
The Balanced Connected k-Partition Problem: Polyhedra and
Algorithms

Matheus J. Ota1, Flávio K. Miyazawa1 (Advisor), Phablo F. S. Moura2 (Co-Advisor)

1Institute of Computing, University of Campinas, Brazil

2Department of Computer Science, Federal University of Minas Gerais, Brazil

matheus.ota@students.ic.unicamp.br, fkm@ic.unicamp.br, phablo@dcc.ufmg.br

Abstract. The balanced connected k-partition (BCPk) problem consists in par-
titioning a connected graph into connected subgraphs with similar weights. This
problem arises in multiple practical applications, such as police patrolling, im-
age processing, data base and operating systems. In this work, we address
the BCPk using mathematical programming. We propose a compact formula-
tion based on flows and a formulation based on separators. We introduce classes
of valid inequalities and design polynomial-time separation routines. Moreover,
to the best of our knowledge, we present the first polyhedral study for BCPk in
the literature. Finally, we report on computational experiments showing that the
proposed algorithms significantly outperform the state of the art for BCPk.

1. Introduction
The problem of partitioning a graph into connected subgraphs with similar weights has
been extensively investigated since the late seventies [Lovász 1977]. Besides its innate
theoretical interest, such problems have many practical applications in police patrolling,
image processing, data base and operating systems. In the following, we elaborate on a
police patrolling application.

Suppose we are given a map of a city that is divided into patrolling areas. Suppose
also that this map has points representing crime occurrences. We can model this map with
a graph G = (V,E). The set of vertices V corresponds to the patrolling areas and an
edge {p1, p2} belongs to E if and only if patrolling area p1 is adjacent to p2 in the map.
Next, define a function w : V → Q≥ which indicates the criminality in a patrolling area.
Finding k connected subgraphs with similar weights in (G,w) is equivalent to attributing
balanced and contiguous patrolling regions to k police teams (see Figure 1).

We are now ready to formalize the balanced connected k-partition problem. To
this end, we assume henceforth that G = (V,E) is a connected undirected graph
and w : V → Q≥ is a function that assigns weights to the vertices of G. As usual, we use
the notation n := |V | and m := |E|. Moreover, for t ≥ 1, [t] denotes the set {1, . . . , t};
and for any subset V ′ ⊆ V , w(V ′) refers to the sum

∑
v∈V ′ w(v).

Fix k to be a positive integer. A connected k-partition of G is a partition {Vi}i∈[k]
of V , where, for every i ∈ [k], Vi 6= ∅ andG[Vi] is connected. We refer to each Vi as a class
of the partition. We may assume that |V | ≥ k, otherwise G does not admit a connected
k-partition. In the balanced connected k-partition problem (BCPk), we are given a vertex-
weighted connected graph, and we seek a connected k-partition that maximizes the weight
of a lightest class, i.e., the goal is to maximize mini∈[k]{w(Vi)}.

(a) (b)

Figure 1. (a) A toy example of a map. The black lines delimit the patrolling ar-
eas and the red dots represent crime occurrences. (b) A corresponding
instance (G,w) and a solution for k = 2. The numbers outside the vertices
indicate the weights.

For k ≥ 2, the balanced connected k-partition problem is known to be NP-hard
even in bipartite graphs [Dyer and Frieze 1985]. Furthermore, BCPk has been largely
investigated under different approaches and perspectives: exact algorithms, approxima-
tion algorithms for some values of k or special classes of graphs, close variants of the
problem, and inapproximability results. Moreover, besides the already mentioned appli-
cations, BCPk has recently been used to model problems in cluster analysis, education,
robotics and metabolic networks. All these different real-world applications indicate the
importance of designing algorithms for BCPk and reporting on the computational exper-
iments with their implementations. Not less important are the theoretical studies of the
rich and diverse mathematical formulations BCPk leads to.

1.1. Contributions and Outline

Our work advances the state of the art for exact algorithms for BCPk. Due to space con-
straints we present results without details. The reader is referred to the author’s thesis
for detailed explanations [Ota 2020]. In Section 2 of this summary, we introduce a com-
pact flow based formulation for the problem. Then, in Section 3, we present a novel cut
based integer linear programming formulation, and show valid inequalities that have cor-
responding polynomial-time separation routines. A polyhedral study is also presented in
the same section. To the best of our knowledge, this is the first polyhedral study for BCPk

described in the literature. We report on computational experiments in Section 5. In the
same section, we also propose new benchmark instances, based on instances generated
with OpenStreetMap and real-world public safety data. The computational results show
that the exact algorithms based on our formulations are able to solve larger instances in a
smaller amount of time than the previous exact solving methods in the literature, namely,
the algorithms proposed by Matić [Matić 2014] and Zhou et al. [Zhou et al. 2019].

2. Flow formulation
The flow formulation is based on flows in a digraphD. Given the input graphG = (V,E),
the set of vertices of D is V (D) = V ∪ S, where S = {s1, . . . , sk}. Each vertex in S is
associated to a class and represents a source of flow. The arc set of the digraph D is set
to A(D) = {(u, v), (v, u) : {u, v} ∈ E} ∪ {(si, v) : i ∈ [k], v ∈ V }.

For each arc a ∈ A(D), we associate a real variable fa ≥ 0 which represents
the amount of flow passing through a, and a binary variable ya (such that ya = 1 if
fa > 0) that allow us to impose that flows from different sources do not mix. This way,

we establish that the flow sent by source si reaches exactly the vertices in Vi. Next,
we enforce that each vertex v ∈ V consumes w(v) from the flow. Then, the amount
of flow sent by si corresponds precisely to the weight of the i-th class. In the below
formulation, y(A′) (resp. f(A′)), for arc set A′ ⊆ A(D), stands for

∑
a∈A′ ya (resp.∑

a∈A′ fa).

max f(δ+(s1))

s.t. f(δ+(si)) ≤ f(δ+(si+1)) ∀i ∈ [k − 1], (1)
f(δ−(v))− f(δ+(v)) = w(v) ∀v ∈ V, (2)
fa ≤ w(V) ya ∀a ∈ A(D), (3)
y(δ+(si)) ≤ 1 ∀i ∈ [k], (4)
y(δ−(v)) ≤ 1 ∀v ∈ V, (5)
ya ∈ {0, 1} ∀a ∈ A(D), (6)
fa ∈ R≥ ∀a ∈ A(D). (7)

Constraints (2) enforces that each vertex v ∈ V consumes w(v) flow units. Inequali-
ties (3) imply that positive flow can only pass through arcs that were selected by the y
variables. Constraints (4) impose that at most one arc leaving a source transports positive
flow. Similarly, inequalities (5) require that every non-source vertex receives a positive
flow from at most one vertex. Lastly, the flows sent by the sources are ordered non-
decreasingly by inequalities (1). This explains the objective function. As we shall see in
Section 4, a branch-and-bound algorithm using this flow formulation is the fastest exact
solving method in general.

3. Cut Formulation
The cut formulation we propose for BCPk is based on the following central concept. Let u
and v be two non-adjacent vertices in G. We say that S ⊆ V \ {u, v} is a (u, v)-separator
if u and v belong to different components of G− S. We denote by Γ(u, v) the collection
of all minimal (u, v)-separators in G. In the formulation, we use a binary variable xv,i,
for every v ∈ V and i ∈ [k], that indicates if v belongs to the i-th class.

max
∑
v∈V

w(v) xv,1

s.t.
∑
v∈V

w(v) xv,i ≤
∑
v∈V

w(v) xv,i+1 ∀i ∈ [k − 1], (8)∑
i∈[k]

xv,i ≤ 1 ∀v ∈ V, (9)

xu,i + xv,i −
∑
z∈S

xz,i ≤ 1 ∀uv /∈ E, S ∈ Γ(u, v), i ∈ [k], (10)

xv,i ∈ {0, 1} ∀v ∈ V and i ∈ [k]. (11)

Because of the weight ordering imposed by inequalities (8), the objective function
maximizes the weight of a lightest class. Constraints (10) guarantee the connectedness of
each class. Since the cardinality of each set Γ(u, v) may be exponentially large, we treat
these inequalities with a cutting-plane approach.

Next, we derive valid inequalities. The corresponding separation routines are
discussed in Section 5.2 of the thesis. Before we proceed, let us define the poly-
topePk(G,w) = conv{x ∈ Bnk : x satisfies inequalities (8)−(10)}. The next proposition
perform a lifting of inequalities (10) by removing appropriate vertices from the separator.

Proposition 3.1 Let u and v be two non-adjacent vertices of G, and let S be a minimal
(u, v)-separator. Let i ∈ [k], and let L = {z ∈ S : w(Pz) > w(V)/(k− i+1)}, where Pz

is a minimum-weight path between u and v in G that contains z. The following inequality
is valid for Pk(G,w): xu,i + xv,i −

∑
z∈S\L xz,i ≤ 1.

The next class of inequalities are of a different nature and are referred to as cross
inequalities [de Aragão and Uchoa 1999]. In Chapter 5 of the thesis we introduce a
generalization of the cross inequalities. Moreover, given a face F , we designed a dynamic
programming algorithm that separates the cross inequalities in time complexityO(|F |k2).

Proposition 3.2 Let G be a planar graph and let F be the boundary of a face with at
least 4 vertices. Consider distinct vertices s1, s2, t1 and t2 that appear in a clockwise
order in F . For all i, j ∈ [k], i 6= j, the constraint xs1,i + xs2,j + xt1,i + xt2,j ≤ 3 is valid
for Pk(G,w).

3.1. Polyhedral results

In this section, we denote by 1-BCPk, the special case of BCPk in which all vertices have
unit weight. In this case, the polytope Pk(G,w) is simply written as Pk(G).

Theorem 3.3 Let G be an input for 1-BCPk. Then, the following hold.

(a) The polytope Pk(G) is full-dimensional, that is, dim(Pk(G)) = kn;
(b) For every v ∈ V and i ∈ [k], the inequality xv,i ≥ 0 defines a facet of Pk(G);
(c) For every v ∈ V , the inequality

∑
i∈[k] xv,i ≤ 1 defines a facet of Pk(G).

Further polyhedral results were obtained during this research. Namely, we charac-
terized when inequalities (10) are facet defining for Pk(G). We also studied a variation of
the cut formulation that avoids ordering the classes by their weights. Then, when studying
the facial structure of the associated polytope, we do not require that all vertices have the
same weight, as in 1-BCPk. Besides extending the results in Theorem 3.3 for this sec-
ond polytope, we also characterized when the cross inequalities are facet defining. These
results can be seen in Section 5.4 of the thesis.

4. Computational Experiments
We conducted computational experiments to compare the performance of the proposed
solving methods with the state of the art, and to test our algorithms on instances from
a real-world application. Among the considered instances are grid graphs and random
connected graphs, since these were used in previous works [Matić 2014,Zhou et al. 2019].
Moreover, we evaluated the performance of our algorithms on new instances based on a
police patrolling application. Using the OSMnx python library we transformed maps from
OpenStreetMap into undirected graphs. Next, we collected public safety data for the cities
of Chicago, Los Angeles, New York and Campinas. Finally, we designed a function that
assigns weights to the vertices in a way that each crime occurrence has an influence over
a region according to a gaussian function.

Figure 2. Computational results for BCP2 on grid and random graphs. Time is
in logarithmic scale. Grid and random graphs have names in the format
gg height width and rnd n m, respectively.

Instance 2 3 4 5

barao 1913 2752 8.18 504.97 - -
campinas centro 579 942 2.05 733.79 206.66 -
chicago loop 624 971 6.97 26.01 1262.51 293.26
la hollywood 1368 2030 22.71 120.30 878.96 696.60
la skidrow 1667 2459 51.10 57.30 1648.06 -
nyc chelsea 822 1228 2.59 84.33 133.40 242.25
nyc hellskitchen 498 746 1.47 10.02 3.50 -
unicamp 624 901 1.33 95.20 - -

Table 1. Running time in seconds of FLOW on real-world instances with k ∈
{2, 3, 4, 5}. Instances have names in the format name n m, where name
refers to the geographic region name.

4.1. Computational results
Our implementation was written in C++ using the graph library Lemon. The branch-
and-cut algorithm based on the cut formulation was implemented using SCIP 6.0 and
Gurobi 9.0 as the LP solver. The branch-and-bound algorithms for the flow formulation
and the models previously proposed by Matić [Matić 2014] and Zhou et al. [Zhou et al.
2019] were implemented using only Gurobi 9.0. Our branch-and-cut algorithm have ad-
ditional enhancements discussed in Chapter 5 of the thesis; namely, we separate lifted
minimal cover inequalities and implement custom domain propagation routines. We use
SCIP plugin system to implement these features. The execution time limit in our experi-
ments was set to 1800 seconds.

Figure 2 show histograms with the average execution time in instances of BCP2.
In these plots, we assume that an algorithm took 1800 seconds to solve instances which
were not solved within the time limit. For each graph type, we generated 10 instances.
CUT-CROSS refer to the cut formulation with the cross inequalities. As one can see, the
cross inequalities were very effective in the grid graphs. Also, in both grid and random
graphs, our best algorithms were significantly superior to the methods in the literature. To
further assess the performance of our methods, we generated larger graphs. Our experi-
ments show that FLOW was able to solve grids with over 400 times more vertices than the
grids solved by the previous exact methods in the literature.

We also conducted experiments for k > 2. For grid and random graphs with k ∈
{3, 4, 5}, FLOW was able to solve all of the 60 instances considered. The previous state
of the art (Zhou et al.) was able to solve 16 of these instances. Lastly, only FLOW was
able to solve the real-world graphs. Table 1 present the execution times in some of these
instances. Notice that the problem became harder for larger values of k.

5. Conclusion
The contributions of this work are twofold. On the practical side, we introduced classes of
real-world instances for BCPk and proposed efficient exact algorithms based on (mixed)
integer linear programming formulations. We also introduced classes of valid inequalities
and devised polynomial-time separation routines. On the theoretical side, we studied the
facial structure of the polytope associated with the cut formulation. We remark that this
is the first polyhedral study of BCPk in the literature.

This work gave rise to two published papers. One is a short version of the thesis
and was published in the proceedings of the International Symposium on Combinatorial
Optimization 2020 (Qualis B2) [Miyazawa et al. 2020]. The second paper has a more
practical emphasis and was published in the European Journal of Operational Research
(Qualis A1) [Miyazawa et al. 2021]. A third paper is currently in preparation, and it
concerns our theoretical findings regarding the facial structure of the polytopes associated
with BCPk.

References
de Aragão, M. P. and Uchoa, E. (1999). The γ-connected assignment problem. European

Journal of Operational Research, 118(1):127–138.

Dyer, M. and Frieze, A. (1985). On the complexity of partitioning graphs into connected
subgraphs. Discrete Applied Mathematics, 10(2):139–153.

Lovász, L. (1977). A homology theory for spanning tress of a graph. Acta Mathematica
Academiae Scientiarum Hungarica, 30:241–251.

Matić, D. (2014). A mixed integer linear programming model and variable neighborhood
search for maximally balanced connected partition problem. Applied Mathematics and
Computation, 237:85–97.

Miyazawa, F. K., Moura, P. F., Ota, M. J., and Wakabayashi, Y. (2021). Partitioning
a graph into balanced connected classes: Formulations, separation and experiments.
European Journal of Operational Research, 293(3):826–836.

Miyazawa, F. K., Moura, P. F. S., Ota, M. J., and Wakabayashi, Y. (2020). Cut and
flow formulations for the balanced connected k-partition problem. In International
Symposium on Combinatorial Optimization, pages 128–139. Springer.

Ota, M. J. (2020). The balanced connected k-partition problem : polyhedra and algo-
rithms 1. Master’s thesis, Universidade Estadual de Campinas.

Zhou, X., Wang, H., Ding, B., Hu, T., and Shang, S. (2019). Balanced connected task
allocations for multi-robot systems: An exact flow-based integer program and an ap-
proximate tree-based genetic algorithm. Expert Systems with Applications, 116:10–20.
1http://repositorio.unicamp.br/jspui/handle/reposip/356940

http://repositorio.unicamp.br/jspui/handle/reposip/356940

	Introduction
	Contributions and Outline

	Flow formulation
	Cut Formulation
	Polyhedral results

	Computational Experiments
	Computational results

	Conclusion

