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Abstract. We propose two new computational problems associated with the
charging of mobile devices using wireless power transfer via magnetic induc-
tion. Algorithms for these problems may enable ubiquitous charging, mean-
ing the user is no longer required to be aware of the devices charging pro-
cesses. We prove both problems as being NP-Hard and propose three dynamic-
programming algorithms to solve them in linear time regarding the size of the
time-horizon. We also propose three greedy algorithms for the problems. Ex-
periments indicate that the best dynamic-programming algorithm among those
proposed reaches between 89% and 97% of effectiveness, while the best greedy
reaches between 74% and 92%, depending on the considered scenario.

1. Introduction

The global market of wireless charging devices was valued at $ 6,514.2 million in 2018
and is projected to reach $ 49,304.1 million by 2027 [Patil 2020]. Most of these devices
use Inductive Power Transfer (IPT) protocols as physical layer. Nevertheless, most wire-
less charging solutions in the literature do not address the charging process in their model-
ing, often focusing purely on Wireless Power Transfer (WPT) [Jadidian and Katabi 2014,
Shi et al. 2015]. In theory, maximizing the power transfer is equivalent to minimize the
charging time and maximize the life-time of the devices around if the system features a
single power receiver or a single transmitter. However, the problems became quite differ-
ent for multiple transmitters and receivers, especially for heterogeneous networks.

The two problems proposed by this work start filling a gap between the afore-
mentioned works and the charging processes of the powered devices. The Minimum-
Time MIMO Charging Problem applies to cases where a Multiple-Input-Multiple-Output
(MIMO) IPT transmitting station must charge a set of nodes as soon as possible. Use
cases include the automated charging of wireless nodes and the power distribution among
unmanned aerial vehicles (UAVs) in Flying Ad hoc Networks (FANETS).The automated
charging of wireless nodes is often implemented using a wireless transmitting vehicle that
runs within the network area and meanwhile provides the power for charging the nodes.
Thus, charging the nodes in a sub-area as fast as possible is fundamental for the vehi-
cle to attend other sub-areas without disconnections due to energy issues. For the power
distribution among FANETs, in turn, the nodes must approach each other for the power
transmission to occur, so the main purposes of the network may be temporally prejudiced
and, therefore, it is required for the charging to be agile. Besides that, UAVs face landing



inaccuracies that might lead to conditions of poor coupling with the transmitter. Thus, a
MIMO setup can improve tolerance to misalignment and distance.

The No-Starvation MIMO Charging Problem, in turn, is related to ubiquitous
wireless power charging. The term refers to the paradigm where users of mobile de-
vices remain oblivious to battery charging due to the ubiquity of transmitters and the
management of the charges. The Ubiquitous WPT has already some glimpses since a few
years ago. Huang et al. [Huang et al. 2012], for instance, describes a power transmitter
based on flexible sheets and solar panels, which is simple enough to allow extensive im-
plantation and have its own power supply, avoiding issues towards energy distribution.
Assuming that mobile receivers are always close enough to the populations of transmit-
ting devices, the priority is no longer to minimize charging time. Indeed, if the devices are
not expected to stay out-of-reach for long periods, the transmitting controller might just
manage the available resources in a way to fulfill all energy requirements of the receivers
around.

The main contributions of this dissertation are: (i) the definition of two new com-
putational problems involving the process of charging multiple devices using MIMO in-
ductive power transfer systems, (ii) the proof that both proposed problems belong to NP-
Hard complexity class, (iii) the proof that the charging approach used by the previous
work is sub-optimal regarding network lifetime and charging time, (iv) the proposition
of a dynamic-programming method to solve both problems in linear time regarding the
duration of the considered time horizon, (v) three algorithms for solving each proposed
problem using the dynamic-programming method, (vi) three other algorithms for each
proposed problem using greedy approaches, and (vii) an algorithm for generating random
instances of the proposed problems which have guaranteed solution.

2. Related Work
Runtime Optimization of WPT. Systems with more than one IPT transmitting device
may follow the beam-forming approach, which roughly enables the transmitting range
and misalignment-tolerance to be improved [Jadidian and Katabi 2014, Shi et al. 2015].
Unlike the previous work, ours addresses the optimization of the whole charging pro-
cess, instead of the simple power transfer. Charging Optimization. As far as we
know, all works which address the optimization of the wireless charging instead of sim-
ply optimizing the power transference focus on scheduling of wireless nodes in wireless
sensor networks. In short, such works address the optimization of the battery charges
by selecting sub-networks to be prioritized by a single power-transmitter at each time-
interval [Zhao et al. 2020, Lin et al. 2019]. Unlike these works, we consider a MIMO
setup, which allows beam-forming and enables the transmitting-voltages to be used as
decision variables. Indeed, maximizing the transferred power with a single transmitter is
a polynomial-time problem and might be solved by the exploration method described on
page 40 of the dissertation text. Wireless Energy Distribution. Some works focused on
the distribution of energy across populations of power transceiver devices. Most works
abstracted the WPT method and focused on optimizing the scheduling of the devices to be
charged [Nikoletseas et al. 2017, Madhja et al. 2018]. As a wireless energy distribution
technology, this work differs from its predecessors for (i) admitting charge limits within
each battery can operate, (ii) considering bases dedicated to power transmission, and (iii)
aiming, under ideal conditions, that users do not have to worry about the explicit charging



of their devices and, therefore, the power sourcing of their devices be truly ubiquitous.

3. Primer
For a better understanding of the rest of this text, we provide some definitions. We con-
sider a wireless charging setup as being a population of na IPT transmitting devices spread
across an environment together with a population of np receiving devices. The transmit-
ting devices have a centralized control which can determine the input voltage of each
active circuit as long as the maximum power and the maximum current constraints are re-
spected. Each receiving device is composed of a passive circuit which receives the power,
a chargeable battery and a consumer device such as a cellphone or a electric vehicle. The
charging vector of a given time-slot express the state of the system and consists of the
instantaneous charge of every battery. Analogously, the input-voltage vector consists of
the input-voltage of each active circuit at a given time-slot. Although Section 5.7 of the
dissertation discuss the parameter acquisition, we often abstract sensing aspects and focus
on the computational problems themselves. We consider a finite time-horizon with t time-
slots of equal and known duration. The transmitting voltages and charges are discretized
considering intervals of sa volts and sp coulombs respectively.

4. Theoretical Contributions
This dissertation proposes two new computational problems regarding the prolonging of
the battery autonomy of wireless devices using WPT. The No-Starvation MIMO Charg-
ing Problem consists of finding the input-voltage time-series of each transmitting device
in order to provide all needed power to every receiving device within a given time-horizon.
The input-voltage set of each time-slot of the horizon must be chosen in a way that the
maximum power constraint is respected. Moreover, each electric current must respect the
maximum allowed for each device and all devices batteries must end the charging process
with more than a minimal charge. The Minimum-Time MIMO Charging Problem, in
turn, consists of finding the input-voltage time-series which minimizes the charging-time.
Analogously, the maximum power and maximum current constraints must be respected at
each time-slot and all devices batteries must end with more than a minimal charge.

time-slot 1 time-slot 2 time-slot 3 time-slot 4initial

final time-slot time-slot 5

Figure 1. The No-Starvation MIMO
Charging Problem aims at
finding a path to any valid fi-
nal charge-vector within the
last time-slot.

time-slot 1 time-slot 2 time-slot 3 time-slot 4initial

Figure 2. The Minimum-Time MIMO
Charging Problem aims at
finding the fastest path to
any valid final charge-vector.

We demonstrate that the approach of the previous work, that is, always maximiz-
ing the immediately received power, is sub-optimal and may lead to very unfavorable sce-
narios, although the average case has good results. We prove that both proposed problems



belong to the NP-Hard complexity class by providing polynomial-time reductions from
the well known NP-Hard 0-1 Knapsack Problem. We propose a dynamic-programming
method to solve both problems in linear-time regarding the number of time-slots in the
time-horizon. Thereunto, we discretize the time and battery-charge vectors and define a
hash-based memory structure which contains one set of charge-vectors for each time-slot.
One charge vector qt is considered to be “reachable” from a charge vector qt−1 from the
previous time-slot if and only if there is at least one input-voltage vector which transi-
tions qt−1 to qt while respecting all constraints. Thus, the method to find a solution for
an instance of the No-Starvation MIMO Charging Problem is as illustrated by Figure 1.
Starting from a single initial charge-vector, we first populate the memory structure of the
first time-slot with charge-vectors reachable from the initial one. Then, we populate the
next time-slot using charge-vectors reachable from the previous set and so on. If there is
at least a valid charge-vector in the last set, we walk the way back and build the solution.
The method for an instance of the Minimum-Time MIMO Charging Problem is similar,
as illustrated by Figure 2, but whatever the found valid last state, we stop populating the
next sets and build the solution.

We propose three algorithms based on the dynamic programming approach, which
are as follows. (i) Simple Algorithm: consists of the literal application of the method and
uses double-precision variables to store the memory structure. (ii) Pareto Algorithm: for
each slot, it stores a set of charge-vectors in such a way that no vector is a multiple of an-
other. The multiple is chosen so that the transferred power is maximized. (iii) Fly-Weight
Algorithm: consists of an adaptation of the Simple Algorithm designed to improve space-
efficiency. Indeed, it requires only about 20% of the memory space used by the Simple
one. Such algorithms run in O (t · exp(log(sa) · na) + t · exp(log(sp) · np)) time, which
is exponential regarding the number of devices but linear regarding the number of time-
slots. A naive brute-force algorithm, in turn, would run in O (exp (log(sa) · na · t)) time.

Finally, we propose three greedy algorithms. These are (i) Max-Sum-Of-
Currents Algorithm: maximizes the sum of the charging currents of all batteries at
each time-slot, (ii) Max-Sum Algorithm: maximizes the sum of the charges of all bat-
teries at each time-slot, and (iii) Max-Min Algorithm: maximizes the life-time of the
receiving device with weaker state-of-charge at each time-slot. Such algorithms run in
O (t · exp (log(sa) · na)) time.

5. Experimental Results

We evaluate the proposed algorithms via a large set of simulations. We run the simulations
via MATLAB using the mathematical modeling described in Chapter 3 of the dissertation.
We employ the random instance generator proposed in Section 6.1 to create instances
with a guaranteed and known solution to both problems. For the No-Starvation MIMO
Charging Problem, the simulations aim on estimating the success probability of each
algorithm when solving an random instance. For the Minimum-Time MIMO Charging
Problem, in turn, the main evaluated response-variable is the Normalized Charging Time,
that is, the ratio between the charging-time of the found solution and the charging-time
of the solution generated as a byproduct of the random instance. We employ different
parameters to generate a total of 450 instances of different difficulties.

Since the computational problems are proposed in this dissertation, there is no



algorithm designed specifically for solving those. Thus, we choose the WPT optimiza-
tion algorithm MultiSpot to be the baseline, given its notoriety in recent literature. For
justice sake, we abstract the parameter acquisition phase of the algorithm and provide the
exact value of each necessary parameter. The other baseline is the Max Power Algorithm,
which uses brute-force to find the voltage input for each transmitter that maximizes the
transferred power, which is the most common objective-function in WPT literature.

Figure 3. Comparison between the solutions generated by the proposed al-
gorithms and the baseline (*) for instances of the No-Starvation MIMO
Charging Problem. Over 15 charge discretization intervals (black vertical
line), the dynamic-programming algorithms (represented here by Pareto)
achieve better performance than greedy ones.

Figure 4. Comparison between the solutions generated by the proposed algo-
rithms and the baseline (*) for instances of the Minimum-Time MIMO Charg-
ing Problem.

Figure 3 shows some experimental results for the No-Starvation MIMO Charg-
ing Problem. The most effective dynamic-programming algorithm is Pareto with at least
15 discretization intervals for the charge variables, whose success ratio varied between
89% and 97% for the tested scenarios. The most effective greedy algorithm is Max Sum,
with success ratio between 74% and 92%. The null hypothesis of these two algorithms
reaching the same effectiveness can be rejected with 10% significance level using bino-
mial test (p-value = 0.09968). Finally, the most effective baseline is Max Power, which
surpassed 70% in all scenarios. However, the null hypothesis of Max Power be equivalent
to Max Sum is also rejected with 10% significance level against the hypothesis that Max
Sum is superior (p-value = 0.08873). Figure 4 shows some experimental results for the
Minimum-Time MIMO Charging Problem. There is no evidence of improvements when



comparing to the Max Power Algorithm, although MultiSpot is beaten by far by all other
considered algorithms, since it does not include most constraints in their mathematical
modeling.
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