world applications, such as cryptography, where the
security of transactions rely on the hardness of computational problems. Complexity the-
ory is also strongly connected to many fields of mathematics, a connection we explored
in this thesis.

1.2. Circuit complexity

One of the most ubiquitous computational models studied in complexity theory is the
Boolean circuit. In a Boolean circuit, each computation step corresponds to a logical
Boolean operation (AND,OR and NOT). We call such step a gate, and the number of
gates in a circuit is called the size of the circuit. The final gate of the circuit contains the
result of the computation, which is interpreted as the computation of a Boolean function
f : {0, 1}n → {0, 1}, which maps n-bit Boolean strings to either 0 or 1.

In Circuit Complexity Theory (see [Jukna 2012]), we are interested in the
minimum number of gates necessary to compute a given Boolean function. Since
any algorithm can be implemented in a Boolean circuit with little loss of efficiency



(see [Arora and Barak 2009, Chapter 6]), lower bounds for the size of circuits solving
a given problem imply the nonexistence of efficient algorithms for that problem.

The study of circuit complexity has many applications. Because of the connec-
tion between the nonexistence of efficient algorithms and circuit lower bounds, the study
of circuits give an approach to the well-known problem of separating P and NP, which
is arguably one of the most important problems in theoretical computer science. The
complexity of circuits has also been studied in the context of cryptography, distributed
computing, learning theory and quantum computation (See [Kushilevitz et al. 1996,
Karchmer and Wigderson 1988, Oliveira and Santhanam 2017, Arunachalam et al. 2020]
for a representative list).

Proving lower bounds for the size of circuits is thus the main goal of circuit com-
plexity theory. However, this has also proved to be a very hard problem. So far, the
best existing lower bound on the size of general Boolean circuits computing an explicit
Boolean function f on n bits is 5n [Jukna 2012, Section 1.5.2]. For this reason, much of
the research in circuit complexity focuses in restricted classes of circuits, where we have
been more succesful in proving lower bounds.

1.3. Monotone circuits

A widely studied circuit class is that of monotone circuits, which forbid negations
in the computation (i.e., NOT gates are not allowed). Monotone circuits are one of
the largest natural circuit classes for which we have been able to prove strong lower
bounds. Besides being a natural computational model, monotone circuits play a piv-
otal role in computational complexity, being a proxy for lower bounds in communication
complexity, proof complexity and optimisation [Raz and Wigderson 1992, Krajı́ček 1997,
Göös et al. 2018].

Monotone circuits compute monotone Boolean functions. A Boolean function
f : {0, 1}n → {0, 1} is said to be monotone if, for all x, y ∈ {0, 1}n such that x 6 y, we
have f(x) 6 f(y).1 One of the best known monotone Boolean functions is Clique(n, k) :

{0, 1}(
n
2) → {0, 1}, which outputs 1 if and only if a given graph G (encoded by its

adjacency matrix) contains a clique of size k. This function is known to be in NP, which
means that any superpolynomial lower bound on the size of general circuits computing it
implies that P 6= NP.

1.4. Lower bounds for monotone circuits

The first superpolynomial lower bound2 on the size of monotone circuits computing an
n-bit Boolean function was given by [Razborov 1985]. He showed that any monotone
circuit computing Clique(n, k) must have size nΩ(k) when k 6 log n. To achieve this, he
developed a technique now called approximation method, making use of the sunflower
lemma of Erdős and Rado [Erdős and Rado 1960].

Soon after, [Alon and Boppana 1987] extended Razborov’s result by proving an
nΩ(
√
k) lower bound for Clique(n, k) for all k ≤ n2/3−o(1). Taking k = n2/3−o(1), this

lower bound is 2Ω(n1/3−o(1)). Another paper [Andreev 1987] from the same time period

1We write x 6 y whenever xi 6 yi for all i ∈ [n].
2I.e., a lower bound of the form nω , where ω = ω(n)→∞ as n→∞.



proved an 2Ω(n1/3/ logn) lower bound for an explicit n-variate monotone function. Using a
different technique, [Harnik and Raz 2000] proved a lower bound of 2Ω((n/ logn)1/3) for a
family of n-variate functions in NP.

1.5. Our results

Prior to our work, state-of-the-art monotone circuit lower bounds had been stuck at
2Ω(n1/3−o(1)) since 1987. Joint work of the student and his coauthors [Cavalar et al. 2020]
proved the first 2Ω(n1/2−o(1)) lower bound for an n-bit function in NP, which breaks a record
of over 30 years. We are also able to prove an nΘ(k) bound for the Clique(n, k) function
when k 6 n1/3−o(1), thus proving the first tight bound on the monotone complexity of
the clique problem for large k. This improves the result of [Alon and Boppana 1987] for
k 6 n1/3−o(1).

1.6. Distinction

This work was accepted for presentation at the LATIN 20203 conference, an international
conference of theoretical computer science. LATIN 2020 was the 14th edition of this con-
ference series, which began in 1992. These 30 years of history give it a traditional place
among theoretical computer science conferences. The work of the student and his coau-
thors was distinguished in this prestigious conference with the Alejandro López-Ortiz Best
Paper Award. The work was also invited to the special issue of the journal Algorithmica
dedicated to the LATIN 2020 conference.

1.7. The thesis

In the master thesis, entitled Sunflowers Theorems in Monotone Circuit Complexity, the
student gives a self-contained exposition of his work on [Cavalar et al. 2020], discussing
the main combinatorial structure behind those results. The thesis emphasizes the role of
these structures in monotone circuit lower bounds, showing how better bounds for these
structures directly imply better monotone circuit lower bounds. Moreover, the thesis also
introduces a novel concept of abstract sunflowers, which is then used to generalize all the
known applications of the approximation method of Razborov, one of the main existing
techniques used to obtain monotone circuit lower bounds.

1.8. Other remarks

This thesis was advised by Yoshiharu Kohayakawa at Instituto de Matemática e Es-
tatı́stica da Universidade de São Paulo (USP). Part of these results were obtained during
a visit of the student to the University of Toronto, in collaboration with Benjamin Ross-
man and Mrinal Kumar. The thesis was defended in September 2020. The thesis is now
available at the digital library of USP4.

2. Sunflowers and the approximation method
Razborov’s approach [Razborov 1985] inaugurated a technique which became known as
the approximation method. Given a monotone circuit C of “small size”, it consists in con-
structing gate-by-gate, in a bottom-up fashion, another circuit C̃ that approximates C on

3https://latin2020.ime.usp.br/
4See https://doi.org/10.11606/D.45.2020.tde-25112020-162107.



a set of inputs of interest. One then exploits the structure of this approximating circuit to
prove that it differs from Clique(n, k) under the same distribution, thus implying that no
“small” circuit C can compute this function. For monotone circuit lower bounds, show-
ing that C̃ does indeed approximate C is usually the hardest part, involving the use of a
combinatorial lemma – which, in the case of [Razborov 1985], was the sunflower lemma
of Erdős and Rado [Erdős and Rado 1960]. This technique was leveraged to obtain lower
bounds for a host of other monotone problems by [Alon and Boppana 1987]. They em-
ploy a weaker notion of “sunflowers” (which we call here lopsided sunflowers), proving
a better corresponding bound.

Another type of sunflowers, called robust sunflowers, was developed by Ross-
man [Rossman 2014] with the purpose of achieving better lower bounds for Clique(n, k)
on random graphs. Robust sunflowers found applications not only in monotone cir-
cuit complexity, but also in DNF sparsification [Gopalan et al. 2013] randomness extrac-
tors [Li et al. 2018], and lifting theorems [Lovett et al. 2020]. A recent breakthrough of
[Alweiss et al. 2020] significantly improved the upper bound on the size of uniform fam-
ilies without robust sunflowers. Subsequent works [Rao 2020, Tao 2020] improved their
bound to a final, tight bound.

In our work [Cavalar et al. 2020], we show how these recent developments in sun-
flower theorems lead to better monotone circuit lower bounds. We apply the approxima-
tion method with robust sunflowers to prove the following theorem:

Theorem 1. There exists a monotone Boolean function f : {0, 1}n → {0, 1} in NP such
that any monotone circuit computing f has size at least 2Ω(n1/2/ logn).

By applying the same technique with a variant of robust sunflowers that we call
clique-sunflowers, we are able to prove an nΘ(k) lower bound for the Clique(n, k) function
when k 6 n1/3−o(1).

Theorem 2. For any fixed 0 < δ < 1/3 and all k 6 n1/3−δ, the monotone circuit
complexity of Clique(n, k) is Ω(nδ

2k/2).

In the thesis, we give a generalized presentation of this and other results, by fram-
ing all known applications of the approximation method as making use of a notion we call
abstract sunflowers. Attention to this generalized notion may lead to even better lower
bounds in the future, as we also discuss with more detail in the thesis.

3. Better lower bounds for a function in NP
To the best of our knowledge, the following table summarizes the progress of the strongest
monotone circuit lower bounds so far.

Reference Technique Result

[Bloniarz 1980] Gate elimination 4n
[Tiekenheinrich 1984] Gate elimination 4n
[Razborov 1985] Approximation method w/ sunflowers nΩ(logn)

[Andreev 1985] Approximation method w/ lopsided sunflowers 2Ω̃(n1/8)

[Alon and Boppana 1987] Approximation method w/ lopsided sunflowers 2Ω̃(n1/4)

[Andreev 1987] Approximation method w/ lopsided sunflowers 2Ω̃(n1/3)

[Harnik and Raz 2000] Monotone switching lemma 2Ω̃(n1/3)



Reference Technique Result

[Cavalar et al. 2020] Approximation method w/ robust sunflowers 2Ω̃(n1/2)

The lower bound of [Harnik and Raz 2000] holds for a family of explicit n-variate
functions defined using a small probability space of random variables with bounded
independence. Our lower bound of 2Ω̃(n1/2) holds for the same function considered
by [Harnik and Raz 2000].

4. Better lower bounds for clique
The following table summarizes the history of lower bounds on the monotone complexity
of Clique(n, k).

Reference Range of k Technique Result

[Razborov 1985] 6 log n Appr. method w/ sunflowers nΩ(k)

[Alon and Boppana 1987] 6 n2/3/4 Appr. method w/ lop. sunflowers nΩ(
√
k)

[Cavalar et al. 2020] 6 n1/3−δ Appr. method w/ clq. sunflowers nΩ(δ2k)

We remark that a recent work of [Krajı́ček and Oliveira 2018] showed that any
lower bound for Clique(n, k) better than nΩ(

√
k) for large k must avoid the approxima-

tion method altogether or consider a different set of distributions. We achieve our lower
bound by considering the Erdős-Rényi p-biased random graph, together with our notion
of clique-sunflowers.
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